Fluoroamino Acids and Microorganisms

  • Robert E. Marquis
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 20 / 2)

Abstract

Fluoroamino acids are among the most widely used analogues of naturally occurring compounds for biochemical and physiological research. Their molecular dimensions are approximately the same as those of the natural analogues because the van der Waals radius of the fluorine atom is only slightly larger than that of hydrogen (1.35 Å versus 1.20 Å) for which it is normally substituted. However, the electronegativity of fluorine is greater than that of hydrogen (4.0 versus 2.1), and so the C-F bond has more of an ionic character than the C-H bond with a higher bond energy of 105.4 kcal per mole compared with 98.8 kcal per mole (Pauling, 1960). Moreover, substitution of fluorine for hydrogen in organic compounds tends to enhance their hydrophilic properties. Despite these differences, fluoroamino acids can compete successfully with naturally occurring amino acids in many biochemical reactions, especially those reactions which do not lead to cleavage of the C-F bond. For example, the fluoroamino acid p-fluorophenylalanine (PFPA) can even be incorporated into proteins in place of phenylalanine. Enzymes usually discriminate against fluorosubstituted amino acids, but there are a few examples of enhanced reactivity due to substitution.

Keywords

Phenyl Alanine Catalase Fluorine Chloramphenicol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelberg, E. A.: Selection of bacterial mutants which excrete antagonists of antimetabolites. J. Bact. 76, 326 (1958)PubMedGoogle Scholar
  2. Ames, G.F.: Uptake of amino acids by Salmonella typhimurium. Arch. Bioehem. Biophys. 104, 1–18 (1964)Google Scholar
  3. Atkinson, D.E., Melvtn, S., Fox, S.W.: Effects of p-fluorophenylalanine on the growth of Lactobacillus arabinosus. Arch. Bioehem. Biophys. 31, 205–211 (1951)Google Scholar
  4. Baker, U.S., Jobnson, J.E., Fox, S.W.: Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochim. biophys. Acta (Amst.) 28, 318–327 (1958)Google Scholar
  5. Baltimore, D., Franklin, R.M., Callender, J.: Mengovirus-induced inhibition of host ribonucleic acid and protein synthesis. Biochim. biophys. Acta (Amst.) 76,425–430 (1963)Google Scholar
  6. Bowman, W.H., Mallette, M.F.: Catabolism of p-fluorophenylalanine by Escherichia coli. Arch. Bioehem. Biophys. 117, 563–572 (1966)Google Scholar
  7. Bowman, W.H., Palmer, I. S., Clagett, C. O., Mallette, M.F.: Effects of p-fluorophenylalanine on lactose-indueed-β-galactosidase synthesis in resting-cell suspensions of Escherichia coli. Arch. Bioehem. Biophys. 108, 314–322 (1964)Google Scholar
  8. Brostrom, M.A., Binkley, S.B.: Membrane alteration and the formation of metachromatic granules in Escherichia coli treated with p-fluorophenylalanine. J. Bact. 98, 1263–1270 (1969a)PubMedGoogle Scholar
  9. Brostrom, M.A., Binkley, S.B. Synchronous growth of Escherichia coli after treatment with fluorophenylalanine. J. Bact. 98, 1271–1273 (1969b)PubMedGoogle Scholar
  10. Buchan, A., Burke, D.C.: Interferon production in chick-embryo cells. The effect of puro-mycin and p-fluorophenylalanine. Bioehem. J. 98, 530–536 (1966)Google Scholar
  11. Carpenter, C, Binkley, S.B.: Effect of p-fluorophenylalanine on chromosome replication in Escherichia coli. J. Bact. 96, 939–949 (1968)PubMedGoogle Scholar
  12. Chantrenne, H., Courtois, C.: Formation de catalase induite par l’oxygene chez la levure. Biochim. biophys. Acta (Amst.) 14, 397–400 (1954)Google Scholar
  13. Cohen, G.N., Adelberg, E.A.: Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. J. Bact. 76, 328–330 (1958)PubMedGoogle Scholar
