Tools and Methods

  • Matthias Köhne

Abstract

The proof of Theorem 3.30, which will be carried out in the next chapters, requires a fair amount of tools and methods, which should be collected here. First of all, it will sometimes be convenient to construct auxiliary solutions for the pressure via weak elliptic problems as employed in 3.41 and for the velocity via parabolic systems as (3.2). Hence, an L p -theory for these types of problems is needed.

Keywords

Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ama95]
    H. Amann: Linear and Quasilinear Parabolic Problems. Volume I. Abstract Linear Theory, Monographs in Mathematics, vol. 89. Birkhauser, 1995.Google Scholar
  2. [DHP01]
    W. Desch, M. Hieber, and J. Pru_: Lp-Theory of the Stokes Equation in a Half-Space. J. Evol. Equ., 1, 115{142, 2001.Google Scholar
  3. [DHP03]
    R. Denk, M. Hieber, and J. Pru_: R-Boundedness, Fourier-Multipliers and Problems of Elliptic and Parabolic Type, Mem. Amer. Math. Soc., vol. 166. American Mathematical Society, 2003.Google Scholar
  4. [DS11]
    R. Denk and J. Seiler: On the Maximal Lp-Regularity of Parabolic Mixed Order Systems. J. Evol. Equ., 11, 371{404, 2011.Google Scholar
  5. [DSS08]
    R. Denk, J. Saal, and J. Seiler: Inhomogeneous Symbols, the Newton Polygon, and Maximal Lp-Regularity. Russian J. Math. Phys., 15 (2), 171{192, 2008.Google Scholar
  6. [DV87]
    G. Dore and A. Venni: On the Closedness of the Sum of Two Closed Operators. Math. Z., 196, 189{201, 1987.Google Scholar
  7. [HP98]
    M. Hieber and J. Pru_: Functional Calculi for Linear Operators in Vector-Valued Lp-Spaces via the Transference Principle. Adv. Di_erential Equations, 3, 847{872, 1998.Google Scholar
  8. [KW01]
    N. J. Kalton and L. Weis: The H1-Calculus and Sums of Closed Operators. Math. Ann., 321, 319{345, 2001.Google Scholar
  9. [Ne_c67]
    J. Ne_cas: Les M_ethodes Directes en Th_eorie des _Equations Elliptiques. Academia, 1967.Google Scholar
  10. [PG75]
    G. da Prato and P. Grisvard: Sommes d’Op_eratours Lin_eaires et _equations Di__erentielles Op_erationelles. J. Math. Pures Appl., 54, 305{387, 1975.Google Scholar
  11. [Pru03]
    J. Pru_: Maximal Regularity for Evolution Equations in Lp-Spaces. Conf. Sem. Mat. Univ. Bari, 285, 1{39, 2003.Google Scholar
  12. [PS90]
    J. Pru_ and H. Sohr: On Operators with Bounded Imaginary Powers in Banach Spaces. Math. Z., 203, 429{452, 1990.Google Scholar
  13. [PS07]
    J. Pru_ and G. Simonett: H1-Calculus for the Sum of Non-Commuting Operators. Trans. Amer. Math. Soc., 359, 3549{3565, 2007.Google Scholar
  14. [PSS07]
    J. Pru_, J. Saal, and G. Simonett: Existence of Analytic Solutions for the Classical Stefan Problem. Math. Ann., 338, 703{755, 2007.Google Scholar
  15. [Rha60]
    G. de Rham: Vari_et_es Di__erentiables. Formes, Courants, Formes Harmoniques. III, Actualites Scienti_ques et Industrielles, vol. 1222. Publications de lInstitut de Math_ematique de lUniversit_e de Nancago. Hermann & Cie., 2nd ed., 1960.Google Scholar
  16. [See71]
    R. T. Seeley: Norms and Domains of the Complex Powers Az b . Amer. J. Math., 93, 299{309, 1971.Google Scholar
  17. [SS92]
    C. G. Simader and H. Sohr: A New Approach to the Helmholtz Decomposition and the Neumann Problem in Lq-Spaces for Bounded and Exterior Domains. In: Mathematical Problems Relating to the Navier-Stokes Equations, Ser. Adv. Math. Appl. Sci., vol. 11 (G. P. Galdi, ed.), (1{35), World Scienti_c Publishing, 1992.Google Scholar
  18. [SS96]
    C. G. Simader and H. Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics, vol. 360. Longman, 1996.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2013

Authors and Affiliations

  • Matthias Köhne
    • 1
  1. 1.DarmstadtGermany

Personalised recommendations