Skip to main content

Das Grippe‐Virus: Wie ein unsichtbarer Feind sichtbar wird

  • Chapter
  • First Online:
Neue und alte Infektionskrankheiten
  • 4706 Accesses

Zusammenfassung

Etwas Erbgut, eine einfache Verpackung aus Eiweiß und ein gutes Versteck. Die Grundzutaten eines Killervirus sind übersichtlich, und gerade deshalb sind selbst Forscher immer wieder verblüfft, wie effektiv sich so ein Keim bisweilen der Bekämpfung entzieht. Ein gutes Beispiel ist das Grippevirus. Forschung, Überwachung, Therapie – nicht zuletzt müssen jedes Jahr angepasste Impfstoffe produziert werden, weil regelmäßig neue Subtypen des Virus auftauchen und die Impfungen aus der letzten Saison nicht mehr wirken. Und trotzdem sterben bis zu 500.000 Menschen jährlich an dieser Krankheit, einige Tausend davon auch in Deutschland.

Im Folgenden werden die Möglichkeiten und Grenzen der modernen Strukturbiologie am Beispiel des Grippe‐Virus aufgezeigt und dabei die Bedeutung der Strukturbiologie als ein wesentliches Instrument für eine moderne Wirkstoffentwicklung in den Vordergrund gerückt. Es wird verdeutlicht, in welchem Umfang diese Technologie bereits in die moderne Arzneimittelforschung Einzug gehalten hat.

Abstract

A small, variable heap of genetic material, a simple protein package and a good hiding place – the basic ingredients for a killer virus are well arranged. Exactly therefore even researchers are amazed again and again how effectively such a pathogen from time to time escapes all countermeasures. A good example is the flu virus. In our latitudes as trigger of annoying winter malaises misjudged, the influenza virus keeps a truly monstrous health machinery on the go worldwide. Research, supervision, therapy – every year adjusted vaccines must be produced because regularly new subtypes of the virus appear and the vaccines from the last season become ineffective. However, nevertheless up to 500,000 people die because of this infectious disease annually, including several thousand in Germany.

In this short overview article, the molecular fundamentals, invisible for the human eye, will be visualized. The possibilities and limitations of modern structural biology are demonstrated on the basis of the flu virus. The impact of structural biology is moved into the focus as an essential instrument for structure based drug development. It is explained to which extent this technology is already implemented in the drug development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Blundell, T. L.;Jhoti, H. et al., High‐throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov, 2002, 1(1): 45‐54.

    Article  PubMed  CAS  Google Scholar 

  2. Congreve, M. ;Murray, C.W. ;et al., Structural biology and drug discovery. Drug Discov Today, 2005, 10(13): 895‐907.

    Article  PubMed  CAS  Google Scholar 

  3. Greer, J.;Erickson, J.W. et al., Application of the three‐dimensional structures of protein target molecules in structure‐based drug design. J Med Chem, 1994, 37(8): 1035‐54.

    Article  PubMed  CAS  Google Scholar 

  4. Kim, C. U. ;Lew, W. et al., Structure‐activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem, 1998, 41(14): 2451‐60.

    Article  PubMed  CAS  Google Scholar 

  5. Atwell, S., Adams, J.M.; et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase." J Biol Chem, 2004, 279(53): 55827‐32.

    Article  PubMed  CAS  Google Scholar 

  6. Rupp, B.;Biomolecular Crystallography. Garland Science, , Taylor & Francis Group. LLC. New York. 2010.

    Google Scholar 

  7. Margaritondo, G.; Elements of Synchrotron Light. Oxford University Press. Oxford. 2002.

    Google Scholar 

  8. Ludwig, S.;Planz, O.;Pleschka, S;Wolff, T. Influenza‐virus‐induced signaling cascades: targets for antiviral therapy? Trends in Molecular Medicine. 2003, 9(2), 46‐52.

    Article  PubMed  CAS  Google Scholar 

  9. Wilson, I.A.;Skehel, J.J;Wiley, D.C. Structure of the Haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, 1981, 289, 366‐73.

    Article  PubMed  CAS  Google Scholar 

  10. Varghese, J.N.;McKimm‐Breschkin J.L.,;Caldwell J.B.,;Kortt, A.A.;Colman, P.M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins, 1992, 14(3), 327‐32.

    Article  PubMed  CAS  Google Scholar 

  11. Taubenberger, J.K.;Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host & Microbe. 2010, 7, 440‐451.

    Article  CAS  Google Scholar 

  12. Reece, P.A. Neuraminidase inhibitors resistance in influenza virus. Journal of Medical Virology. 2007, 79, 1577‐1586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Perbandt, M. (2014). Das Grippe‐Virus: Wie ein unsichtbarer Feind sichtbar wird. In: Fischer, M. (eds) Neue und alte Infektionskrankheiten. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-04124-3_7

Download citation

Publish with us

Policies and ethics