Advertisement

Particular Inequalities

  • Dragoslav S. Mitrinović
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 165)

Abstract

In Part 3 a large number of inequalities, more or less elementary, are included and roughly classified according to the subject matter. A few of these inequalities could also have been incorporated in two or more sections of this Part. All these inequalities can play a certain role in Pure and Applied Mathematics in the proofs of various theorems, or in some other ways.

Keywords

Natural Number Gamma Function Trigonometric Polynomial Complex Domain Algebraic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PóLya, G., and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, vol. 1. Berlin 1925.Google Scholar
  2. 2.
    Iiayzxr,Vouskil, D. A.: Elements of the Theory of Inequalities (Russian). Moscow-Leningrad 1936.Google Scholar
  3. 3.
    Neviazhskü, G. L.: Inequalities (Russian). Moscow 1947.Google Scholar
  4. 4.
    Ostrowski, A.: Vorlesungen über Differential-und Integralrechnung, vol. 2. Basel 1951.Google Scholar
  5. 5.
    Korovxua, P. P.: Inequalities (Russian). Moscow-Leningrad 1952.Google Scholar
  6. 6.
    Korovkin, P. P.: Ungleichungen. Berlin 1954.Google Scholar
  7. 7.
    Ostrowski, A.: Vorlesungen über Differential-und Integralrechnung, vol. 3. Basel-Stuttgart 1954.Google Scholar
  8. 8.
    Mitrinovié, D. S.: Vaznije nejednakosti. Beograd 1958.Google Scholar
  9. 9.
    Kazarinoff, N. D.: Analytic Inequalities. New York 1961.Google Scholar
  10. 10.
    Mirrinovie, D. S., and D. Mihailovid: Linearna algebra, analiticka geometrija i polinomi. 2nd ed., Beograd 1962. - See, in particular, pp. 423–472.Google Scholar
  11. 11.
    Mitrinovié, D. S.: Zbornik matematickih problema, vol. 1. 3rd ed., Beograd 1962. - See, in particular, pp. 295–368.Google Scholar
  12. 12.
    Ostrowski, A.: Aufgabensammlung zur Infinitesimalrechnung, vol. 1. Basel-Stuttgart 1964.Google Scholar
  13. 13.
    Késedi, F.: Inequalities ( Hungarian ). Budapest 1965.Google Scholar
  14. 14.
    Sivasinskii, I. H.: Inequalities in Exercises (Russian). Moscow 1967.Google Scholar
  15. 15.
    Manolov, S. P., and K. Docev: Inequalities ( Bulgarian ). Sofia 1967.Google Scholar
  16. Lambek, J., and L. Moser: Rational analogues of the logarithm function. Math. Gaz. 40, 5–7 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  17. Schlömilch, O., and H. Lemonnier: Problem 455. Nouv. Ann. Math. 18, 68 and 151 (1859).Google Scholar
  18. Sandham, H. F.: Problem E 819. Amer. Math. Monthly 55, 317 (1948).MathSciNetGoogle Scholar
  19. Kirov, G.: Problem 3. Matematika (Sofia) 1968, No. 5, 35–36.MathSciNetGoogle Scholar
  20. Kazarinoff, D. K.: A simple derivation of the Leibniz-Gregory series for 7a/4. Amer. Math. Monthly 62, 726–727 (1955).MathSciNetCrossRefGoogle Scholar
  21. 1.
    Adamovié, D. D., and M. R. Tasaovie: Monotony and the best possible bounds of some sequences of sums. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 247–273, 41–50 (1969).Google Scholar
  22. 2.
    Mitrinovié, D. S.: Problem 108. Mat. Vesnik 4 (19), 338 (1967).Google Scholar
  23. Ostrowski 1, p. 39.Google Scholar
  24. E. Landau: Uber einige Ungleichungen von Herrn G. G.üss. Math. Z. 39, 742– 744 (1935).CrossRefGoogle Scholar
  25. Hésedi, F.: Inequalities ( Hungarian ). Budapest 1965, pp. 34–35.Google Scholar
  26. Minc, H.: Upper bounds for permanents of (0, 1)-matrices. Bull. Amer. Math. Soc. 69, 789–791 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  27. Frye, C. M.: Problem E 1624. Amer. Math. Monthly 70, 891 (1963).MathSciNetGoogle Scholar
  28. Frye, C. M.: Problem E 1624. Amer. Math. Monthly 71, 683 (1964).MathSciNetCrossRefGoogle Scholar
  29. Cauchy, A.: Exercices d’analyse, vol. 4. Paris 1847, p. 106.Google Scholar
  30. 1.
    Rankin, R. A.: Introduction to Mathematical Analysis. Oxford-London-New York-Paris 1963, p. 13.Google Scholar
  31. 2.
    Kazarinoff, D. K.: On Wallis’ formula. Edinburgh Math. Notes 40, 19–21 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  32. Thorpe, E., and F. Ricscoan: Problem E 1860. Amer. Math. Monthly 74, 862–863 (1967).MathSciNetCrossRefGoogle Scholar
  33. Mixe, H., and L. Sthre: Some inequalities involving. Proc. Edinburgh Math. Soc. (2) 14, 41–46 (1964/65).MathSciNetGoogle Scholar
  34. Agostini, A.: Rileggendo la “Geometria speciosa” di Pietro Mengoli. Periodic Mat. (4) 20, 313–327 (1940).MathSciNetzbMATHGoogle Scholar
  35. See also Review by J. E. Hofman in Jahrbuch über die Fortschritte der Mathematik 66, 16 (1940).Google Scholar
  36. Khintchine, A.: über dyadische Brüche. Math. Z. 18, 109–116 (1923).MathSciNetCrossRefGoogle Scholar
  37. Bartos, P., and S. Znae: On symmetric and cyclic means of positive numbers. Mat.-Fyz. Casopis Sloven. Akad. Vied. 16, 291–298 (1966).MathSciNetzbMATHGoogle Scholar
  38. Sierpuaski, W.: Elementary Theory of Numbers. Warszawa 1964, p. 132.Google Scholar
  39. 1.
    Hslund, N.: The fundamental theorems of information theory II. Nord. Mat. Tidskr. 9, 105 (1961).Google Scholar
  40. Beck, I.: Problem 224. Nord. Mat. Tidskr. 10, 96 (1962).Google Scholar
  41. Herzog, F.: Problem 4186. Amer. Math. Monthly 54, 485–486 (1947).zbMATHCrossRefGoogle Scholar
  42. Langman, H., and F. Ayres: Problem 3315. Amer. Math. Monthly 36, 238 (1929).MathSciNetCrossRefGoogle Scholar
  43. Ozeki, N.: On some inequalities (Japanese). J. College Arts Sci. Chiba Univ. 4, No. 3, 211–214 (1965).MathSciNetGoogle Scholar
  44. Lovera, P.: Sopra alcune diseguaglianze che si presentano nella matematica attuariale. Giorn. Ist. Ital. Attuari 19, 131–139 (1956).MathSciNetzbMATHGoogle Scholar
  45. Lyness, R. C., and L. Carlitz: Problem 4791. Amer. Math. Monthly 66, 241 (1959).MathSciNetCrossRefGoogle Scholar
  46. Conitä, C., and F. Turloiu: Collection of Problems in Algebra ( Romanian ). Bucuresti 1965, pp. 172–173.Google Scholar
  47. Cauchy, A.: Oeuvres complètes II, vol. 3. Paris 1897, pp. 368–369.Google Scholar
  48. Biernacki, M., H. Pidek and C. Ryll-Nariizewski: Sur une inégalité entre des intégrales définies. Ann. Univ. Mariae Curie-Sklodowska A 4, 1–4 (1950).zbMATHGoogle Scholar
  49. 1.
    Nanson, E. J.: An inequality. Messenger Math. 34, 89–90 (1904).Google Scholar
  50. 2.
    Wilson, J. M.: Problem 1521. Educ. Times 3, 14–15 (1865);Google Scholar
  51. Wilson, J. M.: Problem 1521. Educ. Times 5, 98–99 (1866);Google Scholar
  52. Wilson, J. M.: Problem 1521. Educ. Times 6, 105 (1866).Google Scholar
  53. 3.
    Ingleby, C. M.: An inequality. Oxford, Cambridge, Dublin Messenger Math. 3, 235 (1866).Google Scholar
  54. 4.
    Sharpe, J.: An inequality. Oxford, Cambridge, Dublin Messenger Math. 4, 123–125 (1868).Google Scholar
  55. 5.
    Olds, C. D.: Problem E 1167. Amer. Math. Monthly 63, 43 (1956).MathSciNetCrossRefGoogle Scholar
  56. 6.
