Skip to main content
  • 8486 Accesses

Zusammenfassung

Dieser Beitrag gibt eine Übersicht über die wichtigsten Forschungslinien zum Thema Innovation sowohl in der Ökonomie als auch allgemein in den Sozialwissenschaften unter Berücksichtigung der historischen Wurzeln heutiger Ansätze.

Leitende Aspekte, die durch den Text führen, sind dabei die Strukturen und Dynamiken des kollektiven Innovationsprozesses unter heterogenen Akteuren sowie die Rolle von Unsicherheit für den Innovationsprozess und seine Modellierung.

Der Artikel startet mit einigen allgemeinen und systematischen Überlegungen zur Modellierung von Innovation. Unter Zugrundelegung des kollektiven, oft auch „systemisch“ genannten Innovationsprozesses wird die Frage diskutiert, ob Netzwerke und Systeme das Gleiche sind und ob bzw. wann man in den Sozialwissenschaften überhaupt vom Vorliegen von „Systemen“ reden kann. Die Vorabklärung dieser allgemeinen Fragen ist wichtig, da deren Beantwortung Konsequenzen für die Modellierbarkeit von Innovation (Innovationssystemen, Innovationsnetzwerken) hat: Hier will man schließlich ein sozialwissenschaftliches „System“ mit Hilfe eines technischen Systems abbilden und systemtheoretische Konstrukte aus der realen in die Modellierungswelt übertragen.

Es folgen Ausführungen zu historischen und kontextuellen Aspekten der Modellierung von Wissensentstehungs- und -ausbreitungsprozessen in der Volkswirtschaftslehre: Hier wird vor allem die Rolle von Unsicherheit im Innovationsprozess thematisiert und das Entstehen der modernen Innovationsökonomik entlang der Problematik von Wissensmodellierung verfolgt.

Bezüglich konkreter Modellierungsansätze wird abschließend gezeigt, wie Netzwerkanalysen und das agentenbasierte SKIN-Modell (Simulating Knowledge Dynamics in Innovation Networks) auf die aufgezeigten Probleme Bezug nehmen und sowohl den kollektiven Innovationsprozess als auch die Rolle von Unsicherheit in der Wissensentstehung modellierungspraktisch umsetzen. Der Beitrag endet mit einem kurzen Ausblick auf die Chancen und Mäoglichkeiten der Modellierung von Innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • ABRAMOWITZ, M. (1956) „Resource and Output Trends in the United States since 1870.“ American, Economic Review 46: 5–23

    Google Scholar 

  • Ackermann, R. (1970) The Philosophy of Science. New York: Pegasus.

    Google Scholar 

  • Aghion, P. und P. Howitt (1998) Endogenous Growth Theory. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ahrweiler, P., A. Pyka und N. Gilbert (2011) „A New Model for University-Industry Links in Knowledge-Based Economies.“ Journal of Product Innovation Management 28: 218–235.

    Google Scholar 

  • Ahrweiler, P., M. Schilperoord, A. Pyka und N. Gilbert (2014a, forthcoming) „Testing Policy Options for Horizon 2020 with SKIN.“ in: N. Gilbert, P. Ahrweiler und A. Pyka (Hg.) Simulating Knowledge Dynamics in Innovation Networks. Heidel- berg/New York: Springer.

    Google Scholar 

  • Ahrweiler, P., A. Pyka und N. Gilbert (2014b, forthcoming) „Simulating Knowledge Dynamics in Innovation Networks: An Introduction.“ in: N. Gilbert, P. Ahrweiler und A. Pyka (Hg.) Simulating Knowledge Dynamics in Innovation Networks. Heidel- berg/New York: Springer.

    Google Scholar 

  • Ahrweiler, P., A. Pyka und N. Gilbert (2011a) „A New Model for University-Industry Links in Knowledge-Based Economies.“ Journal of Product Innovation Management 28: 218–235.

    Google Scholar 

  • Ahrweiler, P., N. Gilbert und A. Pyka (2011b) „Agency and Structure. A Social Simulation of Knowledge-Intensive Industries.“ Computational & Mathematical Organization Theory. 17: 59–107.

    Google Scholar 

  • Ahrweiler, P. (2010) Innovation in Complex Social Systems. London: Routledge.

    Google Scholar 

  • Ahrweiler, P. und N. Gilbert (2005) „, Caff‘ Nero: the Evaluation of Social Simulation.“ Journal of Artificial Societies and Socigal Simulation 8.