  14. Cohen, G.N., Halvorson, H.O., Spiegelman, S.: Effects of p-fluorophenylalanine on the growth and physiology of yeast. In R.B. Roberts (ed.), Microsomal Particles and Protein Synthesis, pp. 100–108. Oxford: Pergamon Press 1958Google Scholar
  15. Cohen, G.N., Monod, J.: Bacterial permeases. Bact. Rev. 21, 169–194 (1957)PubMedGoogle Scholar
  16. Cohen, G.N., Munier, R.: Effects des analogues structuraux d’amino acides sur la croissance, la synthèse de protéines et la synthèse d’enzymes chez Escherichia coli. Biochim. biophys. Acta (Amst.) 31, 347–356 (1959)Google Scholar
  17. Cohen, G.N., Rickenberg, H.V.: Concentration spècifique réversible des amino acides chez Escherichia coli. Ann. Inst. Pasteur 91, 693–720 (1956)Google Scholar
  18. Coleman, G., Elliott, W.H.: Studies on a-amylase formation by Bacillus subtilis. Bioehem. J. 83, 256–263 (1962)Google Scholar
  19. Conway, T.W., Lansford, E.M., Jr., Shive, W.: Purification and substrate specificity of a phenylalanine activating enzyme from Escherichia coli 9723. J. biol. Chem. 237, 2850–2854 (1962)PubMedGoogle Scholar
  20. Conway, T.W., Lansford, E.M., Jr., Shive, W. Influence of phenylalanine analogues upon bacterial accumulation and incorporation of phenylalanine. J. Bact. 85, 141–149 (1963)PubMedGoogle Scholar
  21. Conway, T.W., Lansford, E.M., Jr., Shive, W. Inhibition of bacterial phenylalanine utilization and activation. Arch. Bioehem. Biophys. 107, 120–125 (1964)Google Scholar
  22. Cowie, D.B., Cohen, G.N., Bolton, E.T., DeRobichon-Szulmajster, H.: Amino acid analog incorporation into bacterial proteins. Biochim. biophys. Acta (Amst.) 34, 39–46 (1959)Google Scholar
  23. Dickie, N., Dennis, D.A., Thatcher, F.S.: Effect of p-fluorophenylalanine on radiation sensitivity in Escherichia coli. Canad. J. Microbiol. 14, 799–803 (1968)Google Scholar
  24. Dunn, T.F., Leach, F.R.: Incorporation of p-fluorophenylalanine into proteins by a cell-free system. J. biol. Chem. 242, 2693–2699 (1967)PubMedGoogle Scholar
  25. Emeis, C. C.: Haploidisierung von diploiden Hefen durch p-Fluorophenylalanin. Z. Naturforsch. 21b, 816–817 (1966)Google Scholar
  26. Ezekiel, D.H.: Accumulation of ribonucleic acid in bacterial nuclear preparations during treatment of whole cells with 8-azaguanine, tetracyclines, and other inhibitors. J. Bact. 87, 755–760 (1964)PubMedGoogle Scholar
  27. Ezekiel, D.H. Requirement for p-fluorophenylalanine activation in control of ribonucleic acid synthesis. Biochim. biophys. Acta (Amst.) 95, 48–53 (1965)Google Scholar
  28. Fangman, W.L., Nass, G., Neidhardt, F.C.: Immunological and chemical studies of phenyl-alanyl sRNA synthetase from Escherichia coli. J. molec. Biol. 13, 202–219 (1965)PubMedGoogle Scholar
  29. Ezekiel, D.H., Neidhardt, F. C.: Protein and ribonucleic acid synthesis in a mutant of Escherichia coli with an altered aminoacyl ribonucleic acid synthetase. J. biol. Chem. 239, 1844–1847 (1964a)Google Scholar
  30. Fangman, W.L., Nass, G., Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli. J. biol. Chem. 239, 1839–1843 (1964b)PubMedGoogle Scholar
  31. Fenster, E.D., Anker, H.S.: Incorporation into polypeptide and charging on transfer ribonucleic acid of the amino acid analog 5’, 5’, 5’-trifluoroleucine by leucine auxotrophs of Escherichia coli. Biochemistry 8, 269–274 (1969)PubMedGoogle Scholar
  32. Finch, L.R.: Adaption to amino acid-analogues. J. molec. Biol. 14, 591–592 (1965)PubMedGoogle Scholar
  33. Fleming, R.W., Williams, F.D., Wailes, K.A.: Effects of p-fluorophenylalanine and chloramphenicol on chemotaxis in Escherichia coli. J. Bact. 94, 855–859 (1967)PubMedGoogle Scholar
  34. Fowden, L., Lewis, D., Tristram, H.: Toxic amino acids: their action as antimetabolites. Advanc. Enzymol. 29, 89–163 (1967)Google Scholar