    Taylor, C.: Problem 2426. Educ. Times 8, 58–59 (1868).Google Scholar
  57. Taylor, C.: Problem 2426. Educ. Times 10, 31–32 (1868).Google Scholar
  58. Lewin, M.: An inequality and its application to a property of Mahler’s partition functions. J. London Math. Soc. 43, 429–432 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  59. Baicev, I., and M. Petrov: Problem 48. Fiz.-Mat. Spis., Sofia 5, 142–143 (1962).Google Scholar
  60. Bromwich, T. J. l’A: An Introduction to Theory of Series. 2nd ed., London 1955, pp. 104–105.Google Scholar
  61. Obrechkoff, N.: Sur le théorème de Hermite et Poulain. C. R. Acad. Sci. Paris 249, 21–22 (1959).MathSciNetzbMATHGoogle Scholar
  62. 1.
    Mitxlxovié, D. S., and P. M. Vnsié: Généralisation d’une inégalité de Henrici. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 35–38 (1968).Google Scholar
  63. 2.
    Henrici, P.: Problem 245. Elem. Math. 11, 112 (1956).Google Scholar
  64. 3.
    Bullen, P. S.: An inequality due to Henrici. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 247–273, 21–26 (1969).MathSciNetGoogle Scholar
  65. Aovagi, M.: Problem 5333. Amer. Math. Monthly 73, 1022–1023 (1966).Google Scholar
  66. Brun, V., and G. Arfwedson: Problem 180. Nord. Mat. Tidskr. 8, 48 (1960).Google Scholar
  67. Whittaker, J. V.: Problem 4712. Amer. Math. Monthly 64, 677–678 (1957).MathSciNetCrossRefGoogle Scholar
  68. Trzeciakiewicz, L., and S. Tomaszczyk: Problem 537. Matematyka 11, 43 (1958), and 12, 296–297 (1959).Google Scholar
  69. Paasche, I., H. Kummer and C. Blatter: Problem 365. Elem. Math. 15, 138–139 (1960).Google Scholar
  70. Ostrowski 2, p. 290.Google Scholar
  71. Diaz, J. B., and F. T. Metcalf: Complementary inequalities III. Math. Ann. 162, 120–139 (1965). — See, in particular, p. 133.Google Scholar
  72. Ostrowski 2, p. 44.Google Scholar
  73. 1.
    Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Coll. Publications, vol. 23. Rev. ed., Providence 1959.Google Scholar
  74. 2.
    Marden, M.: Geometry of Polynomials. Amer. Math. Soc. Math. Surveys, vol. 3. 2nd ed., Providence 1966.zbMATHGoogle Scholar
  75. 3.
    Timan, A. F.: Theory of Approximation of Functions of a Real Variable. Oxford-London-New York-Paris 1963.Google Scholar
  76. 4.
    Dieudonné, J.: Recherches sur quelques problèmes relatifs aux polvnomes et aux fonctions bornées d’une variable complexe. Ann. École Norm. Sup. (3) 48, 247–258 (1931).Google Scholar
  77. Moser, L., and J. R. Pounder: Problem 53. Canad. Math. Bull. 5, 70 (1962).Google Scholar
  78. Dixon, J. D.: Polynomials with real roots. Canad. Math. Bull. 5, 259–263 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  79. Wrona, W.: On minimal distance between roots of the equation of third degree (Polish). Zeszyty Nauk. Wyz. Szkol. Ped. hatowice 1966, No. 5, 9–12.MathSciNetGoogle Scholar
  80. Verblunsky, S.: A theorem on cubic polynomials. Arch. Math. (Basel) 2, 281–282 (1950).MathSciNetCrossRefGoogle Scholar
  81. Maüík, J.: Real polynomials of the 4-th degree. Gasopis Pést. Mat. 90, 33–42 (1965).Google Scholar
  82. Olds, C. D., and E. P. Starke: Problem E 1143. Amer. Math. Monthly 62, 445–446 (1955).MathSciNetCrossRefGoogle Scholar
  83. Fransén, A., and J. Lohne: Problem 196. Nord. Mat. Tidskr. 8, 188 (1960).Google Scholar
  84. Newman, D. J.: Problem 5040. Amer. Math. Monthly 69, 670 (1962).MathSciNetCrossRefGoogle Scholar
  85. Constantinescu, F.: Relations entre les coefficients de deux polvnomes dont les racines se séparent. asopis Pést. Mat. 89, 1–4 (1964).MathSciNetzbMATHGoogle Scholar
  86. Rahman, Q. I.: Inequalities concerning polynomials and trigonometric polynomials. J. Math. Anal. Appl. 6, 303–324 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  87. Flatto, L., N. C. Hsu and A. G. Konheim: Problem E 1493. Amer. Math. Monthly 69, 568 (1962).MathSciNetCrossRefGoogle Scholar
  88. Bourbaki, N.: Topologie générale. 2nd ed., Paris 1955, Chap. 5–8, p.97, Exerc. 1.Google Scholar
  89. 1.
    Walsh, J. L.: An inequality for the roots of an algebraic equation. Ann. of Math. (2) 25, 285–286 (1924).MathSciNetzbMATHCrossRefGoogle Scholar
  90. 2.
    Runxicxl, J.: Remarque sur un théorème de Mr. Walsh. Mathematica (Cluj) 8, 136–138 (1934).Google Scholar
  91. 1.
    Carmichael, R. D., and T. E. Mason: Note on the roots of algebraic equations. Bull. Amer. Math. Soc. 21, 14–22 (1914).MathSciNetzbMATHCrossRefGoogle Scholar
  92. 2.
    Williams, K. P.: Note concerning the roots of an equation. Bull. Amer. Math. Soc. 28, 394–396 (1922).MathSciNetzbMATHCrossRefGoogle Scholar
  93. 1.
    Markovitch, D.: Sur la limite inférieure des modules des zéros d’un polynôme. Acad. Serbe Sci. Publ. Inst. Math. 2, 236–242 (1948).MathSciNetGoogle Scholar
  94. 2.
    Landau, E.: Über eine Aufgabe aus der Funktionentheorie. Tôhoku Math. J. 5, 97–116 (1914).zbMATHGoogle Scholar
  95. 3.
    Snieunovie, D. M.: Sur les limites des modules des zéros des polynômes. Mat. Vesnik 4 (19), 293–298 (1967).MathSciNetGoogle Scholar
  96. Landau, E.: Sur quelques théorèmes de M. Petrovie relatifs aux zéros des fonctions analytiques. Bull. Soc. M.th. France 33, 251–261 (1905).zbMATHGoogle Scholar
  97. Landau, E.:Ober eine Aufgabe aus der Funktionentheorie. Teihoku Math. J. 5, 97–116 (1914).zbMATHGoogle Scholar
  98. Specht, W.: Abschätzungen der Wurzeln algebraischer Gleichungen. Math. Z. 52, 310–321 (1949).MathSciNetCrossRefGoogle Scholar
  99. Vicente Gonçalves, J.: L’inégalité de W. Specht. Univ. Lisboa Revista Fac. Ci. (2) A 1, 167–171 (1950).Google Scholar
  100. Ostrowski, A. M.: On an inequality of J. Vicente Gonçalves. Univ. Lisboa Revista Fac. Ci. (2) A 8, 115–119 (1960).MathSciNetGoogle Scholar
  101. Van Der Corput, J. G., and C. Visser: Inequalities concerning polynomials and trigonometric polynomials. Indagationes Math. 8, 238–247 (1946).Google Scholar
  102. Ostrowssl, V.: Note sur les parties réelles et imaginaires des racines des poly-nomes. J. Math. Pures Appl. (9) 44, 327–329 (1965).MathSciNetGoogle Scholar
  103. 1.
    Mayer, D. E.: Sur les équations algébriques. Nouv. Ann. Math. (3) 10, 111–124 (1891).Google Scholar
  104. 2.