    Google Scholar 

  • Ahuja, G. (2000) „Collaboration Networks, Structural Holes, and Innovation.“ Administrative Science Quarterly 45: 425–455.

    Google Scholar 

  • Albert, R. und A.-L. Barabasi (2002) „Statistical Mechanics of Complex Networks.“ Reviews of Modern Physics T4 1: 47–97.

    Google Scholar 

  • Allen, R. C. (1983) „Collective Invention.“ Journal of Economic Behaviour and Organization 4: 1-24.

    Google Scholar 

  • Anderson, P. (1999) „Complexity Theory and Organization Science.“ Organization Science 10: 216-232.

    Google Scholar 

  • Arrow, K. J. (1962) „Economic Welfare and the Allocation of Resources.“ S. 609–629 in: R. R. Nelson (Hg.) The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton: Princeton University Press.

    Google Scholar 

  • Arthur, B. (1989) „Competing Technologies, Increasing Returns, and Lock-In by Historical Events.“ Economic Journal 99: 116–131.

    Google Scholar 

  • Arthur, B. (1998) Increasing Returns and Path Dependence in the Economy. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Bar-Yam, Y. (2004) Making Things Work: Solving Complex Problems in a Complex World. Cambridge: Knowledge Press.

    Google Scholar 

  • Bar-Yam, Y. (1997) Dynamics of Complex Systems. Reading: Addison Wesley.

    Google Scholar 

  • Barabasi, A.-L. (2002) Linked: The New Science of Networks. Cambridge, MA: Perseus.

    Google Scholar 

  • Barabasi, A.-L. UND R. Albert (1999) „Emergence of Scaling in Random Networks.“ Science 286: 509–512.

    Google Scholar 

  • Beije, P. (1998) Technological Change in the Modern Economy: Basic Topics and New Developments. Cheltenham: Elgar Publishers.

    Google Scholar 

  • Blackmore, S. (1999) Meme Machine. Oxford: Oxford University Press.

    Google Scholar 

  • Braha, D., A. Minai UND Y. Bar-Yam (Hg.) (2008) Complex Engineered Systems: Science meets Technology. New York: Springer.

    Google Scholar 

  • Brown, S. L. UND K. M. Eisenhardt (1998) Competing on the Edge: Strategy as Structured Chaos. Boston: Harvard Business School Press.

    Google Scholar 

  • Bourdieu, P. (2005) The Social Structures of the Economy. Cambridge: Polity Press.

    Google Scholar 

  • Buijs, J. (2003) „Modelling Product Innovation Processes from Linear Logic to Circular Chaos, Creativity & Innovation.“ Management 12 (2): 76-93.

    Google Scholar 

  • Burt, R. S. (2004) „Structural Holes and Good Ideas.“ American Journal of Sociology 110: 349–399.

    Google Scholar 

  • Burt, R. S. (1992) Structural Holes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Carlsson, B. UND R. Stankiewicz (1991) „On the Nature, Function and Composition of Technological Systems.“ Journal of Evolutionary Economics 1: 93–118.

    Google Scholar 

  • Castelacci, F., A. Fevolden UND M. Blom (2014, forthcoming) „R & D Policy Support and Industry Concentration: A SKIN Model Analysis of the European Defence Industry.“ in: N. Gilbert, P. Ahrweiler UND A. Pyka (Hg.) Simulating Knowledge Dynamics in Innovation Networks Heidelberg / New York: Springer.

    Google Scholar 

  • Casti, J. (1995) Complexification. Explaining a Paradoxical World Through the Science of Surprise. New York: Harper Collins.

    Google Scholar 

  • Chiva-Gomez, R. (2004) „Repercussions of Complex Adaptive Systems on Product Design Management.“ Technovation 24: 707–711.

    Google Scholar 

  • Choi, T. Y., K. J. Dooley und M. Rungtusanatham (2001) „Supply Networks and Complex Adaptive Systems: Control Versus Emergence.“ Journal of Operations Management 19: 351–366.

    Google Scholar 

  • Cohen, W. M. UND D. Levinthal (1990) „Absorptive Capacity: A New Perspective on Learning and Innovation.“ Administrative Science Quarterly 35: 128–152.

    Google Scholar 

  • Cowan, R., N. Jonard UND J.-B. Zimmermann (2007) „Bilateral Collaboration and the Emergence of Innovation Networks.“ Management Science 53: 1051–1067.

