Effect of Inorganic Fluoride on Enzymes

  • Alan Wiseman
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 20 / 2)

Abstract

The fluorides of sodium or potassium are often employed as inhibitors of the action of certain enzymes in crude cellular extracts. Thus inorganic pyrophosphatase or adenosine triphosphatase activity is often preferentially inhibited with fluoride. Studies upon the mode of action of these, or preferably, purified enzymes, may often be profitably extended using specific inhibitors. Although fluoride appears to lack a well defined specificity, apart from its action on many enzymes containing divalent metal ions, its use has often supplied valuable information to the enzymologist. Fluoride has also been used as an inhibitor of protein biosynthesis (Ravel et al., 1966).

Keywords

Arsenate Cysteine Thiol Versene Nucleoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E., Smith, E.L.: Peptidases of erythrocytes. II. Isolation and properties of prolidase. J. biol. Chem. 198, 671—682 (1952)PubMedGoogle Scholar
  2. Agner, K., Theorell, H.: On the mechanism of the catalase inhibition by anions. Arch. Bio-chem. Biophys. 10, 321—338 (1946)Google Scholar
  3. Ahrens, G., Bramstedt, F.: Action of low fluoride concentrations on salivary phosphatases. CRCA Commun. Congr. Organ. Europeen. Coord. Reeh. Fluor Prophilaxie Carie Dentaire, 6th, Pavia, Italy, 1959, 229—236 (Pub. 1962); cf. Chem. Abstr. 58, 9376 (1963)Google Scholar
  4. Axelrod, B., Bandtjrski, R.S.: Phosphoglyeerate kinase in higher plants. J. biol. Chem. 204, 939—948 (1953)PubMedGoogle Scholar
  5. Barkttlis, S.S., Lehninger, A.L.: Myokinase and the adenine nucleotide specificity in oxidative phosphorylation. J. biol. Chem. 190, 339—359 (1951)Google Scholar
  6. Belfanti, S., Contardia, A., Ercoli, A.: XCIX. Researches on the phosphatases. II. In-activation and reactivation of the phosphatases of animal organs. Biochem. J. 29, 842—846 (1935)PubMedGoogle Scholar
  7. Beltz, R.E.: Comparison of the content of thymidylate synthetase, deoxycytidylate deaminase and deoxyribonuclease kinases in normal and regenerating rat liver. Arch. Biochem. Biophys. 99, 304—312 (1962)PubMedCrossRefGoogle Scholar
  8. Borei, H.: Inhibition of cellular oxidation by fluoride. Arkiv Kemi, Mineral. Geol. 20 A (No. 8), 1—125 (1945)Google Scholar
  9. Borst, P.: Pathways of glutamate oxidation by mitochondria isolated from different tissues. Biochim. Biophys. Acta 57, 256—269 (1962)PubMedGoogle Scholar
  10. Boser, H.: Selective reactivation of an enolase reaction by zinc ions after inhibition by fluorides. Naturwissenschaften 44, 586 (1957)CrossRefGoogle Scholar
  11. Bray, R.C.: Xanthine oxidase. In: P.D. Boyer, H. Lardy, and K. Myrback, Eds., The Enzymes, Vol. VII, pp. 533—556. New York: Academic Press 1963Google Scholar
  12. Bucher, T.: Enolase from brewer yeast. In: S.P. Colo wick, and N. O. Kaplan, Eds., Methods in Enzymology, Vol. I, pp. 427—435. New York: Academic Press 1955Google Scholar
  13. Btjrstone, M. S.: Esterase activity of developing bones and teeth. Arch. Pathol. 63, 164—167 (1957)Google Scholar
  14. Callaghan, O.K., Weber, G.: Kinetic studies on rabbit muscle myokinase. Biochem. J. 73, 473—485 (1959)PubMedGoogle Scholar
  15. Cantoni, G.L.: Methionine-activating enzyme, liver. In: S.P. Colowick, and N.O. Kaplan Eds., Methods in Enzymology, Vol. II, pp. 254—256. New York: Academic Press 1955Google Scholar
  16. Chance, B.: The effect of pH upon the equilibria of catalase compounds. J. biol. Chem. 194, 483—496 (1952)PubMedGoogle Scholar
  17. Chaudhary, K.D., Moorjani, S., Lemonde, A.: Kinetic studies on acid phosphatase in Tri-bolium confusum Duval. Canad. J. Biochem. 42, 1769—1775 (1964)PubMedGoogle Scholar