    Tajima, M.: On the roots of an algebraic equation. Tôhoku Math. J. 19, 173–174 (1921).Google Scholar
  105. Peyser, G.: On the roots of the derivative of a polynomial with real roots. Amer. Math. Monthly 74, 1102–1104 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  106. Mamedhanov, D. I.: Some inequalities for algebraic polynomials and rational functions (Russian). Izv. Akad. Nauk Azerbaidzan. SSR Ser. Fiz.-Mat. Tehn. Nauk 1962, No. 5, 9–15.MathSciNetGoogle Scholar
  107. De Bruijti, N. G., and T. A. Springer: On the zeros of a polynomial and of its derivative II. Indagationes Math. 9, 264–270 (1947).Google Scholar
  108. Erdös, P.: Note on some elementary properties of polynomials. Bull. Amer. Math. Soc. 46, 954–958 (1940).MathSciNetCrossRefGoogle Scholar
  109. Szegö, G.: On conjugate trigonometric polynomials. Amer. J. Math. 65, 532–536 (1943).MathSciNetzbMATHCrossRefGoogle Scholar
  110. Mulholland, H. P.: On two extremum problems for polynomials on the unit circle. J. London Math. Soc. 31, 191–199 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  111. Cargo, G. T., and O. Shisha: The Bernstein form of a polynomial. J. Res. Nat. Bur. Standards Sect. B, 70 B, 79–81 (1966).MathSciNetGoogle Scholar
  112. Schoenberg, I. J.: Problem 28. Wisk. Opgaven 21, 28–30 (1960).Google Scholar
  113. Love, J. B.: Problem E 1532. Amer. Math. Monthly 69, 668 (1962).MathSciNetCrossRefGoogle Scholar
  114. Coiuccl, A.: Generale maggiorazione dei polinomi e delle derivate e una sua conseguenza. Boll. Un. Mat. Ital. (3) 8, 258–260 (1953).MathSciNetGoogle Scholar
  115. Schaeffer, A. C.: Inequalities of A. Markoff and S. Bernstein for polynomials and related functions. Bull. A.er. Math. Soc. 47, 565–579 (1941).MathSciNetCrossRefGoogle Scholar
  116. Soble, A. B.: Majorants of polynomial derivatives. Amer. Math. Monthly 64, 639–643 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  117. Schaeffer, A. C., and R. J. Duffin: On some inequalities of S. Bernstein and W. Markoff for derivatives of polynomials. Bull. Amer. Math. Soc. 44, 289–297 (1938).MathSciNetCrossRefGoogle Scholar
  118. Szegö, G.: On some problems of approximations. Magyar Tud. Akad. Mat. Kutato. Int. Közl. 9, 3–9 (1964).zbMATHGoogle Scholar
  119. Ostrowser 3, p. 32.Google Scholar
  120. Sendov, B.: An integral inequality for algebraic polynomials with only real zeros (Bulgarian). Ann. Univ. Sofia, Fac. Sci. Phys. Math. Livre 1, Math. 53, 19–32 (1958/59).MathSciNetGoogle Scholar
  121. Dimovskr, I., and V. Cakalov: Integral inequalities for real polynomials (Bulgarian). Ann. Univ. Sofia, Fac. Math. 59, 151–158 (1964/65).Google Scholar
  122. 1.
    Erdös, P., and T. Grünwald: On polynomials with only real roots. Ann. of Math. (2) 40, 537–548 (1939).MathSciNetCrossRefGoogle Scholar
  123. 2.
    Erdös, P.: Note on some elementary properties of polynomials. Bull. Amer. Math. Soc. 46, 954–958 (1940).MathSciNetCrossRefGoogle Scholar
  124. 3.
    Iyengar, K. S. K.: A property of integral functions with real roots and of order less than two. Proc. Indian Acad. Sci. A 12, 223–229 (1940).MathSciNetGoogle Scholar
  125. 4.
    Kuhn, H.: Über Polynome mit lauter reellen Nullstellen der Ableitung. Dissertation, Karlsruhe 1966, 40 pp.Google Scholar
  126. Schmidt, E.: über algebraische Gleichungen von Pólya-Bloch-Typus. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 1932, pp. 321–328.Google Scholar
  127. Schur, I.: Untersuchungen über algebraische Gleichungen. I: Bemerkungen zu einem Satz von E. Schmidt. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 1933, pp. 403–428.Google Scholar
  128. Szegö, G.: Bemerkungen zu einem Satz von E. Schmidt über algebraische Gleichungen. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 1934, pp. 86–98.Google Scholar
  129. Swamy, M. N. S.: Problem E 1846. Amer. Math. Monthly 73, 81 (1966).MathSciNetCrossRefGoogle Scholar
  130. Mahler, K.: On two extremum properties of polynomials. Illinois J. Math. 7, 681–701 (1963).MathSciNetzbMATHGoogle Scholar
  131. Duncan, R. L.: Some inequalities for polynomials. Amer. Math. Monthly 73, 58–59 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  132. Popoviciu, T.: Sur certaines inégalités entre les zéros, supposés tous réels, d’un polynome et ceux de sa dérivée. Ann. Sci. Univ. Jassy Sect. I, 30, 191–218 (1944/47).MathSciNetGoogle Scholar
  133. Bray, H.: On the zeros of a polynomial and of its derivative. Amer. J. Math. 53, 864–872 (1931).MathSciNetCrossRefGoogle Scholar
  134. Toda, K.: On certain functional inequalities. J. Sci. Hiroshima Univ. Ser. A-I Math. 4, 27–40 (1934).zbMATHGoogle Scholar
  135. Marxovie, D.: Sur les zéros réels des dérivées de quelques fonctions (Serbian). Bull. Soc. Math. Phys. Serbie 4, No. 3–4, 1–5 (1952).Google Scholar
  136. Visser, C.: A generalization of Tchebvchef’s inequality to polynomials in more than one variable. Indagationes Math. 8, 310–311 (1946).Google Scholar
  137. Garnir, H. G.: Fonctions de variables réelles, vol. 1. Louvain-Paris 1963, p. 267.Google Scholar
  138. 1.
    Aumann, G.: Satz über das Verhalten von Polynomen auf Kontinuen. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 1933, pp. 924–931.Google Scholar
  139. 2.
    Kneser, H.: Das Maximum des Produkts zweier Polynome. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. KI. 1934, pp. 426–431.Google Scholar
  140. 3.
    Bierrnckl, M.: Sur quelques propriétés des fonctions de distances. J. Math. Pures Appl. (9) 31, 305–318 (1952).MathSciNetGoogle Scholar
  141. Kramer, H.: Über einige Ungleichungen zwischen den Nullstellen eines Polynoms und seiner ersten Ableitung. Mathematica (Cluj) 10 (33), 89–93 (1968).MathSciNetGoogle Scholar
  142. Makai, E.: On the summability of the Fourier series of L2 integrable functions IV. Acta Math. Acad. Sci. Hung. 20, 383–391 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  143. Iyengar, K. S. K., B. S. Madhava Rao and T. S. Nanjundiah: Some trigonometrical inequalities. Half-Yearly J. Mysore Univ. B (N.S.) 6, 1–12 (1945).MathSciNetGoogle Scholar
  144. Gonèarov, V. L.: Theory of Interpolation and Approximation of Functions (Russian). 2nd ed., Moscow 1954, pp. 233–234.Google Scholar
  145. Lauffer, R.: Problem 144. Wisk. Opgaven 19, 294–295 (1950/54).Google Scholar
  146. Kober, H.: Approximation by integral functions in the complex domain. Trans. Amer. Math. Soc. 56, 22 (1944).MathSciNetGoogle Scholar
  147. Van Der Corput, J. G.: Problem 96. Wisk. Opgaven 16, 243–244 (1935).Google Scholar
  148. Goodman, A. W.: Problem E 723. Amer. Math. Monthly 53, 271 (1946).MathSciNetCrossRefGoogle Scholar
  149. Robertson, M. S.: Radii of star-likeness and close-to-convexity. Proc. Amer. Math. Soc. 16, 847–852 (1965).MathSciNetzbMATHGoogle Scholar
  150. 1.
    Mitrinovlé, D. S., and D. D. Adamovié: Sur une inégalité élémentaire où interviennent des fonctions trigonométriques. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 143–155, 23–34 (1965).Google Scholar
  151. 2.
    Mrrxinovlé, D. S., and D. D. Admovlé: Complément à l’article “Sur une inégalité élémentaire où interviennent des fonctions trigonométriques”. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 159–170, 31–32 (1966).Google Scholar
  152. 3.
