Inexact Sequential Quadratic Programming

  • Andreas PotschkaEmail author
Part of the Advances in Numerical Mathematics book series (ANUM)


In this chapter we develop a novel approach for the solution of inequality constrained optimization problems. We first describe inexact Newton methods in Section 5.1 and investigate their local convergence in Section 5.2. In Section 5.3 we review strategies for the globalization of convergence and explain a different approach based on generalized level functions and monotonicity tests. An example in Section 5.4 illustrates the shortcomings of globalization strategies which are not based on the so called natural level function. We review the Restrictive Monotonicity Test (RMT) in Section 5.5 and propose a Natural Monotonicity Test (NMT) for Newton-type methods based on a Linear Iterative Splitting Approach (LISA). This combined approach allows for estimation of the critical constants which characterize convergence. We finally present how these results can be extended to global inexact SQP methods. We present efficient numerical solution techniques of the resulting sequence of Quadratic Programming Problems (QPs) in Chapters 8 and 9.


Newton Method Global Convergence Level Function Jordan Block Newton Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.HeidelbergGermany

Personalised recommendations