  35. Freundlich, M., Trela, J.M.: Control of isoleucine, valine and leucine biosynthesis. VI. Effect of 5’, 5’, 5’-trifluoroleucine on repression in Salmonella typhimurium. J. Bact. 99, 101–106 (1969)PubMedGoogle Scholar
  36. Friedman, R.M., Sonnabend, J. A.: Inhibition of interferon action by p-fluorophenylalanine. Nature (Lond.) 203, 366–367 (1964)Google Scholar
  37. Gros, F., Gros, F.: Rôle des acides amines dans la synthèse des acides nucleique chez Escherichia coli. Exp. Cell Res. 14, 104–131 (1958)PubMedGoogle Scholar
  38. Gutz, H.: Induction of mitotic segregation with p-fluorophenylalanine in Schizosaccharomyces pombe. J. Bact. 92, 1567–1568 (1966)PubMedGoogle Scholar
  39. Halvorson, H.O., Cohen, G.N.: Incorporation des amino-acides endogenes et exogènes dans les protéines de la levure. Ann. Inst. Pasteur 95, 73–87 (1958)Google Scholar
  40. Halvorson, H.O., Spiegelman, S.: The inhibition of enzyme formation by amino acid analogues. J. Bact. 64, 207–221 (1952)PubMedGoogle Scholar
  41. Hardwick, W.A., Foster, J.W.: On the nature of sporogenesis in some aerobic bacteria. J. gen. Physiol. 35, 907–927 (1951–52)Google Scholar
  42. Hardy, C, Binkley, S.B.: The effect of p-fluorophenylalanine on nucleic acid biosynthesis and cell division in Escherichia coli. Biochemistry 6, 1892–1898 (1967)PubMedGoogle Scholar
  43. Horowitz, N.H., Fling, M., Macleod, H., Watanabe, Y.: Structural and regulative genes controlling tyrosinase synthesis in Neurospora. Cold Spr. Harb. Symp. quant. Biol. XXVI, 233–238 (1961)Google Scholar
  44. Hummeler, K., Weoker, E.: Influence of p-fluorophenylalanine on poliovirus particles. Virology 24, 456–460 (1964)PubMedGoogle Scholar
  45. Ikeda, K.: Inhibition of pyocin R formation by fluorophenylalanine. J. Biochem. (Tokyo) 61, 615–622(1967)Google Scholar
  46. Ikeda, K., Egami, F.: Effects of antibiotics and antimetabolites on the induced formation of pyocin R. Z. aUg. Mikrobiol. 6, 219–225 (1966)Google Scholar
  47. Jeantet, C, Gomes, R.A., Monier, R.: Effet de la p-fluorophenylalanine sur la formation des ribosomes chez Escherichia coli. Bull. Soc. Chim. biol. (Paris) 50, 473–489 (1968)Google Scholar
  48. Joklik, W. K.: The multiplication of poxvirus DNA. Cold Spr. Harb. Symp. quant. Biol. XXVII, 199–208 (1962)Google Scholar
  49. Kang, S., Markovitz, A.: Depression of alkaline phosphatase in Escherichia coli by p-fluoro phenylalanine. J. Bact. 94, 87–91 (1967a)PubMedGoogle Scholar
  50. Kang, S., Markovitz, A. Induction of capsular polysaccharide synthesis by p-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. J. Bact. 93, 584–591 (1967b)PubMedGoogle Scholar
  51. Kang, S., Rockey, P., Markovitz, A.: Derepression of β-galaetosidase synthesis in Escherichia coli K-12 by p-fluorophenylalanine. J. Bact. 96, 139–145 (1968)PubMedGoogle Scholar
  52. Kaplan, J. G.: The effect of inhibitors on the induction of cryptic and patent yeast catalase. Enzymologia 25, 359–366 (1962)Google Scholar
  53. Katterman, R., Slonimski, P.P.: Differential effect of structural analogues of amino acids on the formation of respiratory enzymes induced by oxygen. C. R. Acad. Sci. (Paris) 250, 220–221 (1960)Google Scholar
  54. Kempner, E.S., Cowie, D.B.: Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim. biophys. Acta (Amst.) 42, 401–408 (1960)Google Scholar
  55. Kepes, A.: Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim. biophys. Acta (Amst.) 138, 107–123 (1967)Google Scholar
  56. Kepes, A., Beguin, S.: Hydroxylamine, an inhibitor of peptide chain initiation. Biochem. biophys. Res. Commun. 18, 377–383 (1965)PubMedGoogle Scholar
  57. Kerridge, D.: The effect of amino acid analogues on the synthesis of bacterial flagella. Biochim. biophys. Acta (Amst.) 31, 579–581 (1959)Google Scholar