    Jovanovid, S. M.: An investigation on the function f (x) = x–(sin x)P (cos x)4 in the interval x E (0, x/2) for different values of the parameters p (000 1) and q (111 0). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 143–155, 35–38 (1965).Google Scholar
  153. Frame, J. S.: Solving a right triangle without tables. Amer. Math. Monthly 51, 36–38 (1944).MathSciNetCrossRefGoogle Scholar
  154. Frame, J. S.: Some trigonometric, hyperbolic and elliptic approximations. Amer. Math. Monthly 61, 623–626 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  155. Durell, C. V., and A. Robsox: Advanced Trigonometry. London 1948, p. 240.Google Scholar
  156. Neville, E. H.: A trigonometrical inequality. Proc. Cambridge Phil. Soc. 47, 629–632 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  157. Gronwall, T. H.: On the influence of keyways on the stress distribution in cylindrical shafts. Trans. Amer. Math. Soc. 20, 234–244 (1919). — See, in particular, p. 243.Google Scholar
  158. Steekin, S. B.: Some remarks on trigonometric polynomials (Russian). Uspehi Mat. Nauk (N.S.) 10, No. 1 (63), 159–166 (1955).MathSciNetGoogle Scholar
  159. Rogosieski, W. W., and G. Szegö: Extremum problems for nonnegative sine polynomials. Acta Sci. Math. (Szeged) 12, Part B, 112–124 (1950).Google Scholar
  160. Rogosinski, W. W.: Extremum problems for polynomials and trigonometrical Polynomials, J. London Math. Soc. 29, 259–275 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  161. Rogosinski, W. W.: Linear extremum problems for real polynomials and trigonometrical polynomials. Arch. Math. (Basel) 5, 182–190 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  162. Rogosinski, W. W.: Linear extremum problems for real polynomials and trigonometrical polynomials. Corrigenda 6, 87 (1955).Google Scholar
  163. Hyltén-Cavallius, C.: Some extremal problems for trigonometrical and complex polynomials. Math. Scand. 3, 5–20 (1955).MathSciNetzbMATHGoogle Scholar
  164. Mllhollavd, H. P.: On two extremum problems for polynomials on the unit circle. J. London Math. Soc. 31, 191–199 (1956).MathSciNetCrossRefGoogle Scholar
  165. Makai, E.: A property of Dirichlet’s kernel. Studia Sci. Math. Hung. 1, 11–16 (1966)MathSciNetzbMATHGoogle Scholar
  166. Jackson, D.: i ber eine trigonometrische Summe. Rend. Circ. Mat. Palermo 32, 257–262 (1911).zbMATHCrossRefGoogle Scholar
  167. Gronavall, T. H.: Über die Gibbssche Erscheinung und die trigonometrischen Summen sin x ± 2 sin 2x + … + sin nx. Math. Ann. 72, 228–243 (1912).MathSciNetCrossRefGoogle Scholar
  168. Tcran, P.: liber die Partialsummen der Fourierreiche. J. London Math. Soc. 13, 278–282 (1938).CrossRefGoogle Scholar
  169. Hyltén-Cavallius, C.: Geometrical methods applied to trigonometrical sums. kungl. Fysiografiska Sällskapets i Lund Förhandlingar 21, No. 1, 19 pp. (1950).Google Scholar
  170. Gaier, D., and J. Todd: On the rate of convergence of optimal ADI processes. Numer. Math. 9, 452–459 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  171. Szkcz, G., L. Geher, I. Iiovkcs and L. Pintér: Contests in Higher Mathematics. Budapest 1968, p. 19 and pp. 175–176.Google Scholar
  172. Sznagy, B.: Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I: Periodischer Fall. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 90, 103–134 (1938). - See, in particular, p. 131.Google Scholar
  173. Ostrowsei 2, p. 109.Google Scholar
  174. Turan, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155–161 (1952).MathSciNetGoogle Scholar
  175. Hyltén-Cavallius, C.: Geometrical methods applied to trigonometrical sums. Iiungl. Fysiografiska Sällskapets i Lund Förhandlingar 21, No. 1, 19 pp. (1950).Google Scholar
  176. 1.
    Szegö, G.: Power series with multiply monotonic sequences of coefficients. Duke Math. J. 8, 559–564 (1941).Google Scholar
  177. 2.
    Schweitzer, M.: The partial sums of second order of the geometrical series. Duke Math. J. 18, 527–533 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  178. Tureckii, A. H.: On a function deviating least from zero (Russian). Belorussk. Gos. Univ. Uc. Zap. Ser. Fiz.-Mat. 16, 41–43 (1954).MathSciNetGoogle Scholar
  179. 1.
    Young, W. H.: On a certain series of Fourier. Proc. London Math. Soc. (2) 11, 357–366 (1913).CrossRefGoogle Scholar
  180. 2.
    Rocosixsxi, W. W., and G. Szegö: Über die Abschnitte von Potenzreihen, die in einem Kreise beschränkt bleiben. Math. Z. 28, 73–94 (1928).MathSciNetCrossRefGoogle Scholar
  181. 3.
    Gasper, G.: Nonnegative sums of cosine, ultraspherical and Jacobi polynomials. J. Math. Anal. Appl. 26, 60–68 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  182. Karamata, J., and M. Tome: Considérations géométriques relatives aux poly-nomes et séries trigonométriques. Acad. Serbe Sci. Publ. Inst. Math. 2, 157–175 (1948).MathSciNetGoogle Scholar
  183. Fejér, L.: Einige Sätze, die sich auf das Vorzeichen einer ganzen rationalen Funktion beziehen; nebst Anwendungen dieser Sätze auf die Abschnitte und Abschnittsmittelwerte von ebenen und räumlichen harmonischen Entwicklungen und von beschränkten Potenzreihen. VIonatsh. Math. 35, 305–344 (1928).zbMATHCrossRefGoogle Scholar
  184. 1.
    Turan, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155–161 (1952).MathSciNetGoogle Scholar
  185. 2.
    Askey, R., J. Fitch and G. Gasper: On a positive trigonometric sum. Proc. Amer. Math. Soc. 19, 1507 (1968).MathSciNetzbMATHGoogle Scholar
  186. Turan, P.: On a trigonometrical sum. Ann. Soc. Polon. Math. 25, 155–161 (1952).MathSciNetGoogle Scholar
  187. Hyltén-Cavallius, C.: A positive trigonometrical kernel. C. R. 12e Congrès Math. Scandinaves, Lund 1953, pp. 90–94 (1954).Google Scholar
  188. Szicz, G., L. Gehér, I. hovtics and L. Pintér: Contests in Higher Mathematics. Budapest 1968, p. 20 and pp. 177–178.Google Scholar
  189. 1.
    Vietoris, L.: Liber das Vorzeichen gewisser trigonometrischer Summen. Sitzungsber. Öst. Akad. Wiss. 167, 125–135 (1958)zbMATHGoogle Scholar
  190. Vietoris, L.: Liber das Vorzeichen gewisser trigonometrischer Summen. Anzeiger Öst. Akad. Wiss. 1959, pp. 192–193.Google Scholar
  191. 2.
    Djoxovie, D. Z.: Sur une généralisation de l’inégalité de Fejér-Jackson. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 35–37, 1–4 (1960).Google Scholar
  192. Erdös, P.: An inequality for the maximum of trigonometric polynomials. Ann. Polon. Math. 12, 151–154 (1962).MathSciNetzbMATHGoogle Scholar
  193. Gonarov, V. L.: Theory of Interpolation and Approximation of Functions (Russian). 2nd ed., Moscow 1954, pp. 231–232.Google Scholar
  194. 1.
    Davenport, H., and H. Halberstam: The values of a trigonometric polynomial at well spaced points. Mathematika 13, 91–96 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  195. 2.
    Izumi, M., and S. Izumi: On a theorem concerning trigonometrical polynomials. Proc. Japan Acad. 43, 71–76 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  196. Stečkin, S. B.: A generalization of some inequalities of S. N. Bern stein (Russian). Doklady Akad. Nauk SSSR (N.S.) 60, 1511–1514 (1948).Google Scholar
  197. See also the review by R. P. Boas in Math. Reviews 9, 579–580 (1948).Google Scholar
  198. Boas, R. P.: Inequalities for polynomials with a prescribed zero. In: Studies in Mathematical Analysis and Related Topics. Stanford 1962, pp. 42–47.Google Scholar
  199. Hille, E., and J. Tamarkin: On the summability of Fourier series I. Trans. Amer. Math. Soc. 34, 757–783 (1932).MathSciNetCrossRefGoogle Scholar
  200. Sidon, S.: liber Fourier-Koeffizienten. J. London Math. Soc. 13, 181–183 (1938).CrossRefGoogle Scholar
  201. Stebkin, S. B.: Some remarks on trigonometric polynomials (Russian). Uspehi Mat. Nauk (N.S.) 10, No. 1 (63), 159–166 (1955).MathSciNetGoogle Scholar
  202. Nikolslut, S. M.: Generalization of a proposition of S. N. Bern“stein (Russian). Doklady Akad. Nauk SSSR (N.S.) 60, 1507–1510 (1948).MathSciNetGoogle Scholar
  203. Newman, D. J.: Norms of polynomials. Amer. Math. Monthly 67, 778–779 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  204. Zygmund, A.: Two notes on inequalities. J. Math. and Phys. 21, 117–123 (1942).MathSciNetzbMATHGoogle Scholar
  205. Marcinkiewicz, J., and A. Zygmund: Mean values of trigonometric polynomials. Fund. Math. 28, 131–166 (1936).zbMATHGoogle Scholar
  206. 1.
