Advertisement

Fließgewässer und Grundwasser

  • Gunnar Nützmann
  • Hans Moser

Zusammenfassung

Fließgewässer befinden sich an den topographisch tiefsten Punkten ihres Einzugsgebietes, was bedeutet, dass sie oftmals sowohl vom ober- als auch vom unterirdisch zufließenden Wasser gespeist werden. Der Hydrologische Atlas von Deutschland weist eine mittlere Grundwasserneubildung von 200 mm a−1 aus, von denen nur ca. 4 mm a−1 unterirdisch in die Nord- und Ostsee gelangen, und der größte Teil des Grundwassers den Flüssen (und Seen) zufließt (BMU 2001). Nach früheren Bilanzrechnungen von Baumgartner und Liebscher (1990) wurde ein Gesamtabfluss der Fliessgewässer von 254 mm a−1, ein Zwischen- und Oberflächenabfluss von 59 mm a−1 und ein Grundwasserabfluss von 5 mm a−1 ermittelt, so dass ein unterirdischer Zufluss zu den Fließgewässern von 190 mm a−1 verbleiben muss. Daraus folgt, dass sich der Abfluss der Fließgewässer nur zu einem Viertel aus dem Landoberflächen- und Zwischenabfluss und zu drei Vierteln aus dem unterirdischen Wasser zusammensetzt. Diese Zahlen zeigen, dass in Deutschland vorwiegend effluente Verhältnisse herrschen, d. h. das Grundwasser fließt dem Fließgewässer zu.

Literatur

  1. Barlow J.R.B. and R.H. Coupe (2009): Use of heat to estimate streambed fluxes during extreme hydrologic events. Water Resources Research Vol. 45, W01403, doi: 10.1029/2007WR006121.
  2. Baumgartner A. und H.-J- Liebscher (1990): Allgemeine Hydrologie – Quantitative Hydrologie. In: Lehrbuch der Hydrologie Bd. 1. Gebr. Borntraeger Berlin Stuttgart, 673 S.Google Scholar
  3. Bencala K.E. (2000): Hyporheic zone hydrological processes. Hydrological Processes 14, 2797–2798.CrossRefGoogle Scholar
  4. Belz et al. (2014): Das Hochwasserextrem des Jahres 2013 in Deutschland: Dokumentation und Analyse. BfG Mitteilung Nr. 31, Koblenz, ISBN 978-3-940247-11-7Google Scholar
  5. BfG (2015): KLIWAS Auswirkungen des Klimawandels auf Wasserstraßen und Schifffahrt -Entwicklung von Anpassungsoptionen. Synthesebericht für Entscheidungsträger. KLIWAS-57/2015. DOI:  10.5675/KLIWAS_57/2015_Synthese
  6. BMU (Hrsg.) (2001): Hydrologischer Atlas von Deutschland. BfG KoblenzGoogle Scholar
  7. Boulton A.J. (2007): Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52, 632–650.CrossRefGoogle Scholar
  8. Boussinesq J. (1877): Essai sur la théorie des eaux courantes. Mém. Acad. Sci. Inst. France, 23 (1) 252–260.Google Scholar
  9. Breil P., Grimm N.B. and P. Vervier (2007): Surface water – Groundwater exchange processes and fluvial ecosystem function – an analysis of temporal and spatial scale dependency. In: Wood, P.J., Hannah, D.M. and J.P. Sadler (Eds.) Hydroecology and Ecohydrology: Past, Present and Future. Wiley, 93–111.Google Scholar
  10. Briggs M.A., Gooseff M.N., Arp C.D. and M.A. Baker (2009): A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resources Research, 45, W00D27, doi: 10.1029/2008WR006959.
  11. Brunke M. and T. Gonser (1997): The ecological significance of exchange processes between rivers and ground water. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  12. Brutsaert W. (2005): Hydrology – an introduction. Cambridge University Press, New York, 598pp.CrossRefGoogle Scholar
  13. Buffington J.M. and D. Tonina (2009): Hyporheic exchange in Mountain Rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass 3:  10.1111/j.1749-8198.2009.00225.
  14. Burkert U., Ginzel G., Babenzien H.D. and R. Koschel (2004): The hydrogeology of a catchment area and an artificially divided dystrophic lake – consequences of limnology of Lake Fuchskuhle. Biogeochemistry 71, 225–246.CrossRefGoogle Scholar
  15. Cardenas M.B., Wilson J.L. and V.A. Zlotnik (2004): Impact of heterogeneity, bed forms and stream curvature on subchannel hyporheic exchange. Water Resources Research 40, W08307, doi: 10.1029/2004WR003008.