  58. Kerridge, D. The effect of inhibitors on the formation of flagella by Salmonella typhimurium. J. gen. Microbiol. 23, 519–538 (1960)PubMedGoogle Scholar
  59. Kerridge, D. The effect of environment on the formation of bacterial flagella. Symp. Soc. gen. Microbiol. 11, 41–68 (1961)Google Scholar
  60. Lark, K. G.: Regulation of chromosome replication and segregation in bacteria. Bact. Rev. 30, 3–32 (1966)PubMedGoogle Scholar
  61. Lascelles, J.: Adaptation to form bacteriochlorophyll in Bhodopseudomonas spheroides: Changes in activity of enzymes concerned in pyrrole synthesis. Biochem. J. 72, 508–518 (1959)PubMedGoogle Scholar
  62. Leick, V.: Effect of actinomycin D and DL-p-fluorophenylalanine on ribosome formation in Tetrahymena pyriformis. Europe. J. Biochem. 8, 215–220 (1969)Google Scholar
  63. Lev, M.: Vitamin K deficiency in Fusiformis nigrescens. I. Influence on whole cells and cell envelope characteristics. J. Bact. 95, 2317–2324 (1968)PubMedGoogle Scholar
  64. Lhoas, P.: Mitotic haploidization by treatment of Aspergillus niger diploids with para-fluorophenylalanine. Nature (Lond.) 190, 744 (1961)Google Scholar
  65. Lettauer, U.Z., Revel, M., Stern, R.: Coding properties of methyl-deficient phenylalanine transfer RNA. Cold Spr. Harb. Symp. quant. Biol. XXXI, 501–514 (1966)Google Scholar
  66. McCully, K.S., Forbes, E.: The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965)PubMedGoogle Scholar
  67. Mitani, M., Iino, T.: Phenocopies of a heteromorphous flagellar mutant in Salmonella. J. Bact. 93, 766–767 (1967)PubMedGoogle Scholar
  68. Moyed, H.S., Friedman, M.: Interference with feed back control: A mechanism of antimetabolite action. Science 129, 968–969 (1959)PubMedGoogle Scholar
  69. Munier, R.: Substitution totale de la phénylalanine par To ou la m-fluorophénylalanine dans les protéines d’Escherichia coli. C.R. Acad. Sci. (Paris) 248, 1870–1873 (1959)Google Scholar
  70. Munier, R., Cohen, G.N.: Incorporation d’analogues structuraux d’aminoacides dans les proteins bacteriennes. Biochim. biophys. Acta (Amst.) 21, 592–593 (1956)Google Scholar
  71. Munier, R., Cohen, G.N. Incorporation d’analogues structuraux d’aminoacides dans les proteines bacteriennes au cours de leur synthese in vivo. Biochim. biophys. Acta (Amst.) 31, 378–391 (1959)Google Scholar
  72. Munier, R., Drappier, A., Thommegay, C.: Substitution totale des analogues 5 et 6-fluorés du tryptophane à cet aminoacide dans les protéines d’Escherichia coli. Effect de cette incorporation, sur la biosynthèse d’ enzymes. C.R. Acad. Sci. (Paris) 265, 1429–1432 (1967)Google Scholar
  73. Munier, R., Sarrazin, G.: Différence existant entre les propiétés de la β-galactosidase normale et celles de la β-galactosidase dont tous les groupes tyrosine sont remplaces par la 3-fluorotyrosine. C.R. Acad. Sci. (Paris) 259, 677–680 (1964)Google Scholar
  74. Munier, R., Sarrazin, G. Substitution totale de la 3-fluorotyrosine à la tyrosine dans les protéines d’ Escherichia coli. C.R. Acad. Sci. (Paris) 256, 3376–3378 (1963)Google Scholar
  75. Nisman, B., Hirsch, M.: Étude de I’activation et de Fincorporation des acides aminés par des fractions enzymatiques d’E. coli. Ann. Inst. Pasteur 95, 615–636 (1958)Google Scholar
  76. Okuda, K., Edwards, G.C., Winnick, T.: Biosynthesis of gramicidin and tyrocidine in the Dubos strain of Bacillus brevis. I. Experiments with growing cultures. J. Bact. 85, 329–338 (1963)PubMedGoogle Scholar
  77. Orgel, L.E.: Adaption to wide-spread disturbance of enzyme function. J. molec. Biol. 9, 208–212 (1964)PubMedGoogle Scholar
  78. Pauling, L.: The Nature of the Chemical Bond. 3rd Ed. New York: Cornell Univ. Press 1960Google Scholar