  18. Cemasoni, C: Inhibition of cholinesterases by F’ in vitro. Biochem. J. 99,133—137 (1966)Google Scholar
  19. Cowgill, R. W., Pizer, L.I.: Purification and some properties of phosphoglyeerie acid mutase from rabbit skeletal muscle. J. biol. Chem. 223, 885—895 (1956)PubMedGoogle Scholar
  20. Denes, G.: Studies on the enzymatic synthesis of acid amide and peptide linkages. II. The mechanism of fluoride inhibition of glutamine synthesis and the prosthetic group of the enzyme. Acta physiol. Acad. Sci. hung. 6, 201—208 (1954); cf. Chem. Abstr. 49, 8337 (1955)Google Scholar
  21. Dixon, M., Webb, E.C.: Enzymes. 2nd ed. London: Longmans 1964Google Scholar
  22. Dondoroff, M.: Disaccharide phosphorylases. In: P.D. Boyer, H. Lardy, and K. Myrback, Eds., The Enzymes, Vol. V, pp. 229—236. New York: Academic Press 1959Google Scholar
  23. Dybing, O., Loe, L.V.: Fluoride poisoning and cholinesterase in rats. Acta Pharmacol. Toxicol. 12, 364—368 (1956)Google Scholar
  24. Ebata, M., Sato, R., Bak, T.: The enzymic phosphorylation of sedoheptulose. J. Biochem. (Tokyo) 42, 715—725 (1955)Google Scholar
  25. Elliott, W. H.: Effect of fluoride on enzymic synthesis of glutamine by sheep-brain extract. Studies on the enzymic synthesis of glutamine. Biochem. J. 49, 106—112 (1951)PubMedGoogle Scholar
  26. Elliott, W. H.: Isolation of glutamine synthetase and glutamotransferase from green peas. J. biol. Chem. 201, 661—672 (1953)PubMedGoogle Scholar
  27. Elliott, W. H.: The breakdown of ATP accompanying cholic acid activation by guinea-pig liver microsomes. Biochem. J. 65, 315—321 (1957)PubMedGoogle Scholar
  28. Ennor, A. A., Rosenberg, BL: Some properties of creative phosphokinase. Biochem. J. 57, 203—212 (1954)PubMedGoogle Scholar
  29. Plaks, J.G.: 5’-Phosphoribose pyrophosphokinase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 158—162. New York: Academic Press 1963Google Scholar
  30. Pridovioh, I.: Inhibition of acetoacetic decarboxylase by anions. The Hofmeister lyotropic series. J. biol. Chem. 238, 592—598 (1963)Google Scholar
  31. George, B.: The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. II. Formation and decomposition. Biochem. J. 55, 220—230 (1953)PubMedGoogle Scholar
  32. Gore, M.B.R.: Adenosine triphosphatase activity of brain. Biochem. J. 50, 18—24 (1952)Google Scholar
  33. Grunberg-Manago, M., Oritz, P. J., Ochoa, S.: Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim. Biophys. Acta 20, 269—285 (1956)PubMedCrossRefGoogle Scholar
  34. Gunsalus, I.C., Razzell, W.E.: Pyridoxal kinase from brewer’s yeast. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 646—649. New York: Academic Press 1955Google Scholar
  35. Harris, H., Whittaker, M.: Differential inhibition of “usual” and “atypical” serum cholinesterase by NaCl and NaF. Ann. Human Genet. 27, 53—58 (1963—1964)Google Scholar
  36. Hayaishi, O.: Phospholipases. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. I, pp. 660—672. New York: Academic Press 1955Google Scholar
  37. Hayaishi, O.: A bacterial pterin deaminase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 359—363. New York: Academic Press 1963Google Scholar
  38. Heppel, L.A., Hilmoe, R. J.: Purification and properties of 5’-nucleotidase. J. biol. Chem. 188, 665—676 (1951)PubMedGoogle Scholar
  39. Hewitt, E. J., Nicholas, J.D.: Cations and anions. In: R.M. Hochester and J.H. Quastel, Eds., Metabolic Inhibitors, Vol. II, pp. 311—436. New York: Academic Press 1963Google Scholar
  40. Hoestee, B.H. J.: Inhibition of horse liver esterases by fluoride. J. biol. Chem. 207, 211—218 (1954)Google Scholar