    Van Der Corput, J. G., and C. Visser: Inequalities concerning polynomials and trigonometric polynomials. Indagationes Math. 8, 238–247 (1946).Google Scholar
  207. 2.
    Boas, R. P.: Inequalities for the coefficients of trigonometric polynomials. Indagationes Math. 9, 298–301 (1947).Google Scholar
  208. 3.
    Boas, R. P.: Inequalities for the coefficients of trigonometric polynomials II. Indagationes Math. 9, 369–372 (1947).Google Scholar
  209. 4.
    Geronimus, Ya. L.: Refinement of estimates of van der Corput, Visser, Fejes and Boas for the coefficients of trigonometric polynomials (Russian). Doklady Akad. Nauk SSSR (N.S.) 63, 479–482 (1948).MathSciNetzbMATHGoogle Scholar
  210. 5.
    Geronimus, Ya. L.: Sur quelques propriétés extrémales des polvnomes trigonométriques. C. R. Acad. Sci. Paris 198, 2221–2222 (1934).Google Scholar
  211. 6.
    Ahiezer, N. I., and M. G. Krein: Über Fouriersche Reihen beschränkter summierbarer Funktionen und ein neues Extremum-Problem. Zap. Har’kov. Mat. Obsc. (4) 9, 9–23 (1934).Google Scholar
  212. Ahiezer, N. I., and M. G. Krein: Über Fouriersche Reihen beschränkter summierbarer Funktionen und ein neues Extremum-Problem. Zap. Har’kov. Mat. Obsc. (4) 10, 3–32 (1934).Google Scholar
  213. Blankfield, J., and D. Zeitlila: Problem E 1220. Amer. Math. Monthly 64, 47–48 (1957).MathSciNetCrossRefGoogle Scholar
  214. Lyness, J. N., and C. Moler: Problem 67–6. SIAM Review 9, 250 (1967) and 11, 82–86 (1969).Google Scholar
  215. Askey, R., and J. Fitch: Some positive trigonometric sums. Notices Amer. Math. Soc. 15, 769 (1968).Google Scholar
  216. Hyltén-Cavallius, C.: A positive trigonometrical kernel. C. R. 12e Congrès Math. Scandinaves, Lund 1953, pp. 90–94 (1954).Google Scholar
  217. 1.
    Tntle, M.: Sur les sommes trigonométriques à coefficients monotones (Serbian). Srpska Akad. Nauka. Zbornik Radova 18, Mat. Inst. 2, 13–52 (1952).Google Scholar
  218. 2.
    Hyltén-Cavallius, C.: Geometrical methods applied to trigonometrical sums. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar 21, No. 1, 19 pp. (1950).Google Scholar
  219. Bari, N. K.: Generalization of inequalities of S. N. Bernstein and A. A. Markov (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 18, 159–170 (1954).MathSciNetzbMATHGoogle Scholar
  220. Zygsiund, A.: Trigonometric Series, vol. 1. Cambridge 1959, p. 244.Google Scholar
  221. Zygmund, A.: Trigonometric Series, vol. 1. Cambridge 1959, p. 266.Google Scholar
  222. Kikoiskll, S. M.: Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables (Russian). Trudy Mat. Inst. Steklov 38, 244–278 (1951).Google Scholar
  223. Lebed, G. K.: On trigonometric series with coefficients which satisfy some conditions (Russian). Mat. Sb. 74 (116), 100–118 (1967).MathSciNetGoogle Scholar
  224. Taberski, R.: Asymptotic formulae for Cesàro singular integrals. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10, 637–640 (1962).MathSciNetzbMATHGoogle Scholar
  225. Watson, G. N.: An inequality associated with gamma function. Messenger Math. 45, 28–30 (1916).Google Scholar
  226. Neville, E. H.: Two inequalities used in the theory of the gamma function. Math. Gaz. 20, 279–280 (1936).CrossRefGoogle Scholar
  227. Neville, E. H.: Addition to Note 1209. Math. Gaz. 21, 55–56 (1937).CrossRefGoogle Scholar
  228. Watson, G. N.: Comments on Note 1225. Math. Gaz. 21, 292–295 (1937).CrossRefGoogle Scholar
  229. Dunkel, O.: Problem 3766 (Editorial note). Amer. Math. Monthly 45, 58 (1938).CrossRefGoogle Scholar
  230. Whittaker, E. T., and G. N. Watson: A Course of Modern Analysis. Cambridge 1952, p. 242.Google Scholar
  231. 1.
    Sewell, W. E.: Some inequalities connected with exponential function (Spanish). Rev. Ci. (Lima) 40, No. 425, 453–456 (1938).zbMATHGoogle Scholar
  232. 2.
    Dunkel, O.: Problem 3766 (Editorial note). Amer. Math. Monthly 45, 58 (1938).CrossRefGoogle Scholar
  233. Kesava Menon, P.: Some integral inequalities. Math. Student 11, 36–38 (1943).Google Scholar
  234. Ikaramata, J.: Sur l’approximation de ex par des fonctions rationnelles (Serbian). Bull. Soc. Math. Phys. Serbie 1, 1, 7–19 (1949).MathSciNetGoogle Scholar
  235. Van Der Corput, J. G.: Problem 96. Wisk. Opgaven 16, 243–244 (1935).Google Scholar
  236. Garnir, H. G.: Fonctions de variables réelles, vol. 1. Louvain-Paris 1963, p. 268.Google Scholar
  237. Lochs, G.: Die Konvergenzradien einiger zur Lösung transzendenter Gleichungen verwendeter Potenzreihen. Monatsh. Math. 58, 118–122 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  238. Lazarevié, I.: Sur une inégalité de Lochs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 230–241, 55–56 (1968).Google Scholar
  239. Frame, J. S.: Some trigonometric, hyperbolic and elliptic approximations. Amer. Math. Monthly 61, 623–626 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  240. Hardy, G. H.: A note on two inequalities. J. London Math. Soc. 11, 167–170 (1936).CrossRefGoogle Scholar
  241. Bromich, T. J. I’A.: Infinite Series. 2nd ed., London 1926, p. 299.Google Scholar
  242. Karamata, J.: Sur quelques problèmes posés par Ramanujan. J. Indian Math. Soc. (N.S.) 24, 343–365 (1960).MathSciNetGoogle Scholar
  243. Campbell, R.: Les intégrales Eulériennes et leurs applications. Paris 1966.Google Scholar
  244. Lefort, G.: Algèbre et analyse: exercices. Paris 1964, p. 229.Google Scholar
  245. Kober, H.: Approximation by integral functions in the complex domain. Trans. Amer. Math. Soc. 56, 22 (1944).MathSciNetGoogle Scholar
  246. Turner, J. C., and V. Conway: Problem 68–1. SIAM Review 10, 107–108 (1968).CrossRefGoogle Scholar
  247. Beesack, P. R.: On certain discrete inequalities involving partial sums. Canad. J. Math. 21, 222–234 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  248. Borwein, D.: Solution of Problem 5333. Amer. Math. Monthly 73, 1023–1024 (1966).CrossRefGoogle Scholar
  249. Kesava Menon, P.: Problem 1817. Math. Student 11, 64 (1943).Google Scholar
  250. Toyama, H.: On the inequality of Ingham and Jessen. Proc. Japan Acad. 24, No. 9, 10–12 (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  251. 1.
    Whittaker, E. T., and G. N. Watson: A Course of Modern Analysis. 4th ed., Cambridge 1927.Google Scholar
  252. Boyd, A. V.: Note on a paper by Uppuluri. Pacific J. Math. 22, 9–10 (1967).MathSciNetzbMATHGoogle Scholar
  253. Watson, G. N.: A note on gamma functions. Proc. Edinburgh Math. Soc. (2) 11 (1958/59)Google Scholar
  254. Watson, G. N.: A note on gamma functions. Edinburgh Math. Notes 42, 7–9 (1959).CrossRefGoogle Scholar
  255. 2.
    Erber, T.: The gamma function inequalities of Gurland and Gautschi. Skand. Aktuarietidskr. 1960, 27–28 (1961).MathSciNetzbMATHGoogle Scholar
  256. Nanjlndiah, T. S.: Problem 5022. Amer. Math. Monthly 70, 575–576 (1963).MathSciNetCrossRefGoogle Scholar
  257. 1.
    Gltrlasd, J.: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 39, 171–172 (1956).MathSciNetGoogle Scholar
  258. 2.
    Gonkale, D.: On an inequality for gamma functions. Skand. Aktuarietidskr. 1962, 213–215 (1963).MathSciNetGoogle Scholar
  259. 3.