  79. Perkins, J. P., Louie, D.D., Aronson, J.N.: Effects of some amino acid analogues on Bacillus cereus sporulation using static and shaken cultures. Canad. J. Microbiol. 9, 791–797 (1963)Google Scholar
  80. Pine, M.J.: Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J. Bact. 93, 1527–1533 (1967)PubMedGoogle Scholar
  81. Polsinelli, M.: Linkage relations between genes for amino acid or nitrogenous base biosynthesis and genes controlling resistance to structurally correlated analogs. G. Microbiol. 13, 99–110(1965)Google Scholar
  82. Previc, E., Binkley, S.: Repression and inhibition of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase by parafluorophenylalanine in Escherichia coli. Biochem. biophys. Res. Commun. 16, 162–166 (1964a)Google Scholar
  83. Previc, E., Binkley, S. Slow exponential growth of Escherichia coli in presence of p-fluorophenylalanine. Effects of the analog on aromatic biosynthesis. Biochim. biophys. Acta (Amst.) 87, 277–290 (1964b)Google Scholar
  84. Rapoport, G., Dedonder, R.: Synthèse de la lévane-sucrase chez Bacillus subtilis en presence d’analogues structuraux d’amino-acides. Biochim. biophys. Acta (Amst.) 89, 354–356 (1964)Google Scholar
  85. Rasmussen, L.: Effects of DL-p-fluorophenylalanine on Paramecium aurelia during the cell generation cycle. Exp. Cell Res. 45, 501–504 (1967)PubMedGoogle Scholar
  86. Rasmussen, L., Zeuthen”, E.: Cell division and protein synthesis in Tetrahymena, as studied with p-fluorophenylalanine. C.R. Lab. Carlsberg 32, 333–358 (1963)Google Scholar
  87. Rennert, O.M., Anker, H.S.: On the incorporation of 5’, 5’, 5’ -trifluoroleucine into proteins of E. coli. Biochem. J. 2, 471–476 (1963)Google Scholar
  88. Richmond, M.H.: Immunological properties of exopenicillinase synthesized by Bacillus cereus 569/H in the presence of amino acid analogues. Biochem. J. 77, 112–121 (1960a)PubMedGoogle Scholar
  89. Richmond, M.H. Incorporation of DL-β-(p-fluorophenyl) [β-14C] alanine into exopenicillinase by Bacillus cereus 569/H. Biochem. J. 77, 121–135 (1960b)PubMedGoogle Scholar
  90. Richmond, M.H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26, 398–420 (1962)PubMedGoogle Scholar
  91. Richmond, M.H. Random replacement of phenylalanine by p-fluorophenylalanine in alkaline phosphatase(s) formed during biosynthesis by E. coli. J. molec. Biol. 6, 284–294 (1963)PubMedGoogle Scholar
  92. Richmond, M.H. The enzymic basis of specific antibacterial action by structural analogues. Biol. Rev. 40, 93–128 (1965)PubMedGoogle Scholar
  93. St., Lawrence, P., Maling, B.D., Altwerger, L., Rachmeler, M.: Mutational alteration of permeability in Neurospora: Effects on growth and the uptake of certain amino acids and related compounds. Genetics 50, 1383–1402 (1964)Google Scholar
  94. Samborski, D.J., Forsyth, F.R.: Inhibition of rust development on detached wheat leaves by metabolites, antimetabolites, and enzyme poisons. Canad. J. Bot. 38, 467–476 (1960)Google Scholar
  95. Schaechter, M., Maaløe, O., Kjeldgaard, N.O.: Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol. 19, 592–606 (1958)PubMedGoogle Scholar
  96. Scharff, M.D., Summers, D.F., Levintow, L.: Further studies on the effect of p-fluorophenylalanine and puromycin on polio virus replication. Ann. New York Acad. Sci. 130, 282–290 (1965)Google Scholar
  97. Scharff, M.D., Thorén, M.M., McElvain, N.F., Levintow, L.: Interruption of poliovirus RNA synthesis by p-fluorophenylalanine and puromycin. Biochem. biophys. Res. Commun. 10, 127–132 (1963)Google Scholar
  98. Shearn, A., Horowitz, N.H.: A study of transfer ribonucleic acid in Neurospora. I. The attachment of amino acids and amino acid analogs. Biochemistry 8, 295–303 (1969)PubMedGoogle Scholar