  41. Jones, M.E.: Carbamyl phosphate synthesis and utilization. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. V, pp. 903—925. New York: Academic Press 1962Google Scholar
  42. Juni, E.: Acetoin formation in bacteria. In: S. O. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. I, pp. 471—475. New York: Academic Press 1955Google Scholar
  43. Kaufman, S.: a-Ketoglutaric dehydrogenase system and phosphorylating enzyme from heart muscle. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. I, pp. 714—722. New York: Academic Press 1955Google Scholar
  44. Kielley, W.W.: Magnesium-activated muscle ATP-ases. In: S.P. Colowick, and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 588—591. New York: Academic Press 1955Google Scholar
  45. Kirkland, R.J. A., Turner, J.F.: Nucleoside diphosphokinase of pea seeds. Biochem. J. 72, 716—720 (1959)PubMedGoogle Scholar
  46. Kornberg, A., Lieberman, I., Sims, E.S.: Enzymic synthesis of purine nucleotides. J. biol. Chem. 215, 417—427 (1955)PubMedGoogle Scholar
  47. Kornberg, S.R.: Metaphosphate synthesis by an enzyme from E. coli. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 262—265. New York: Academic Press 1963Google Scholar
  48. Kurahashi, K., Sugimura, A.: Purification and properties of galactose 1-phosphate uridyl transferase from Escherichia coli. J. biol. Chem. 235, 940—946 (1960)PubMedGoogle Scholar
  49. Lee, Y.: 5’-Adenylic acid deaminase. II. Properties and kinetic studies. J. biol. Chem. 227, 999—1007 (1957)PubMedGoogle Scholar
  50. Lehman, I.R.: DNA synthesis (bacterial). In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 34—39. New York: Academic Press 1963Google Scholar
  51. Leloir, L.E., Trucco, R.E., Cardini, C.E., Paladini, A.C, Caputto, R.: The formation of glucose diphosphate by E. coli. Arch. Biochem. Biophys. 24, 65—74 (1949)Google Scholar
  52. Lerner, A. B.: Mammalian tyrosinase: effect of ions on enzyme action. Arch. Biochem. Biophys. 36, 473–481 (1952)PubMedCrossRefGoogle Scholar
  53. Leuthabdt, E., Bbuttin, A.: Concerning the myokinase of liver. Helv. Chim. Acta 35, 464––467 (1952)CrossRefGoogle Scholar
  54. Ling, K.H., Marcus, F., Labdy, H.A.: Purification and some properties of rabbit skeletal muscle phosphofructokinase. J. biol. Chem. 240, 1893—1899 (1965)PubMedGoogle Scholar
  55. Little, H.N.: Nitroethane oxidase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 400—402. New York: Academic Press 1955Google Scholar
  56. London, M., McHugh, R., Hudson, P.B.: Thermal stabilization of prostatic acid phosphatase by fluoride. Arch. Biochem. Biophys. 55, 121—125 (1955)PubMedCrossRefGoogle Scholar
  57. Maehly, A.C.: Myeloperoxidase. In: S.P. Colowiok and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 794—801. New York: Academic Press 1955Google Scholar
  58. Malsteom, B.G., Labsson-Raznikiewicz, M.: 3-Phosphoglycerate kinase. In: P.D. Boyeb, H. Labdy, and K. Mybback, Eds., The Enzymes, Vol. VI, pp. 85—94. New York: Academic Press 1963Google Scholar
  59. Mandl, I., Neubebg, C: Metaphosphatases. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 577—580. New York: Academic Press 1955Google Scholar
  60. Massey, V.: The role of iron in beef-heart succinic dehydrogenase. Biochim. Biophys. Acta 30, 500—509 (1958)PubMedGoogle Scholar
  61. Mathies, J. C.: Preparation and properties of highly purified phosphatase from swine kidneys. J. biol. Chem. 233, 1121—1127 (1958)PubMedGoogle Scholar
  62. Mazelis, M.: Particulate adenylic kinase in higher plants. Plant Physiol. 31, 37—43 (1956)PubMedCrossRefGoogle Scholar
  63. McDonald, M.R.: Deoxyribonucleases. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 437—447. New York: Academic Press 1955Google Scholar