    Article  Google Scholar 

  • Cunha, M. P. UND J. E. S. Comes (2003) „Order and Disorder in Product Innovation Models, Creativity & Innovation.“ Management 12: 174–187.

    Google Scholar 

  • DahmEn, E. (1989) „Development Blocks in Industrial Economics.“ S. 109–121 in: B. Carlsson (Hg.) Industrial Dynamics. Dodrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Dasgupta, P. UND J. E. Stiglitz (1980) „Industrial Structure and the Nature of Inventive Activity.“ Economic Journal 90: 266–293.

    Google Scholar 

  • Dawkins, R. (1989) The Selfish Gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dennett, D. C. (1995) Darwin’s Dangerous Idea: Evolution and the Meanings of Life. London: Penguin Books.

    Google Scholar 

  • Dooley, K. UND A. van DE Ven (1999) „Explaining Complex Organizational Dynamics.“ Organization Science 10: 358–372.

    Google Scholar 

  • Dosi, G. (1988) „The Nature of the Inventive Process.“ S. 221–238 in: G. Dosi, ET AL. (Hg.) Technical Chang and Economic Theory. London: Pinter Publishers.

    Google Scholar 

  • ElSENHARDT, K. M. UND M. M. Bhatia (2002) „Organizational Complexity and Computation.“ S. 442–466 in: J. A. C. Baum (Hg.) Companion to Organizations. Oxford: Blackwell.

    Google Scholar 

  • ELIASSON, G. (1995) General Purpose Technologies, Industrial Competence and Economic Growth. With special Emphasis on the Diffusion of Advanced Methods of Integrated Production. Working Paper. Stockholm: Royal Institute of Technology.

    Google Scholar 

  • EUROPEAN COMMISSION / DG Research (2002) Benchmarking national Research Policies: The Impact of RTD on Competitiveness and Employment (IRCSE). Brussels.

    Google Scholar 

  • European Commission Workshop Report (2009) Using Network Analysis to Assess Systemic Impacts of Research. DG INFSO, March 2009.

    Google Scholar 

  • FAGERBERG, J. (2003) „Schumpeter and the Revival of Evolutionary Economics: an Appraisal of the Literature.“ Journal of Evolutionary Economics 13: 125–159.

    Google Scholar 

  • Flake, G. W. (1999) The Computational Beauty of Nature. Cambridge, MA: MIT Press.

    Google Scholar 

  • FoRNAHL, F. UND T. Brenner (2003) Cooperation, Networks and Institutions in Regional Innovation Systems. Cheltenham, UK: Elgar Publishers.

    Google Scholar 

  • Frenken, K. (2006) Innovation, Evolution and Complexity Theory. Cheltenham, UK: Elgar Publishers.

    Google Scholar 

  • Gell-Mann, M. (1994) The Quark and the Jaguar. New York: Freeman & Co.

    Google Scholar 

  • Geroski, P. A. (1995) „Do Spillovers Undermine the Incentives to Innovate.“ in: S. Dowrick (Hg.) Economic Approaches to Innovation. London: Edward Elgar.

    Google Scholar 

  • Gilbert, N. (1997) „A simulation of the structure of academic science.“ Sociological Research Online 2: http://www.socresonline.org.uk/socresonline/2/2/3.tml.

  • Gilbert, N. UND K. G. Troitzsch (2005) Simulation for the Social Scientist. Berkshire, UK: Open University Press.

    Google Scholar 

  • Gilbert, N. (2007) Agent-Based Model. London: Sage.

    Google Scholar 

  • Gilbert, N., P. Ahrweiler UND A. Pyka (2007) „Learning in Innovation Networks: Some Simulation Experiments.“ Physica A 378: 100–109.

    Article  Google Scholar 

  • Gloor, P. (2006) Swarm Creativity. Competitive Advantage Through Collaborative Innovation Networks. Oxford: Oxford University Press.

    Google Scholar 

  • Granovetter, M. (1973) „The Strength of Weak Ties.“ American Journal of Sociology 78: 1360-1380.

    Google Scholar 

  • Grossman, G. M. UND E. Helpman (1991) „Quality Ladder and Product Cycles.“ Quarterly Journal of Economics 106: 557–586.