  99. Shive, W., Skinner, C.G.: Amino acid analogues. In: R.W. Hochster and J.H. Quastel (Eds.), Metabolic Inhibitors, pp. 1–73. New York: Academic Press Inc. 1963Google Scholar
  100. Sinha, U.: Aromatic amino acid biosynthesis and p-fluorophenylalanine resistance in Aspergillus nidulans. Genet. Res. 10, 261–272 (1967)PubMedGoogle Scholar
  101. Smith, L.C., Ravel, J.M., Lax, S.R., Shive, W.: The effects of phenylalanine and tyrosine analogs on the synthesis and activity of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetases. Arch. Biochem. Biophys. 105, 424—430 (1964)PubMedGoogle Scholar
  102. Sorsoli, W.A., Spence, K.D., Parks, L.W.: Amino acid accumulation in ethionine-resistant Saccharomyces cerevisiae. J. Bact. 88, 20–24 (1964)PubMedGoogle Scholar
  103. Surdin, Y., Sly, W., Sire, J., Bordes, A.M., DeRobichon-Szulmajster, H.: Proprietes et contrôle génétique du système d’accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 107, 546–566 (1965)Google Scholar
  104. Tanami, Y., Pollard, M.: Effect of p-fluorophenylalanine on psittacosis virus in tissue cultures. J. Bact. 83, 437–442 (1962)PubMedGoogle Scholar
  105. Thang, M.N.: Rôle du chloramphenicol dans la synthese de l’ARN en presence des analogues d’acides aminés. Bull. Soc. Chim. biol. (Paris) 47, 573–583 (1965)Google Scholar
  106. Thiebe, R., Zachau, H.G.: A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Europe. J. Biochem. 5, 546–555 (1968)Google Scholar
  107. Trela, J.M., Freundlich, M.: Uncoupling of protein and ribonucleic acid synthesis by 5’, 5’, 5’-trifiuoroleueine in Salmonella typhimurium. J. Bact. 99, 107–112 (1969)PubMedGoogle Scholar
  108. van Andel, O.M.: Fluorophenylalanine as a systemic fungicide. Nature (Lond.) 194, 790 (1962)Google Scholar
  109. Verwoerd, D.W., Hausen, P.: Studies on the multiplication of a member of the Columbia SK group (ME virus) in L cells. IV. Role of “early proteins” in virus induced metabolic changes. Virology 21, 628–635 (1963)PubMedGoogle Scholar
  110. Waltho, J. A., Holloway, B.W.: Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. J. Bact. 92, 35–42 (1966)PubMedGoogle Scholar
  111. Webster, R.E., Gross, S.R.: The a-isopropylmalate synthetase of Neurospora. I. The kinetics and end product control of a-isopropylmalate synthetase function. Biochem. J. 4, 2309–2318 (1965)Google Scholar
  112. Welker, N.E., Campbell, L.L.: De novo synthesis of a-amylase by Bacillus stearothermo-philus. J. Bact. 86, 1202–1210 (1963)PubMedGoogle Scholar
  113. Welker, N.E., Campbell, L.L. Preferential synthesis of a-amylase by Bacillus stearothermophilus in the presence of 5-methyl-tryptophan. J. Bact. 87, 828–831 (1964)PubMedGoogle Scholar
  114. Winnick, R.E., Lis, BL, Winnick, T.: Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim. biophys. Acta (Amst.) 49, 451–462 (1961a)Google Scholar
  115. Winnick, R.E., Winnick, T.: Biosynthesis of gramicidin S. II. Incorporation experiments with labeled amino acid analogs, and the amino acid activation process. Biochim. biophys. Acta (Amst.) 53, 461–468 (1961b)Google Scholar
  116. Yoshida, A.: Studies on the mechanism of protein synthesis; Incorporation of p-fluoro-phenylalanine into a-amylase of Bacillus subtilis. Biochim. biophys. Acta (Amst.) 41, 98–103 (1960)Google Scholar
  117. Zeuthen, E.: The temperature-induced division synchrony in Tetrahymena. In: E. Zeuthen (ed.), Synchrony in Cell Division and Growth, pp. 99–158. New York: Interscience Publishers 1964Google Scholar
  118. Zeuthen, E., Rasmussen, L.: Incorporation of DL-p-fluorophenylalanine into proteins of Tetrahymena. J. Protozool., Suppl. 13, 29–30 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • Robert E. Marquis

There are no affiliations available

Personalised recommendations