  64. McGaughey, C, Stowell, E.C.: Estimation of a few nanograms of fluoride in presence of phosphate by use of liver esterase. Anal. Chem. 36, 2344—2350 (1964)CrossRefGoogle Scholar
  65. Meyebs, D.K., Slatee, E.C.: Effect of fluoride on enzymic hydrolysis of ATP by liver mitochondria. Biochem. J. 65, 572—579 (1957)Google Scholar
  66. Naganna, B., Menon, V.K.N.: Erythrocyte pyrophosphatase in health and disease. I. Properties of the enzyme. J. biol. Chem. 174, 501—522 (1948)PubMedGoogle Scholar
  67. Naganna, B., Raman, A., Venugopal, B., Sbipathi, C.E.: Potato pyrophosphatases. Biochem. J. 60, 215—233 (1955)Google Scholar
  68. Najjar, V.A.: The isolation and properties of phosphoglucomutase. J. biol. Chem. 175, 281—290 (1948)PubMedGoogle Scholar
  69. Najjar, V.A.: The role of 22 metal ions in enzyme systems. In: W.D. McElboy and B. Glass, Eds., Phosphorus Metabolism, Vol. I, pp. 500—520. Baltimore: Johns Hopkins Press 1951Google Scholar
  70. Najjar, V.A.: Phosphoglucomutase. In: P.D. Boyeb, H. Labdy, and K. Mybback, Eds., The Enzymes, Vol. VI, pp. 161—178. New York: Academic Press 1963Google Scholar
  71. Nandy, M., Ganguli, N.C.: Synthesis of 5-dehydroshikimic acid from carbohydrates by mung bean seedling extract. J. Sci. Ind. Res. (India) 21C, 34—38 (1962); cf. Chem. Abstr. 57, 14164 (1962)Google Scholar
  72. Nabayanaswami, A.: Creative phosphokinase in mammalian brain. Biochem. J. 52, 295—301 (1952)Google Scholar
  73. Nicholls, P.: The action of anions on catalase peroxide compounds. Biochem. J. 81, 365—374 (1961)PubMedGoogle Scholar
  74. Nikiforuk, G., Colowick, S.P.: 5’-AMP deaminase from muscle. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 469—473. New York: Academic Press 1955Google Scholar
  75. Nikiforuk, G.: The purification and properties of S-adenylic acid deaminase from muscle. J. biol. Chem. 219, 119—129 (1956)PubMedGoogle Scholar
  76. Noda, L.: Nucleoside triphosphate-nucleoside monophosphokinases. In: P.D. Boyeb, H. Labdy and K. Mybback, Eds., The Enzymes, Vol. VI, pp. 139—149. New York: Academic Press 1963Google Scholar
  77. Nobdlie, R., Labdy, BL: Phosphonyl group transfer. In: P.D. Boyeb, H. Labdy, and K. Mybback, Eds., The Enzymes, Vol. VI, pp. 4—46. New York: Academic Press 1963Google Scholar
  78. Oginsky, E.L.: Arginine dihydrolase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 374—378. New York: Academic Press 1955Google Scholar
  79. Oginsky, E.L., Gehbig, R.F.: The arginase dihydrolase system of S. faecalis. II. The decomposition of citrulline. J. biol. Chem. 204, 721—729 (1953)PubMedGoogle Scholar
  80. Petebs, R.A.: Lethal synthesis. Proc. roy. Soc. B 139, 143—170 (1952)Google Scholar
  81. Petebs, R.A., Shobthouse, M., Mubeay, L.R.: Enolase and fluorophosphate. Nature (Lond.) 202, 1331—1332 (1964)Google Scholar
  82. Pizer, C.I.: Phosphoglycerate mutase. In: P.D. Boyeb, H. Labdy and K. Mybback, Eds., The Enzymes, Vol. VI, pp. 179—192. New York: Academic Press 1963Google Scholar
  83. Plane, R.A., Theobell, H.: Liver alcohol dehydrogenase. IV. Kinetics in the presence of zine binding agents. Acta Chem. Scand. 15, 1866—1874 (1961)CrossRefGoogle Scholar
  84. Plattt, G. W.E.: Inosine diphosphatase (nucleoside diphosphatase) from mammalian liver. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 231—236. New York:Academic Press 1963Google Scholar
  85. Rackeb, E.: Sedoheptulose-1,7-diphosphatase from yeast. In: S. P. Colowick and N. O. Kaplan, Eds., Methods in Enzymology, Vol. V, pp. 270—272. New York: Academic Press 1962aGoogle Scholar
  86. Rackeb, E.: Fructose 1,6-diphosphatase from spinach leaves. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. V, pp. 272—276. New York: Academic Press 1962bGoogle Scholar