    Rubes, H.: Variance bounds and orthogonal expansions in Hilbert space with an application to inequalities for gamma functions and ri. J. Reine Angew. Math. 225, 147–153 (1967).MathSciNetGoogle Scholar
  260. 4.
    Olkin, I.: An inequality satisfied by the gamma function. Skand. Aktuarietidskr. 1958, 37–39 (1959).MathSciNetzbMATHGoogle Scholar
  261. 5.
    Boyd, A. V.: Gurland’s inequality for the gamma function. Skand. Aktuarietidskr. 1960, 134–135 (1961).zbMATHGoogle Scholar
  262. Chu, J. T.: A modified Wallis.product and some applications. Amer. Math. Monthly 69, 402–404 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  263. Mike, H., and L. Sathre: Some inequalities involving (r!)IIr. Proc. Edinburgh Math. Soc. (2) 14, 41–46 (1964/65).Google Scholar
  264. Bass, J.: Cours de mathématiques, vol. 1. Paris 1961, p. 548.Google Scholar
  265. Zimering, Sn.: On a Mercerian theorem and its applications to the equiconvergence. Publ. Inst. Math. Beograd 1 (15), 88–89 (1961).MathSciNetGoogle Scholar
  266. Schmidt, E.: Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet. Math. Ann. 117, 301–326 (1940).MathSciNetCrossRefGoogle Scholar
  267. Kesava Menon, P.: Some inequalities involving the F- and.;-functions. Math. Student 11, 10–12 (1943).MathSciNetGoogle Scholar
  268. 1.
    Carlson, B. C.: Inequality for a symmetric elliptic integral. Proc. Amer. Math. Soc. (to appear).Google Scholar
  269. 2.
    Pólya, G., and G. Szegö: Problem 542. Arch. Math. Phys. (3) 28, 81–82 (1919).Google Scholar
  270. 3.
    Watson, G. N.: An inequality. Quart. J. Math. Oxford Ser. 5, 221–223 (1934).CrossRefGoogle Scholar
  271. 4.
    Szegö, G.: An inequality. Quart. J. Math. Oxford Ser. 6, 78–79 (1935).CrossRefGoogle Scholar
  272. 5.
    Pôlya, G., and G. Szegö: Inequalities for the capacity of a condenser. Amer. J. Math. 67, 1–32 (1945).MathSciNetzbMATHCrossRefGoogle Scholar
  273. Problem 16346. Revue Math. Spéc. 76, 221 (1965/66).Google Scholar
  274. Ostrowshi 3, p. 303.Google Scholar
  275. Mitrinovié, D. S.: Problem 5555. Amer. Math. Monthly 75, 84 and 1129–1130 (1968).Google Scholar
  276. Krisunas Ami Ayyangar, A. A.: Problem 1800. Math. Student 11, 63 (1943).Google Scholar
  277. Masnxl, P. R.: Problem 134. Nieuw Arch. Misk. (3) 15, 172–173 (1967).Google Scholar
  278. Olds, C. D.: Problem 4198. Amer. Math. Monthly 53, 225 (1946).MathSciNetCrossRefGoogle Scholar
  279. 1.
    Bowman, F., and F. A. Gerard: Higher Calculus. Cambridge 1967, p. 327.Google Scholar
  280. 2.
    Mordell, L. J.: The minimum value of a definite integral. Math. Gaz. 52, 135–136 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  281. 3.
    Mordell, L. J.: The minimum value of a definite integral II. Aequationes Math. 2, 327–331 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  282. Phillips, D. L.: Remark on an inequality of Sbampine. Amer. Math. Monthly 75, 511–512 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  283. Problem 19241. Revue Math. Spéc. 75, 473 (1964/65).Google Scholar
  284. Klamkin, M. S., and M. J. Cohen: Problem 543. Math. Mag. 37, 281–282 (1964).Google Scholar
  285. Mackey, G. W.: The William Lowell Putnam Mathematical Competition. Amer. Math. Monthly 54, 403 (1947).MathSciNetCrossRefGoogle Scholar
  286. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Hely. 10, 226–227 (1938).MathSciNetCrossRefGoogle Scholar
  287. 1.
    Iyengar, K. S. K.: Note on an inequality. Math. Student 6, 75–76 (1938).zbMATHGoogle Scholar
  288. 2.
    Mahajant, G. S.: A Note on an inequality. Math. Student 6, 125–128 (1938).Google Scholar
  289. 3.
    Pólya, G., and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, vol. 1. Berlin 1925, p. 62, Problem 121.Google Scholar
  290. 4.
    Problem E 2155. Amer. Math. Monthly 76, 188 and 1142–1143 (1969).Google Scholar
  291. Bliss, G. A.: An integral inequality. J. London Math. Soc. 5, 40–46 (1930).zbMATHCrossRefGoogle Scholar
  292. 1.
    Levinson, N.: Generalizations of an inequality of Hardy. Duke Math. J. 31, 389–394 (1964).MathSciNetzbMATHGoogle Scholar
  293. 2.
    Hardy, Littlewood, Pblya: Inequalities.Google Scholar
  294. Ostrowski 3, p. 360.Google Scholar
  295. Zreoaovic, V. A.: On some inequalities (Russian). Izv. Polytehn. Inst. Kiev 19, 92–107 (1956).Google Scholar
  296. 1.
    Cramer, H.: Methods of Mathematical Statistics. Princeton 1946, p. 256, Ex. 4.Google Scholar
  297. 2.
    Volkov, V. N.: Inequalities connected with an inequality of Gauss (Russian). Voll. Mat. Sb. 1969, No. 7, 11–13.Google Scholar
  298. Ostrowski 3, p. 137.Google Scholar
  299. Dunkel, O., and A. A. Bennett: Problem 3104. Amer. Math. Monthly 32, 319–321 (1925).MathSciNetzbMATHCrossRefGoogle Scholar
  300. Ostrowski 3, p. 141.Google Scholar
  301. Ostrowssi 3, p. 141.Google Scholar
  302. Van Dantzig, D.: Problem 92. Wisk. Opgaven 19, 196–199 (1950/54).Google Scholar
  303. Ullman, J. L., and C. J. Titus: An integral inequality with application to harmonic mappings. Michigan Math. J. 10, 181–192 (1963).MathSciNetzbMATHGoogle Scholar
  304. Schwerdtfeger, H.: An inequality for monotonic functions. Newsletter of the Canadian Mathematical Congress, 4th Issue, Dec. 1955, pp. 11–13.Google Scholar
  305. Bush, L. E.: The William Lowell Putnam Mathematical Competition. Amer. Math. Monthly 64, 650 (1957).Google Scholar
  306. Natanson, I. P.: On an inequality (Russian). Doklady Akad. Nauk SSSR (N.S.) 56, 911–913 (1947).MathSciNetzbMATHGoogle Scholar
  307. Pólya, G.: Problem 4264. Amer. Math. Monthly 54, 479 (1947).MathSciNetCrossRefGoogle Scholar
  308. Fan, Ii., and G. G. Lorentz: An integral inequality. Amer. Math. Monthly 61, 626–631 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  309. 1.
    Borg, G.: Über die Stabilität gewisser Klassen von linearen Differentialgleichungen. Ark. Mat. Astr. Fys. 31 A, No. 1 (1944), 31 pp.MathSciNetGoogle Scholar
  310. 2.
    Cordes, H. O.: An inequality of G. Borg. Amer. Math. Monthly 63, 27–29 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  311. 3.
    Cohen, H. J.: Problem E 1205. Amer. Math. Monthly 63, 582–583 (1956).CrossRefGoogle Scholar
  312. 4.
    Borg, G.: On a Liapounoff criterion of stability. Amer. J. Math. 71, 67–70 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  313. 5.
    Nehari, Z.: Univalent functions and linear differential equations. In: Lectures on Functions of a Complex Variable. Ann Arbor 1955, pp. 148–151.Google Scholar
  314. 6.
    Beesack, P. R.: Nonoscillation and disconjugacy in the complex domain. Trans. Amer. Math. Soc. 81, 211–242 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  315. 1.
    Van Der Corput, J. G., and L. Landau: aber Gitterpunkte in ebenen Bereichen. Nachr. Ges. Wiss., Math.-Phys. Iil. 1920, pp. 135–171.Google Scholar
  316. 2.
    Landau, E.: aber eine Integralungleichung. Christiaan Huygens 1, 235–237 (1921/22).Google Scholar
  317. Kesava Menon, P.: Some integral inequalities. Math. Student 11, 36–38 (1943)Google Scholar
  318. 1.
    Wilkins, J. E.: The average of the reciprocal of a function. Proc. Amer. Math. Soc. 6, 806–815 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  319. 2.