    Google Scholar 

  • Hejl, P. (1992) „Selbstorganisation und Emergenz in sozialen Systemen.“ S. 269–292 in: W. Krohn UND G. KUEPPERS (Hg.) Die Entstehung von Ordnung, Organisation und Bedeutung. Frankfurt: Suhrkamp.

    Google Scholar 

  • Holland, J. H. (1995) Hidden Order: How Adaptation Builds Complexity. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Imai, K. UND Y. Baba (1991) „Systemic Innovation and Cross-Border Networks, Transcending Markets and Hierachies to Create a New Techno-Economic System.“ Technology and Productivity: the Challenge for Economic Polic. Paris: OECD.

    Google Scholar 

  • KÄMPER, E. UND J. Schmidt (2000) „Netzwerke als strukturelle Kopplung.“ in: J. Weyer (Hg.) Soziale Netzwerk. Munchen: Oldenbourg.

    Google Scholar 

  • Kaldor, N. (1961) „Capital Accumulation and Economic Growth.“ S. 177–222 in: F. A. Lütz und D. C. Hague (Hg.) The Theory of Capital. New York: St. Martins Press.

    Google Scholar 

  • Kauffman, S. A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. New York: Oxford University Press.

    Google Scholar 

  • Kauffman, S. A. (1995) At Home in the Universe: The Search for the Laws of SelfOrganization and Complexity. New York: Oxford University Press.

    Google Scholar 

  • Klir, G. J. (Hg.) (1978) Applied Systems Research. New York: Plenum Press.

    Book  Google Scholar 

  • Knight, F. H. (1921) Risk, Uncertainty and Profit. Chicago: Houghton Mifflin.

    Google Scholar 

  • Korber, M. und M. Paier (2014, forthcoming) „Simulating the Effects of Public Funding on Research in Life Sciences: Direct Research Funds versus Tax Incentives.“ in: N. Gilbert, P. Ahrweiler und A. Pyka (Hg.) Simulating Knowledge Dynamics in Innovation Networks. Heidelberg/New York: Springer.

    Google Scholar 

  • Kowol, U. und W. Krohn (1995) „Innovationsnetzwerke. Ein Modell der Technikgenese.“ S. 297–334 in: J. Halfmann, G. Bechmann und W. Rammert (Hg.) Technik und Gesellschaft. Jahrbuch 8. Frankfurt a.M./New York: Campus-Verlag.

    Google Scholar 

  • Krohn, W. (1995) Die Innovationschancen partizipatorischer Technikgestaltung und diskursiver Konfliktregelung. Bielefeld: IWT-Paper 9/95.

    Google Scholar 

  • Krohn, W. und G. Küppers (1989) Die Selbstorganisation der Wissenschaft. Frankfurt/M.: Suhrkamp.

    Google Scholar 

  • Lane, D., S. van der Leeuw, D. Pumain und G. West (Hg.) (2009) Complexity Perspectives in Innovation and Social Change. Berlin, New York: Springer.

    Book  Google Scholar 

  • Lucas, R. E. (1988) „On the Mechanics of Economic Development.“ Journal of Monetary Economics 22: 3–42.

    Article  Google Scholar 

  • Luhmann, N. (1987) Soziale Systeme. Grundriss einer allgemeinen Theorie. Frankfurt: Suhrkamp.

    Google Scholar 

  • Luhmann, N. (1992) Die Wissenschaft der Gesellschaft. Frankfurt: Suhrkamp.

    Google Scholar 

  • Luhmann, N. (1994) Die Wirtschaft der Gesellschaft. Frankfurt: Suhrkamp.

    Google Scholar 

  • Luhmann, N. (1997) Die Gesellschaft der Gesellschaft. Frankfurt: Suhrkamp.

    Google Scholar 

  • Lundvall, B.-A. (1992) National Innovation Systems: Towards a Theory of Innovation and Interactive Learning. London: Pinter.

    Google Scholar 

  • Lundvall, B.-A. (1988) „Innovation as an Interactive Process: From User-Producer Interaction to National Systems of Innovation.“ S. 10–34 in: G. Dosi, et AL. (Hg.) Technical Change and Economic Theory. London: Pinter Publishers.

    Google Scholar 

  • Malerba, F. (2002) „Sectoral Systems of Innovation and Production.“ Research Policy 31: 247-264.

    Google Scholar 

  • Maturana H. (1991) „Gespräch mit Humberto R. Maturana.“ S. 270–306 in: V. Riegas und C. Vetter (Hg.) Zur Biologie der Kognition. Frankfurt: Suhrkamp.

