Skip to main content

Marine mammals and windfarms: Effects of alpha ventus on harbour porpoises

  • Chapter
  • First Online:

Abstract

Offshore windfarms have the potential to affect marine mammal populations. For harbour porpoises, the threat considered most important is the influence of noise during the construction phase. Effects of the operational period that need to be considered can be either noise effects or effects due to alteration to the habitat where foundations were erected. Visual surveys and stationary acoustic monitoring showed a strong avoidance reaction during pile-driving while during the operational period results were inconclusive. In future, these impacts must be seen in a larger framework to predict the biological significance of cumulative effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature

  • Betke K & Matuschek R (2011). Messungen von Unterwasserschall beim Bau der Windenergieanlagen im Offshore-Testfeld alpha ventus. Abschlussbericht zum Monitoring nach StUK3 in der Bauphase, ITAP, Oldenburg, 48 pp.

    Google Scholar 

  • Brandt MJ, Diederichs A, Betke K, Nehls G (2011). Responses of harbour porpoises to pile driving at the Horns Rev II offshore windfarm in the Danish North Sea. Marine Ecology Progress Series 421:205–216. doi: 10.3354/meps08888

    Article  Google Scholar 

  • Brandt MJ, Höschle C, Diederichs A, et al. (2013). Seal scarers as a tool to deter harbour porpoises from offshore construction sites. Marine Ecology Progress Series 475:291–302. doi: 10.3354/meps10100

    Article  Google Scholar 

  • Brandt MJ, Höschle C, Diederichs A, et al. (2012). Far-reaching effects of a seal scarer on harbour porpoises, Phocoena phocoena. Aquatic Conservation: Marine and Freshwater Ecosystems 23:222–232. doi: 10.1002/aqc.2311

    Google Scholar 

  • BSH (2007). Standard Investigations of the impacts of offshore wind turbines on the marine environment (StUK3). Bundesamt für Seeschifffahrt und Hydrographie, Hamburg and Rostock, 58 pp.

    Google Scholar 

  • BSH (2013). Standard Investigations of the impacts of offshore wind turbines on the marine environment (StUK4). Bundesamt für Seeschifffahrt und Hydrographie, Hamburg and Rostock, 83 pp.

    Google Scholar 

  • Dähne M, Gilles A, Lucke K, et al. (2013a). Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore windfarm in Germany. Environmental Research Letters 8:025002 (16pp). doi: 10.1088/1748-9326/8/2/025002

    Article  Google Scholar 

  • Dähne M, Verfuß UK, Brandecker A, et al. (2013b). Methodology and results of calibration of tonal click detectors for small odontocetes (C-PODs). Journal of the Acoustical Society of America 134:2514–2522. doi: 10.1121/1.4816578

    Article  Google Scholar 

  • Derweduen J, Vandendriesche S, Willems T, Hostens K (2012). The diet of demersal and semi-pelagic fish in the Thorntonbank windfarm: tracing changes using stomach analyses data. In: Degraer S, Brabant R, Rumes B (eds) Offshore windfarms in the Belgian part of the North Sea: Heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit., pp 73–84.

    Google Scholar 

  • Diederichs A, Hennig V, Nehls G (2008). Investigations of the bird collision risk and the responses of harbour porpoises in the offshore windfarms Horns Rev, North Sea, and Nysted, Baltic Sea, in Denmark Part II: Harbour porpoises (FKZ 0329963 + FKZ 0329963 A), Final Report. University Hamburg & BioConsult SH, Hamburg and Husum, 100 pp.

    Google Scholar 

  • Gallus A, Dähne M, Verfuß UK, et al. (2012). Use of static passive acoustic monitoring to assess the status of the “Critically Endangered” Baltic harbour porpoise in German waters. Endangered Species Research 18:265–278. doi: 10.3354/esr00448

    Article  Google Scholar 

  • Gilles A, Adler S, Kaschner K, et al. (2011). Modelling harbour porpoise seasonal density as a function of the German Bight environment: implications for management. Endangered Species Research 14:157–169. doi: 10.3354/esr00344.

    Article  Google Scholar 

  • Gilles A, Scheidat M, Siebert U (2009). Seasonal distribution of harbour porpoises and possible interference of offshore windfarms in the German North Sea. Marine Ecology Progress Series 383:295–307. doi: 10.3354/meps08020.

    Article  Google Scholar 

  • Hammond PS, Berggren P, Benke H, et al. (2002) Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. Journal of Applied Ecology 39:361–376.