  87. Rall, T.W., Sutherland, E.W.: Enzymes concerned with interconversion of liver phosphor-rylases. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. V, pp. 377—391. New York: Academic Press 1962Google Scholar
  88. Ratner, S.: Urea synthesis and metabolism of arginine and citrulline. In: F.F. Nord, Ed., Advances in Enzymology, Vol. 15, pp. 319—387. New York: Academic Press 1954Google Scholar
  89. Ratner, S.: Enzymic synthesis of arginine (condensing and splitting of enzymes). In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 356—367. New York: Academic Press 1955Google Scholar
  90. Ratner, S.: N-Transfer from aspartic acid in the formation of amide, amidine and guanidino groups. In: P.D. Boyer, H. Lardy, and K. Myrback, Eds., The Enzymes, Vol. VI, pp. 496—513. New York: Academic Press 1963Google Scholar
  91. Ratner, S., Petrack, B.: Biosynthesis of urea. III. Further studies on arginine synthesis from citrulline. J. biol. Chem. 191, 693—705 (1951)PubMedGoogle Scholar
  92. Ratner, S., Biosynthesis of urea. IV. Further studies on condensation in arginine synthesis from citrulline. J. biol. Chem. 200, 161—185 (1953)Google Scholar
  93. Ravel, J.M., Mosteller, R.D., Hardesty, B.: NaF inhibition of the initial binding of aminoacyl-sRNA to reticulocyte ribosomes. Proc. Natl. Acad. Sci. U.S. 56, 701—708 (1966)CrossRefGoogle Scholar
  94. Reiner, J.M., Tstjbol, K.K., Hudson, P.B.: Acid phosphatase. IV. Fluoride inhibition of prostatic acid phosphatase. Arch. Biochem. Biophys. 56, 165—183 (1955)PubMedCrossRefGoogle Scholar
  95. Revel, H.P.: Phosphoprotein phosphatase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 211—214. New York: Academic Press 1963Google Scholar
  96. Roberts, D. W. A.: The wheat leaf phosphatases. V. Some properties of the enzymic system hydrolyzing β-glycerophosphate in crude juice preparations. Canad. J. Biochem. Physiol. 41, 113—120 (1963)Google Scholar
  97. Roche, J., Thoai, N. V.: Phosphatase alcaline. Advances in Enzymology, Vol. 10, pp. 83—122. New York: Academic Press 1950Google Scholar
  98. Schramm, M.: O-Phosphoserine phosphatase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology Vol. VI, pp. 215—218. New York: Academic Press 1963Google Scholar
  99. Siekevitz, P., Potter, V.R.: The adenylate kinase of rat liver mitochondria. J. biol. Chem. 200, 187—196 (1953)PubMedGoogle Scholar
  100. Slade, H. D.: The effect of fluoride on the arsenolysis of citrulline by soluble enzymes of streptococci. Biochim. Biophys. Acta 15, 411—414 (1954)PubMedCrossRefGoogle Scholar
  101. Slater, E. C.: Mechanism of inhibition of succinic dehydrogenase by fluoride and phosphate. Biochem. J. 58, i—ii (1954)PubMedGoogle Scholar
  102. Slater, E. C., Bonner, W. D.: The effect of fluoride on the succinic oxidase system. Biochem. J. 52, 185—196 (1952)PubMedGoogle Scholar
  103. Smith, Q.T., Armstrong, W.D., Singer, L.: Inhibition of human salivary and prostatic acid phosphatase and yeast enolase by low fluoride concentrations. Proc. Soc. exp. Biol. Med. 102, 170—173 (1959)PubMedGoogle Scholar
  104. Somorgyi, J., Vineze, I.: Mitochondrial and extramitochondrial ATPases in brain tissue. II. Some properties of extramitochondrial ATPases. Acta physiol. Acad. Sci. hung. 21, 29—41 (1962)Google Scholar
  105. Speck, J.F.: The enzymatic synthesis of glutamine. A reaction utilizing ATP. J. biol. Chem. 179, 1405—1426 (1949)PubMedGoogle Scholar
  106. Stekol, J.A.: Newer methods for preparation of S-adenosylmethionine and derivatives. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 566—577. New York: Academic Press 1963Google Scholar