    Pblva, G., and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, vol. 1. Berlin 1925, p. 57 and p. 214.Google Scholar
  320. Thunsdorff, H.: Konvexe Funktionen und Ungleichungen. Inaugural-Dissertation, Göttingen 1932, 40 pp.zbMATHGoogle Scholar
  321. 1.
    Banks, D. An integral inequality. Proc. Amer. Math. Soc. 14, 823–828 (1963).zbMATHGoogle Scholar
  322. 2.
    Beesack, P. R.: A note on an integral inequality. Proc. Amer. Math. Soc. 8, 875–879 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  323. 3.
    Tatarkiewicz, K.: Sur une inégalité intégrale. Ann. Univ. Mariae CurieSklodowska A 7, 83–87 (1953).MathSciNetGoogle Scholar
  324. 1.
    Besicovitch, A. S., and R. O. Davies: Two problems on convex functions. Math. Gaz. 49, 66–69 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  325. 2.
    Nishiura, T., and F. Schnitzer: Monotone functions and convex functions. Michigan Math. J. 12, 481–485 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  326. Atkinson, F. V.: Some further estimates concerning sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 20, 193–210 (1969).zbMATHCrossRefGoogle Scholar
  327. Hardy, G. H., and N. Levinson: Inequalities satisfied by a certain definite integral. Bull. Amer. Math. Soc. 43, 709–716 (1937).MathSciNetCrossRefGoogle Scholar
  328. Bodin, N., and V. Zalgaller: On the concavity of some functions connected with the two-dimensional normal distribution (Russian). Litovsk. Mat. Sb. 7, 389–393 (1968).MathSciNetGoogle Scholar
  329. 1.
    Montel, P.: Leçons sur les fonctions univalentes et multivalentes. Paris 1933.Google Scholar
  330. 2.
    Hayman, W. K.: Multivalent Functions. Cambridge 1958.Google Scholar
  331. Van Der Blij, F.: About generalizations of the triangle inequality. Simon Stevin 25, 231–235 (1946/47).Google Scholar
  332. 1.
    Petrovitch, M.: Module d’une somme. Enseignement Math. 19, 53–56 (1917).zbMATHGoogle Scholar
  333. 2.
    Petrovitch, M.: Théorème sur les intégrales curvilignes. Publ. Math. Univ. Belgrade 2, 45–59 (1933).zbMATHGoogle Scholar
  334. 3.
    Karamata, J.: Theory and Praxis of Stieltjes’ Integral ( Serbian ). Beograd 1949.Google Scholar
  335. 4.
    Karamata, J.: Complex Number with Application to Elementary Geometry ( Serbian ). Beograd 1950.Google Scholar
  336. 5.
    Wilf, H. S.: Some applications of the inequality of arithmetic and geometric means to polynomial equations. Proc. Amer. Math. Soc. 14, 263–265 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  337. 6.
    Diaz, J. B., and F. T. Metcalf: A complementary triangle inequality in Hilbert and Banach spaces. Proc. Amer. Math. Soc. 17, 88–97 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  338. 7.
    Marden, M.: The geometry of the zeros of a polynomial in a complex variable. Amer. Math. Soc. Math. Surveys, vol. 3. New York 1949.Google Scholar
  339. 1.
    Bohr, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45, 29–127 (1924).MathSciNetzbMATHCrossRefGoogle Scholar
  340. 2.
    Archbold, J. T.: Algebra. London 1958, p. 75.Google Scholar
  341. 3.
    Maxowsxl, A.: Boletin Mat. 34, 11 (1961).Google Scholar
  342. De Brtijn, N. G.: Problem 12. Wisk. Opgaven 21, 12–14 (1960).Google Scholar
  343. Arghiriade, E.: A characteristic property of hermitian matrices. An. l niv. Timifoara Ser..Sti. Mat.-Fiz. No. 3, 17–20 (1965).MathSciNetzbMATHGoogle Scholar
  344. Fan, K., O. Taussky and J. Todd: An algebraic proof of the isoperimetric inequality for polygons. J. Washington Acad. Sci. 45, 339–342 (1955).MathSciNetGoogle Scholar
  345. Bourbaki, N.: Topologie générale. 2nd ed., Paris 1955, Chap. 5–8, pp. 110111.Google Scholar
  346. Bergström, H.: A triangle-inequality for matrices. C.K. 11e Congrès Math. Scandinaves, Trondheim 1949, pp. 264–267 (1952).Google Scholar
  347. 1.
    Dunkl, C. F., and K. S. Williams: A simple norm inequality. Amer. Math. Monthly 71, 53–54 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  348. Behnke, H., and F. Sommer: Theorie der analytischen Funktionen einer komplexen Veränderlichen. 3rd ed., Berlin-Heidelberg-New York 1965, pp. 336–337.Google Scholar
  349. Mitxixovie, D. S.: Limitations en module d’une fonction homographique sur un cercle. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 143–155, 3.-4 (1965).Google Scholar
  350. Mirnixovie, D. S.: Problem E 1841. Amer. Math. Monthly 74, 442–443 (1967).Google Scholar
  351. Kober, H.: Approximation by integral functions in the complex domain. Trans. Amer. Math. Soc. 56, 22 (1944).MathSciNetGoogle Scholar
  352. Breusch, R.: Problem 5394. Amer. Math. Monthly 75, 85 (1968).MathSciNetCrossRefGoogle Scholar
  353. Van Der Corput, J. G., and E. W. Beth: Problem 172. Wisk. Opgaven 16, 421–422 (1937).Google Scholar
  354. Dieses, P.: The Taylor Series. Reprint, New York 1957, p. 135.Google Scholar
  355. Abranowicz, M., and I. A. Stegun: Handbook of Mathematical Functions. New York 1965, p. 70 and p. 75.Google Scholar
  356. Garnir, H. G.: Fonctions de variables réelles, vol. 1. Louvain-Paris 1963, pp. 369–370.Google Scholar
  357. Garnir, H. G.: Fonctions de variables réelles, vol. 1. Louvain-Paris 1963, p. 370.Google Scholar
  358. 1.
    Hille, E.: Analytic Function Theory, vol. 1. Boston-New York 1959, p. 227.Google Scholar
  359. 2.
    Hille, E.: Analytic Function Theory, vol. 2. Boston-New York 1962, p. 195.Google Scholar
  360. Abramowicz, M., and I. A. Stegun: Handbook of Mathematical Functions. New York 1965, p. 68.Google Scholar
  361. Mitrinovié, D. S.: Problem 85. Mat. Vesnik 5 (20), 117–119 (1968).Google Scholar
  362. Wall, H. S.: Problem 3965. Amer. Math. Monthly 49, 72–75 (1942).MathSciNetCrossRefGoogle Scholar
  363. Abramowicz, M., and I. A. Stegun: Handbook of Mathematical Functions. New York 1965, p. 229.Google Scholar
  364. Wall, H. S.: A class of functions bounded in the unit circle. Duke Math. J. 7, 146–153 (1940).MathSciNetCrossRefGoogle Scholar
  365. Wall, H. S.: Problem 3965. Amer. Math. Monthly 47, 491 (1940).CrossRefGoogle Scholar
  366. Wall, H. S.: Problem 3965. Amer. Math. Monthly 49, 72–75 (1942).MathSciNetCrossRefGoogle Scholar
  367. Runt’s, W.: Real and Complex Analysis. New York-St. Louis-San FranciscoToronto-London-Sydney 1966, p. 119.Google Scholar
  368. Danzer, L., and Ch. Pommerenke: Über die Diskriminante von Mengen gegebenen Durchmessers. Monatsh. Math. 71, 100–113 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  369. Krzyz, J.: On a problem of P. Montel. Ann. Polon. Math. 12, 55–60 (1962).MathSciNetzbMATHGoogle Scholar
  370. Macintyre, A. J., and W. W. Rocosinsxi: Some elementary inequalities in function theory. Edinburgh Math. Notes 35, 1–3 (1945).zbMATHCrossRefGoogle Scholar
  371. Reza, F. M.: A bound for the derivative of positive real functions. SIAM Review 4, 40–42 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  372. Rajagopal, C. T.: Carathéodory’s inequality and allied results II. Math. Student 15, 5–7 (1947).MathSciNetzbMATHGoogle Scholar
  373. Huber, A.: On an inequality of Fejér and Riesz. Ann. of Math. (2) 63, 572–587 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  374. 1.
    Fear, L., and F. Riesz: Über einige funktionentheoretische Ungleichungen. Math. Z. 11, 305–314 (1921).MathSciNetCrossRefGoogle Scholar
  375. 2.
    Frazer, H.: On regular functions. J. London Math. Soc. 9, 90–94 (1934).CrossRefGoogle Scholar
  376. 3.