    Google Scholar 

  • McKelvey, B. (1999) „Self-Organization, Complexity, Catastrophe, and Microstate Models at the Edge of Chaos.“ in: J. A. C. Baum und B. McKelvey (Hg.) Variations in Organization Science—in Honor of Donald T. Campbell, Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Nelson, R. R. und S. Winter (1982) An evolutionary Theory of economic Change. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nelson, R. R. (Hg.) (1993) National Innovation Systems: A Comparative Analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Nelson, R. R. (1959) „The Simple Economics of Basic Scientific Research.“ Journal of Political Economic 67: 297–306.

    Google Scholar 

  • Nelson, R. R. (1987) Understanding Technical Change as an Evolutionary Process. Amsterdam: Elsevier, North Holland.

    Google Scholar 

  • Newman, M. (2003) „The Structure and Function of Complex Networks.“ SIAM Review 45: 167–256.

    Article  Google Scholar 

  • Parsons, T. (1961) „An Outline of the Social System.“ S. 421–440 in: T. Parsons, E. A. Shills, K. D. Naegele und J. R. Pitts (Hg.) Theories of Society. Foundations of modern sociological Theory. New York: Free Press.

    Google Scholar 

  • Polanyi, M. (1962) Personal Knowledge: Towards a Post-Critical Philosophy. New York: Harper Torchbook.

    Google Scholar 

  • Porter, K. A., K. C. Bunker-Whittington und W. W. Powell (2005) „The Institutional Embeddedness of High-Tech Regions: Relational Foundations of the Boston Biotechnology Community.“ S. 261–294 in: S. Breschi und F. Malerba (Hg.) Clusters, Networks, and Innovation. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Powell, W., D. White, K. Koput und J. Owen-Smith (2005) „Network Dynamics and Field Evolution: The Growth of Inter-organizational Collaboration in the Life Sciences.“ American Journal of Sociology 110: 1132–1205.

    Google Scholar 

  • Prewo, R. (1979) Max Webers Wissenschaftsprogramm. Versuch einer methodischen Neuerschliessung. Frankfurt: Suhrkamp.

    Google Scholar 

  • Prigogine, I. und I. Stengers (1984) Order out of Chaos. New York: Bantam Books.

    Google Scholar 

  • Pyka, A., P. Ahrweiler und N. Gilbert (2009) „Agent-Based Modelling of Innovation Networks: the Fairytale of Spillovers.“ S. 101–126 in: A. Pyka und A. Scharnhorst (Hg.) Innovation Networks. New Approaches in Modeling and Analyzing. Berlin, New York: Springer.

    Google Scholar 

  • Pyka, a., N. Gilbert und P. Ahrweiler (2007) „Simulating Knowledge Generation and Distribution Processes in Innovation Collaborations and Networks.“ Cybernetics and Systems. 38: 667–693.

    Google Scholar 

  • Römer, P. (1986) „Increasing Returns and Long-run Growth.“ Journal of Political Economy 94: 1002-1037.

    Google Scholar 

  • Romer, P. (1990) „Endogenous Technical Progress.“ Journal of Political Economy 98: 71-7102.

    Google Scholar 

  • Schumpeter, J. A. (1911) Theorie der wirtschaftlichen Entwicklung. 8. Auflage 1993. Berlin: Duncker & Humblot.

    Google Scholar 

  • Schilling, M. A. und C. C. Phelps (2005) „Interfirm Collaboration Networks: the Impact of Small World Connectivity on Firm Innovation.“ Management Science 53: 1113–1126.

    Article  Google Scholar 

  • Schmid, M. und H. Haferkamp (1987) „Einleitung.“ S. 7–24 in: M. Schmid und H. Haferkamp (Hg.) Sinn, Kommunikation und soziale Differenzierung. Beiträge zu Luh- manns Theorie sozialer Systeme. Frankfurt: Suhrkamp.

    Google Scholar 

  • Schwemmer, O. (1987) Handlung und Struktur. Zur Wissenschaftstheorie der Kulturwissenschaften. Frankfurt: Suhrkamp.

    Google Scholar 

  • Schumpeter, J. (1911) Theory of Economic Development. Oxford: Oxford University Press.

    Google Scholar 

  • Siegel, D. S., D. Waldman, L. Atwater und A. N. Link (2003) „Commercial Knowledge Transfers from Universities to Firms: improving the Effectiveness of University- Industry Collaboration.“ Journal of High Technology Management Research 14: 111–133.