  107. Stoppant, A., Brignone, J. A.: Protection of succinic dehydrogenase thiol groups by fluoride and phosphate. Biochem. J. 64, 196—200 (1956)Google Scholar
  108. Stumpp, P.K.: y-Glutamyltransferase (plants). In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. II, pp. 263—267. New York: Academic Press 1955Google Scholar
  109. Sund, H., Theorell, H.: Alcohol dehydrogenase. In: P.D. Boyer, H. Lardy and K. Myrback, Eds., The Enzymes, Vol. VII, pp. 25—83. New York: Academic Press 1963Google Scholar
  110. Suztje, G.: The enzymic synthesis of bacterial phytoene from mevalonic aeid-2-14C. J. Biochem. (Tokyo) 51, 246—252 (1962)Google Scholar
  111. Takahashi, H., Taniguchi, S., Egami, P.: Inorganic nitrogen compounds: Distribution and metabolism. In: M. Florkin and H.S. Mason, Eds., Comparative Biochemistry, Vol. 5, pp. 91—202. New York: Academic Press 1963Google Scholar
  112. Tietz, A., Oohoa, S.: Pluorokinase and pyruvic kinase. Arch. Biochem. Biophys. 78, 477—493 (1958)PubMedCrossRefGoogle Scholar
  113. Toida, I.: Hydrazidase. II. Inhibition by fluoride. J. Biochem. (Tokyo) 53, 18—22 (1963)Google Scholar
  114. Umbreit, W.W., Btjrris, R.H., Stattffer, J.P.: Manometric Techniques, pp. 112—113. Minneapolis, Minnesota: Burgess Publishing Company 1964Google Scholar
  115. Vintjela, E., Salas, M.L., Salas, M., Sols, A.: Two interconvertible forms of yeast phospho-fructokinase with different sensitivity to endproduct inhibition. Biochem. biophys. Res. Commun. 15, 243—249 (1964)Google Scholar
  116. Waelsch, H., Mycek, M. J.: Transglutaminase. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. V, pp. 833—838. New York: Academic Press 1962Google Scholar
  117. Warburg, O., Christian, W.: Chemical mechanism of fluoride inhibition of yeast. Natur-wissenschaften 29, 590 (1941a)CrossRefGoogle Scholar
  118. Warburg, O., Christian, W.: Chemical mechanism of fluoride inhibition of yeast. Naturwissenschaften 29,590 (1941b)CrossRefGoogle Scholar
  119. Warburg, O., Christian, W.: Isolation and crystallization of enolase. Biochem. Z. 310, 384—421 (1942). cf. Chem. Abstr. 36, 4141 (1942)Google Scholar
  120. Webb, J.L.: Enzyme and Metabolic Inhibitors, Vol. I, p. 251. New York: Academic Press 1963aGoogle Scholar
  121. Webb, J.L.: Enzyme and Metabolic Inhibitors, Vol. I, pp. 13—48. New York: Academic Press 1963bGoogle Scholar
  122. Webb, J.L.: Enzyme and Metabolic Inhibitors, Vol. I, p. 492. New York: Academic Press 1963cGoogle Scholar
  123. Whelan, W.J.: Phosphorylases from plants. In: S.P. Colowick and N.O. Kaplan, Eds., Methods in Enzymology, Vol. I, 192—200. New York: Academic Press 1955Google Scholar
  124. Whittaker, J.R., Tappel, A. L.: Modification of enzymic activity. II. Effects of salts on a-amylase, alcohol dehydrogenase and hematin catalysis. Biochim. Biophys. Acta 62, 310—317 (1962)Google Scholar
  125. Wildman, S. G., Bonner, J.: The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch. Biochem. Biophys. 14, 381—413 (1947)Google Scholar
  126. Zimmerman, S.B.: Deoxy CTP and deoxy CDP-splitting enzyme. In: S.P. Colowick, and N.O. Kaplan, Eds., Methods in Enzymology, Vol. VI, pp. 258—263. New York: Academic Press 1963Google Scholar

Added in final proof

  1. Lech, J.J., Calvert, D. N.: Isolation and properties of a fluoride sensitive tributyrinase from adipose tissue. Canad. J. Biochem. 46, 707—714 (1968)Google Scholar
  2. Tao, M., Lipmann, P.: Isolation of a adenyl cyclase from Escherichia coli. Proc. Natl. Acad Sci. (Wash.) 63, 86—97 (1969).—Reported 80% inhibition by sodium fluoride at 5 × 10–3 MCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1970

Authors and Affiliations

  • Alan Wiseman

There are no affiliations available

Personalised recommendations