  16. Cardenas M.B. and J.L. Wilson (2007): Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research 43, W08412, doi: 10.1029/2006WR005787.
  17. Chiang W.-H., Kinzelbach, W., Rausch, R. (1998): Aquifer Simulation Model for Windows, with CD-ROM, ISBN: 3443010393, Borntraeger, Berlin Stuttgart.Google Scholar
  18. Chiang W.-H. (2005): 3D-Groundwater Modeling with PMWIN – A Simulation System for Modelling Groundwater Flow and Transport Processes.- 2nd ed., Springer, Heidelberg, 398 S.Google Scholar
  19. CHR-KHR (1993): Der Rhein unter der Einwirkung des Menschen: Ausbau, Schiffahrt, Wasserwirtschaft, Bericht Nr. I-11, Lelystad, ISBN 90-70980-17-7Google Scholar
  20. CHR-KHR (2009): Erosion, Transport and Deposition of Sediment – Case Study Rhine, Report no II-20, Lelystad, ISBN 978-90-70980-34-4Google Scholar
  21. Conant B., Cherry J.A. and R.W. Gilham (2004): A PCE groundwater plume discharging to a river: influence of streambed and near-river zone on contaminant distributions. Journal of Contaminant Hydrology 73, 249–279.CrossRefGoogle Scholar
  22. Diersch H.-J.G. (1998): Reference Manual FEFLOW – Interactive Graphics-based Finite Element Simulation System for Subsurface Flow and Transport Processes, v. 4.9, URL: http://www.wasy.de. Berlin, WASY GmbH, 293 S.
  23. DKKV (Hrsg. 2015): Das Hochwasser im Juni 2013: Bewährungsprobe für das Hochwasserrisikomanagement in Deutschland. DKKV-Schriftenreihe Nr. 53, BonnGoogle Scholar
  24. DWA (2013): Wechselwirkungen zwischen Grund- und Oberflächengewässern, Themenheft T2 / 2013, 157 S.Google Scholar
  25. Elliott C.R.N., Dunbar M. J., Gowing I. and M.C. Acreman (1999): A habitat assessment approach to the management of groundwater dominated rivers. Hydrological Processes 13, 459–475.CrossRefGoogle Scholar
  26. Findlay S. (1995): Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnology and Oceanography 40(1), 159–164.CrossRefGoogle Scholar
  27. Fritz B. (2002): Untersuchungen zur Uferfiltration unter verschiedenen wasserwirtschaftlichen, hydrogeologischen und hydraulischen Bedingungen. Dissertation, Freie Universität Berlin, Berlin, 203 pp.Google Scholar
  28. Gavich I.K., A.A. Lucheva and S.M. Semionova-Erofeeva (1985): Sbornik zadach po obscej gidro-geologii, Moscow, Nedra.Google Scholar
  29. Geller W. et al. (Hrsgb.) (1998): Gewässerschutz im Einzugsgebiet der Elbe. B. G. Teubner Stuttgart, Leipzig. 440 S.Google Scholar
  30. Gollnitz W.D. (2002): Infiltration rate variability and research needs. In: Ray C., Melin G. and R.B. Linsky (Eds.) (2002): Riverbank filtration – improving source-water quality. Kluwer Academic Publ. Dordrecht, Netherlands, 281–290.Google Scholar
  31. Gunduz O. and M.M. Aral (2005): River networks and groundwater flow: a simultaneous solution of a coupled system. Journal of Hydrology 301, 216–234.CrossRefGoogle Scholar
  32. Grabs G. und H. Moser (2015): Translating policies into actions: the case of the Elbe River. Water Policy 17 (2015) 114–132, DOI:  10.2166/wp.2015.006, IWA Publishing London
  33. Harbaugh A.W., Banta E.R., Hill M.C. and M.G. McDonald (2000): MODFLOW-2000, The U.S. Geological Survey modular ground-water model. User guide to modularization concepts and the groundwater flow process. U. S. Geological Survey. Open-file report 00–92. 121 pp.Google Scholar
  34. Harding M. (1993): Redgrave and Lopham Fens, East Anglia, England – a case study of change in flora and fauna due to groundwater abstraction. Biological Conservation 66: 35–45.CrossRefGoogle Scholar
  35. Harvey J.W. and B.J. Wagner (2000): Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In: Jones, B.J. and P.J. Mulholland (Eds.): Streams and Ground Waters. Academic Press, San Diego, 3–44.CrossRefGoogle Scholar
  36. Hasch B. und B. Jessel (2004): Umsetzung der Wasserrahmenrichtlinie in Flussauen. Naturschutz und Landschaftsplanung 36 (8), 229–236.Google Scholar
  37. Hayashi M. and D.O. Rosenberry (2002): Effects of groundwater exchange on the hydrology and ecology of surface water. Ground Water 40(3):309–316.CrossRefGoogle Scholar
  38. Hester E.T. and M.W. Doyle (2008): In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research 44, W03417, doi: 10.1029/2006WR005810.