    Article  Google Scholar 

  • SlLVERBERG, G. (1990) „Adoption and Diffusion of Technology as a Collective Evolutionary Process.“ S. 209–229 in: C. FREEMAN UND L. SoETE (Hg.) New Explorations in the Economics of Technical Change. London: Pinter Publishers.

    Google Scholar 

  • SMITH, H. L. UND K. Ho (2006) „Measuring the Performance of Oxford University, Oxford Brookes University and the Government Laboratories. Spin-Off Companies.“ Research Policy 35: 1554–1568.

    Google Scholar 

  • SOLOW, R. (1957) „Technical Change and the Aggregate Production Function.“ The Review of Economics and Statistics. Vol. 39: 312–320.

    Article  Google Scholar 

  • SORENSON, O., J. Rivkin UND L. Fleming (2006) „Complexity, Networks and Knowledge Flow.“ Research Policy 35: 994–1017.

    Article  Google Scholar 

  • STEWART, I. (1989) Does God Play Dice? The Mathematics of Chaos. Cambridge, MA: Blackwell.

    Google Scholar 

  • Thursby, J. UND S. Kemp (2002) „Growth and Productive Efficiency of University Intellectual Property Licensing.“ Research Policy 31: 109–124.

    Article  Google Scholar 

  • Toulmin, S. (1967): The Philosophy of Science. An Introduction. London: Hutchinson.

    Google Scholar 

  • Uzzi, B. (1997) „Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness.“ Administrative Science Quarterly 42: 35–67.

    Article  Google Scholar 

  • Verspagen, B. UND G. Duysters (2004) „The Small Worlds of Strategic Technology Alliances“ Technovation 24: 563–571.

    Article  Google Scholar 

  • Verspagen, B. (1990) âLocalized Technological Change, Factor Substitution and the Productivity Slowdown.† in: C. FREEMAN UND L. SOETE (Hg.) New Explorations in the Economics of Technical Change. London: Pinter Publishers.

    Google Scholar 

  • Von FOERSTER, H. (1984) Observing Systems. Seaside, CA.: Intersystems Publications.

    Google Scholar 

  • Von FOERSTER, H. UND J. Zopf (1962) „Princples of Self-Organization.“ Transactions of the University of Illinois Symposium on Self-Organization. Robert Allerton Park, 8/-9 June 1961.

    Google Scholar 

  • Von Hippel, E. (1989) „Cooperation between Rivals: Informal Know-how Trading.“ S. 291-302 in: B. CARLSSON (Hg.) Industrial Dynamics. Bosten: Kluwer Academic Publishers.

    Google Scholar 

  • WALDROP, M. M. (1992) Complexity: The Emerging Science at the Edge of Order and Chaos. New York: Simon & Schuster.

    Google Scholar 

  • Walker, G., B. Kogut UND W. Shan (1997) „Social Capital, Structural Holes and the Formation of an Industry Network.“ Organization Science 8: 108–125.

    Article  Google Scholar 

  • WASSERMAN, S. UND K. Faust (1994) Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • WATTS, C. UND N. Gilbert (2014) Simulating Innovation. Computer-based Tools for ReThinking Innovation. London: Edward Elgar.

    Google Scholar 

  • WATTS, D. (1999) Small Worlds. Princeton: Princeton University Press.

    Google Scholar 

  • WATTS, D. UND S. Strogatz (1998) „Collective Dynamics of, Small-World‘ Networks.“ Nature 393: 440-442.

    Article  Google Scholar 

  • WiNTER, S. G. (1984) Schumpeterian Competition in Alternative Technological Regimes.“ Journal of Economic Behavior and Organization Vol. 5: 287–320.

    Google Scholar 

  • WINTER, S. G. (1989) „Patents in Complex Contexts: Incentives and Effectiveness.“ in: V. Weil ET AL. (Hg.) Owning Scientific and Technical Information. Rutgers University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Ahrweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Ahrweiler, P., Pyka, A. (2015). Innovation. In: Braun, N., Saam, N. (eds) Handbuch Modellbildung und Simulation in den Sozialwissenschaften. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-01164-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-01164-2_30

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-01163-5

  • Online ISBN: 978-3-658-01164-2

  • eBook Packages: Humanities, Social Science (German Language)

Publish with us

Policies and ethics