    Article  Google Scholar 

  • Hammond PS, Macleod K, Berggren P, et al. (2013). Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biological Conservation 164:107–122. doi: 10.1016/j.biocon.2013.04.010.

    Article  Google Scholar 

  • Hansen S, Höschle C, Diederichs A, et al. (2013). Offshore-Testfeld alpha ventus Fachgutachten Meeressäugetiere 2. Untersuchungsjahr der Betriebsphase (Januar–Dezember 2011). IfAÖ und BioConsult SH, Husum, 87 pp.

    Google Scholar 

  • Herr H, Scheidat M, Lehnert K, Siebert U (2009). Seals at sea: modelling seal distribution in the German bight based on aerial survey data. Marine Biology 156:811–820. doi: 10.1007/s00227-008-1105-x.

    Article  Google Scholar 

  • Kyhn LA, Tougaard J, Thomas L, et al. (2012). From echolocation clicks to animal density – Acoustic sampling of harbor porpoises with static dataloggers. Journal of the Acoustical Society of America 131:550–560. doi: 10.1121/1.3662070.

    Article  Google Scholar 

  • Lucke K, Siebert U, Lepper P a, Blanchet M-A (2009). Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. Journal of the Acoustical Society of America 125:4060–70. doi: 10.1121/1.3117443-

    Article  Google Scholar 

  • Madsen P, Wahlberg M, Tougaard J, et al. (2006). Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Marine Ecolology Progress Series 309:279–295.

    Article  Google Scholar 

  • Van Polanen Petel T, Geelhoed S, Meesters E (2012). Harbour porpoise occurrence in relation to the Prinses Amaliawindpark. Report Number C177/10, Imares, Wageningen, 34 pp.

    Google Scholar 

  • R Development Core Team (2012). R: A language and environment for statistical computing.

    Google Scholar 

  • Rigby RA & Stasinopoulos DM (2005). Generalized additive models for location, scale and shape,(with discussion). Applied statistics 54:507–554.

    Google Scholar 

  • Scheidat M, Tougaard J, Brasseur S, et al. (2011). Harbour porpoises (Phocoena phocoena) and windfarms: a case study in the Dutch North Sea. Environmental Research Letters 6:025102. doi: 10.1088/1748-9326/6/2/025102.

    Article  Google Scholar 

  • Scheidat M, Verdaat H, Aarts G (2012). Using aerial surveys to estimate density and distribution of harbour porpoises in Dutch waters. Journal of Sea Research 69:1–7. doi: 10.1016/j.seares. 2011.12.004.

    Article  Google Scholar 

  • Teilmann J & Carstensen J (2012). Negative long-term effects on harbour porpoises from a large scale offshore windfarm in the Baltic – Evidence of slow recovery. Environmental Research Letters 7:045101 (10 pp). doi: 10.1088/1748-9326/7/4/045101.

    Article  Google Scholar 

  • Thomas L, Buckland ST, Rexstad EA, et al. (2010.) Distance software: design and analysis of distance sampling surveys for estimating population size. The Journal of Applied Ecology 47:5–14. doi: 10.1111/j.1365-2664.2009.01737.x.

    Article  Google Scholar 

  • Tougaard J, Carstensen J, Teilmann J, et al. (2009a). Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L.)). Journal of the Acoustical Society of America 126:11–14. doi: 10.1121/1.3132523.

    Article  Google Scholar 

  • Tougaard J, Henriksen O, Miller L (2009b). Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. Journal of the Acoustical Society of America 125:3766–3773. doi: 10.1121/1.3117444.

    Article  Google Scholar 

  • TSEG (Trilateral Seal Expert Group) (2013). Aerial surveys of Harbour Seals in the Wadden Sea in 2013. Trilateral Seal Expert Group, Wilhelmshaven 3 pp. http://www.waddensea-secretariat.org/sites/default/files/downloads/TMAP_downloads/Seals/aerial_surveys_of_harbour_seals_in_the_wadden_sea_in_2013.pdf, accessed 05.02.2014.

    Google Scholar 

  • Verfuß UK, Dähne M, Gallus A, et al. (2013). Determining the detection thresholds for harbor porpoise clicks of autonomous data loggers, the Timing Porpoise Detectors. Journal of the Acoustical Society of America 134:2462–2468. doi: 10.1121/1.4816571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Dähne, M. et al. (2014). Marine mammals and windfarms: Effects of alpha ventus on harbour porpoises. In: Federal Maritime and Hydrographic Agency, ., Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, . (eds) Ecological Research at the Offshore Windfarm alpha ventus. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-02462-8_13

Download citation

Publish with us

Policies and ethics