  39. Hester E.T. and M.N. Gooseff (2010): Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Sciences and Technology, 44, 1521–1525.CrossRefGoogle Scholar
  40. Hiscock K.M. and T. Grischek (2002): Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, 266, 139–144.CrossRefGoogle Scholar
  41. Hornberger G. J., Raffensberger J. P., Wiberg P. L. and K. N. Eshleman (1998): Elements of Physical Hydrology, The Johns Hopkins Press, London, 302 pp.Google Scholar
  42. Hüttel M., Røy H., Precht E. and S. Ehrenhauss (2003): Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494: 231–236.CrossRefGoogle Scholar
  43. Hynes H.B.N. (1974): Further studies on the distribution of stream animals within the substratum. Limnology and Oceanography 21:912–914.Google Scholar
  44. IKSE (2014): Sedimentmanagementkonzept der Internationalen Kommission zum Schutz der Elbe. IKSE MagdeburgGoogle Scholar
  45. Jackson B.M., Browne C.A., Butler A.P., Peach D., Wade A.J. and H.S. Wheater (2008): Nitrate transport in Chalk catchments: monitoring, modelling and policy implications. Environmental Sciences and Policy 11, 125–135.CrossRefGoogle Scholar
  46. Kalbus E., Reinstorf F., M. Schirmer (2006): Measuring methods for surface water – groundwater interactions: a review. Hydrol. Earth Syst. Sci. 10: 873–887.CrossRefGoogle Scholar
  47. Kirk S. and A.W. Herbert (2002): Assessing the impact of groundwater abstractions on river flows. In: Hiscock K.M., Rivett M.O. and R.M. Davison (Eds.): Sustainable Groundwater Development, Geological Society Special Publications, Vol. 193, 211–233.Google Scholar
  48. Konold W. (2007): Die wasserabhängigen Landökosysteme. Gibt es gemeinsame Strategien zu deren Schutz und Erhalt? Hydrologie und Wasserwirtschaft, 51, 257–266.Google Scholar
  49. Kompetenzzentrum Wasser Berlin (KWB) (2007): NASRI-Natural and Artificial Systems for Recharge and Infiltration. Final Report (unpublished).Google Scholar
  50. Länderarbeitsgemeinschaft Wasser LAWA (2005): Nachhaltiger, vorbeugender Hochwasserschutz durch schonende Flächenbewirtschaftung und die Wiederherstellung von Bach- und Flussauen – Projekt 08.03, Büro für Umweltbewertung und Geoökologie, 34 S.Google Scholar
  51. Länderarbeitsgemeinschaft Wasser LAWA (2014): Nationales Hochwasserschutzprogramm Kriterien und Bewertungsmaßstäbe für die Identifikation und Priorisierung von wirksamen Maßnahmen sowie ein Vorschlag für die Liste der prioritären Maßnahmen zur Verbesserung des präventiven Hochwasserschutzes Download LAWA-Homepage http://lawa.de/documents/NHWSP_Bericht_Priorisierung_14_10_20_c93.pdf
  52. Landesumweltamt Brandenburg (LUA) (1997): Entstehung und Ablauf des Oderhochwassers im Sommer 1997, Zwischenbericht vom 28.08.1997. Fachbeiträge des Landesumweltamtes. Gewässerschutz und Wasserwirtschaft. 24 S.Google Scholar
  53. Lautz L.K. and D.I. Siegel (2006): Modelling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources 29, 1618–1633.CrossRefGoogle Scholar
  54. Lewandowski J. and G. Nützmann (2008): Surface water – groundwater interactions: hydrological and biogeochemical processes at the lowland River Spree (Germany). In: Abesser C., Wagener Th. and G. Nützmann (Eds.): Groundwater-Surface Water Interaction – Process Understanding, Conceptualization and Modelling. IAHS Publ. 321, 30–38.Google Scholar
  55. Lin C., Greenwald D. and A. Banin (2003): Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J. 67, 487–493.CrossRefGoogle Scholar
  56. Lohse K. A., Brooks P.D., McIntosh J.C., Meixner T. and T.E. Huxman (2009): Interactions between biogeochemistry and hydrologic systems. Annu. Rev. Environ. Resour. 34, 65–96.CrossRefGoogle Scholar
  57. Malcolm J.A., Soulsby C., Youngson A.F. and D.M. Hannah (2005): Catchment-scale controls on groundwater-surface water interactions in the hyporheic zone: implications for salmon embryo survival. River Research and Applications 21, 977–989.CrossRefGoogle Scholar
  58. Mas-Pla J., Montaner R. and J. Sola (1999): Groundwater resources and quality variations caused by gravel mining in coastal streams. Journal of Hydrology 216, 197–213.CrossRefGoogle Scholar
  59. Matthess G. und K. Ubell (2003): Allgemeine Hydrogeologie – Grundwasserhaushalt. Lehrbuch der Hydrogeologie Bd. 1, 2. Auflage, Gebr. Borntraeger, Berlin-Stuttgart.Google Scholar
  60. Meltz B. (2011): Quantifzierung des Oberflächen-Grundwasseraustauschs am Freienbrinker Altarm. Master-Arbeit, Humboldt-Universität zu Berlin, Geographisches Institut, 139 S.Google Scholar
  61. Miegel K. et al. (2007): Verdunstungsprozess und Einflussgrößen. Forum für Hydrologie und Wasserbewirtschaftung, 21.07, 5–36.Google Scholar
  62. Montgomery D.R. and J.M. Buffington (1997): Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109, 596–611.CrossRefGoogle Scholar
  63. Müller L. (2000): Das Oderbruch und die Flussaue der Oder. Exkursionsmaterial. Institut für Bodenlandschaftsforschung im ZALF (lmueller@zalf.de).Google Scholar
  64. Nützman G. and J. Lewandowski (2009): Exchange between ground water and surface water at the lowland river Spree (Germany). Grundwasser 14: 195–205.CrossRefGoogle Scholar
  65. Nützmann G., Wolter C., Venohr M. and M. Pusch (2011): Historical patterns of anthropogenic impacts on freshwaters in the region Berlin-Brandenburg (Germany). Die Erde 142(1–2): 41–64.Google Scholar
  66. Pawlowski J. (1991): Veränderliche Stoffgrößen in der Ähnlichkeitstheorie, Salle+Sauerländer Frankfurt a.M.Google Scholar
  67. Payn R.A., Gooseff M.N., McGlynn C.L., Bencala K.E. and S.M. Wondzell (2009): Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, US. Water Resources Research 45, W11427, doi: 10.1029/2008WR007644.
  68. Peyrard D., Sauvage S., Vervier P., Sanchez-Perez J.M. and M. Quintard (2008): A coupled vertically integrated model to describe lateral exchange between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrological Processes 22, 4257–4273.CrossRefGoogle Scholar
  69. Pollock D.W. (1994): User’s guide for MODPATH, version 3, USGS Open file report 94–464.Google Scholar
  70. Rassam D.W., Pagendam D.E. and H.M. Hunter (2008): Conceptualisation and application of models for groundwater-surface water interactions and nitrate attenuation potential in riparian zones. Environmental Modelling & Software 23, 859–875.CrossRefGoogle Scholar
  71. Ray C., Melin G. and R.B. Linsky (Eds.) (2002): Riverbank filtration – improving source-water quality. Kluwer Academic Publ. Dordrecht, Netherlands, 364 pp.Google Scholar
  72. Roskosch A., Morad M.R., Khalili A. and J. Lewandowski (2010): Bioirrigation by Chironomus Plumosus: advective flow investigated by particle image velocimetry. Journal of the North-American Benthological Society 29(3): 789–802.CrossRefGoogle Scholar
  73. Runkel R.L. (1998): One-dimensional transport with inflow and storage (OTIS): a solute transport model for streams and rivers. US Geological Survey Water-Resources Investigation Report 98–4018, 1998. Available: http://co.water.usgs.gov/otis.
  74. Rushton K. (2007): Representation in regional models of saturated river-aquifer interaction for gaining/losing rivers. Journal of Hydrology 334: 262–281.CrossRefGoogle Scholar
  75. Salehin M., Packman A.I. and A. Wörman (2003): Comparison of transient storage in vegetated and unvegetated reaches of small agricultural stream in Sweden: seasonal variation and anthropogenic manipulation. Advances in Water Resources 26, 951–964.CrossRefGoogle Scholar
  76. Schmidt C., Conant Jr. B., Bayer-Raich, and M. Schirmer (2007): Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. Journal of Hydrology 347: 292–307.Google Scholar
  77. Sophocleous M. (2002): Interactions between groundwater and surface water: the state of the science. Hydrogeology Journal 10, 52–67.CrossRefGoogle Scholar
  78. Stonestrom D.A. and J. Constantz (2003): Heat as a tool for studying the movement of ground water near streams. U.S. Geological Survey, http://pubs.water.usgs.gov/circ1260, 96 pp.
  79. Suck M. (2008): Grundwasserexfiltration in einen Spree-Altarm. Diplomarbeit, Technische Universität Berlin, Institut für Angewandte Geowissenschaften, 95 S.Google Scholar
  80. Swain E.D. (1994): Implementation and use of direct flow connections in a coupled ground water and surface water model. Ground Water 32(1): 139–144.CrossRefGoogle Scholar
  81. Tallaksen L.M. & H.A.J.van Lanen (Eds.) (2004): Hydrological Drought – Processes and Estimation Methods for Streamflow and Groundwater. Developments in Water Sciences 48. Elsevier B.V., The Netherlands.Google Scholar
  82. Tellam J.H. and D.N. Lerner (2009): Management tools for the river-aquifer interface. Hydrological Processes 23, 2267–2274.CrossRefGoogle Scholar
  83. Thibodeaux L.J. and J.D. Boyle (1987): Bedform-generated convective transport in bottom sediments. Nature, Vol. 325, 22 January 1987, 341–343.Google Scholar
  84. Tockner K., Robinson TC. and U. Uehlinger (Eds.) (2009): Rivers of Europa. Elsevier Academic Press, Amsterdam, ISBN 978-0-12-369449-2.Google Scholar
  85. Todd D.K. (1959): Ground Water Hydrology, John Wiley & Sons, New York.Google Scholar
  86. Ubell K. (1987): Austauschvorgänge zwischen Fluß- und Grundwasser. Dtsch. gewässerkdl. Mitt. 31(4), 119–125.Google Scholar
  87. US Army Corps of Engineers (USACE) (2002): HEC-RAS river analysis system user’s manual, version 3.1, Institute for Water Resources, Hydrol. Eng. Center, Davis CA.Google Scholar
  88. Vollmer S., de los Santos Ramos F., Daebel H. and G. Kühn (2002): “Micro scale exchange processes between surface and subsurface water”, Journal of Hydrology, Vol. 269, 3–10Google Scholar
  89. Vollmer S., Träbing K. and F. Nestmann F. (2009): “Hydraulic exchange processes between surface and subsurface water – determination of spatial and temporal variability”, Archiv für Hydrobiologie – Advances in Limnology, Volume 61, S. 45 – 65, ISBN 978-3-510-47063-1Google Scholar
  90. Voss C.I. and A.M. Provost (2002): SUTRA, A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. U.S. Geological Survey Water-Resources Investigations Report 02–4231. 270 pp. Version: June 2008.Google Scholar
  91. Webb R.H. and S.A. Leake (2006): Ground-water surface-water interactions and long term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology 320, 302–323.CrossRefGoogle Scholar
  92. Wiese B. 2007. Spatially and Temporally Scaled Inverse Hydraulic Modelling, Multi Tracer Transport Modelling and Interaction with Geochemical Processes at a Highly Transient Bank Filtration Site. PhD-Dissertation, Humboldt-University Berlin. Geographical Institute, 230 pp.Google Scholar
  93. Wiese, B., Nützmann, G. 2009. Transient leakage and infiltration characteristics during lake bank filtration. Ground Water 47 (1), 57–68.CrossRefGoogle Scholar
  94. Winter T.C, Harvey J.W., Franke O.L. and Alley W.M. (1998): Ground water and surface water – a single resource. USGS circular 1139, Denver, Colorado.Google Scholar
  95. Wörman A., Packman A.I., Johansson H. and K. Jonsson (2002): Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research 38(1),  10.1029/2001WR000769.
  96. WRRL (2001): Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (Amtsblatt EG L 327 vom 22.12.2000), geändert durch Entscheidung Nr. 2455/2001/EG des Europäischen Parlaments und des Rates vom 20. November 2001 (Amtsblatt EG L 331 vom 15.12.2001).Google Scholar
  97. Wu R.S., Shih D.S, Li M.H. and C.C. Niu (2008): Coupled surface-groundwater models for investigating hydrological processes. Hydrological Processes 22, 1216–1229.CrossRefGoogle Scholar
  98. Zheng C. (1990): MT3D – a modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Gunnar Nützmann
    • 1
  • Hans Moser
    • 2
  1. 1.Leibniz-Institut für Gewässerökologie und Binnenfischerei und Humboldt-Universität zu BerlinBerlinDeutschland
  2. 2.Bundesanstalt für Gewässerkunde und Technische Universität BerlinBerlinDeutschland

Personalised recommendations