    Beckenbach, E. F.: On a theorem of Fejér and Riesz. J. London Math. Soc. 13, 82–86 (1938).CrossRefGoogle Scholar
  377. 4.
    Loznnskif, S.: On subharmonic functions and their applications to the theory of surfaces (Russian). Bull. Acad. Sci. URSS Sér. Math. 8, 175–194 (1944).Google Scholar
  378. 5.
    Huber, A.: On an inequality of Fejér and Riesz. Ann. of Math. (2) 63, 572–587 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  379. Gabriel, R. M.: Some results concerning the integrals of moduli of regular functions along curves of certain types. Proc. London Math. Soc. (2) 28, 121–127 (1928).zbMATHGoogle Scholar
  380. Gabriel, R. M.: Concerning integrals of moduli of regular functions along convex curves. Proc. London Math. Soc. (2) 39, 216–231 (1935).Google Scholar
  381. Carlson, F.: Quelques inégalités concernant les fonctions analytiques. Ark. Mat. Astr. Fys. 29 B, No. 11 (1943), 6 pp.Google Scholar
  382. Andersson, B.: On an inequality concerning the integrals of moduli of regular analytic functions. Ark. Mat. 1, No. 27, 367–373 (1951).CrossRefGoogle Scholar
  383. Nikolskiĭ, S. M.: Some inequalities for entire functions of finite degree of several variables and their applications (Russian). Doklady Akad. Nauk SSSR (N.S.) 76, 785–788 (1951).Google Scholar
  384. Szegö, G., and A. Zygmund: On certain mean values of polynomials. J. Analyse Math. 3, 225–244 (1953/54).Google Scholar
  385. Mitrinovie, D. S.: Equivalence of two sets of inequalities. Math. Gaz. 43, 126 (1959).Google Scholar
  386. Ostrowsxt 2, p. 290.Google Scholar
  387. Ostrowski 2, p. 290.Google Scholar
  388. 1.
    Oppenheim, A.: On inequalities connecting arithmetic means and geometric means of two sets of three positive numbers. Math. Gaz. 49, 160–162 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  389. 2.
    Oppenheim, A.: On inequalities connecting arithmetic means and geometric means of two sets of three positive numbers II. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 21–24 (1968).MathSciNetGoogle Scholar
  390. Akerberg, B.: A variant on the proofs of some inequalities. Proc. Cambridge Phil. Soc. 57, 184–186 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  391. Schwerdtfeger, H.: Problem 19. Canad. Math. Bull. 3, 79 (1960).MathSciNetCrossRefGoogle Scholar
  392. Schwerdtfeger, H.: Introduction to Linear Algebra and the Theory of Matrices. 2nd ed., Groningen 1961, p. 142.Google Scholar
  393. Mitrlkovie, D. S.: Problem 46. Mat. Vesnik 3 (18), 218–220 (1966).Google Scholar
  394. 1.
    Pearson, K.: Mathematical contributions to the theory of evolution. XIX: Second supplement to a memoir on skew variation. Phil. Trans. Roy. Soc. A 216, 432 (1916).Google Scholar
  395. 2.
    Wilkins, J. E.: A note on skewness and kurtosis. Ann. Math. Statistics 15, 333–335 (1944).MathSciNetzbMATHCrossRefGoogle Scholar
  396. 3.
    Chakrabarti, M. C.: A note on skewness and kurtosis. Bull. Calcutta Math. Soc. 38, 133–136 (1946).MathSciNetzbMATHGoogle Scholar
  397. Markovié, D.: Quelques remarques sur les progressions arithmétiques (Serbian). Bull. Soc. Math. Phys. Serbie 1, No. 2, 17–21 (1949).MathSciNetGoogle Scholar
  398. Drazin, M. P.: Some inequalities arising from a generalized mean value theorem. Amer. Math. Monthly 62, 226–232 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  399. 1.
    Pocklington, H. C.: An inequality. J. London Math. Soc. 10, 242–243 (1935).CrossRefGoogle Scholar
  400. 2.
    Nomura, T.: On some inequalities. Sci. Rep. Tokyo Bunrika Daigaku A 3, 181–183 (1937).Google Scholar
  401. Szacz, G., L. Gehér, I. Kovacs and L. Pintér: Contests in Higher Mathematics. Budapest 1968, p. 19 and pp. 145–148.Google Scholar
  402. Lewin, M.: An inequality and its application to a property of Mahler’s partition functions. J. London Math. Soc. 43, 429–432 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  403. Opial, Z.: Sur une inégalité. Ann. Polon. Math. 8, 29–32 (1960).MathSciNetzbMATHGoogle Scholar
  404. Massera, J., and D. S. Greenstein: Problem 4608. Amer. Math. Monthly 63, 49 (1956).MathSciNetCrossRefGoogle Scholar
  405. Shisha, O.: The Chebyshev polynomial of best approximation to a given function on an interval. Math. Comp. 20, 267–268 (1966).MathSciNetGoogle Scholar
  406. Citlanadze, E. S.: On the variational theory of a class of non-linear operators in the space Lp (p 000 1) (Russian). Doklady Akad. Nauk SSSR (N.S.) 71, 441–444 (1950).MathSciNetGoogle Scholar
  407. De Bruijn, N. G.: Problem 168. Wisk. Opgaven 19, 357–358 (1950/54).Google Scholar
  408. Turin, P.: Problem 3950. Amer. Math. Monthly 47, 182 (1940).MathSciNetCrossRefGoogle Scholar
  409. Frame, J. S.: Solution of Problem 3950. Amer. Math. Monthly 48, 562–563 (1941).MathSciNetCrossRefGoogle Scholar
  410. Everitt, W. N.: A trigonometric inequality. Math. Gaz. 44, 52–54 (1960).zbMATHCrossRefGoogle Scholar
  411. 1.
    Bot Rbaki, N.: Topologie générale. 2nd. ed., Paris 1955, Chap. 5–8, p. 87.Google Scholar
  412. Iyengar, K. S. K.: A deepening of the binomial inequality. J. Mysore Iniv. B 3, Part 19, 135–138 (1942).MathSciNetGoogle Scholar
  413. 1.
    Hilbert, D.: über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342–350 (1888).MathSciNetCrossRefGoogle Scholar
  414. 2.
    Frazer, H.: Note on Hilbert’s inequality. J. London Math. Soc. 21, 7–9 (1946).MathSciNetzbMATHCrossRefGoogle Scholar
  415. 3.
    Cospey, E. H., H. Frazer and W. W. Sawyer: Empirical data on Hilbert’s inequality. Nature (London) 161, 361 (1948).Google Scholar
  416. 4.
    De Bruijn, N. G., and H. S. Wilf: On Hilbert’s inequality in n dimensions. Bull. Amer. Math. Soc. 68, 70–73 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  417. 5.
    Hsiang, F. C.: An inequality for finite sequences. Math. Scand. 5, 12–14 (1957).MathSciNetzbMATHGoogle Scholar
  418. 6.
    Yahya, Q. A. M. M.: On the generalization of Hilbert’s inequality. Amer. Math. Monthly 72, 518–520 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  419. 7.
    Widder, D. V.: An inequality related to one of Hilbert’s. J. London Math. Soc. 4, 194–198 (1929).zbMATHCrossRefGoogle Scholar
  420. 8.
    Godunova, E. K.: Generalization of two-parameter Hilbert’s inequality (Russian). Izv. Vyss. Ucebn. Zay. Mat. 1967, No. 1 (56), 35–39.Google Scholar
  421. 9.
    Levin, V. I., and S. B. Steckin: Inequalities. Amer. Math. Soc. Transi. (2) 14, 1–29 (1960).MathSciNetzbMATHGoogle Scholar
  422. Hille, E.: Analysis, vol. 2. Waltham-Toronto-London 1966, p. 521.Google Scholar
  423. Ghircoiaiu, N.: On the expansion into power series of the inverse of a polynomial (Romanian). Stud. Cerc. Mat. 6, 51–77 (1955).Google Scholar
  424. De Bruijn, N. G.: Problem 51. Wisk. Opgaven 19, 104–105 (1950/54).Google Scholar
  425. De Bruijn, N. G.: Problem 52. Wisk. Opgaven 19, 105–106 (1950/54).Google Scholar
  426. Marsuoxa, Y.: Evaluation and estimation of series of certain special type. Sci. Rep. Kagoshima Univ. 13, 11–15 (1964).MathSciNetGoogle Scholar
  427. 1.
    Mathieu, E.: Traité de physique mathématique, vol. VI-VII, part 2. Paris 1890.Google Scholar
  428. 2.
    Berg, L.: über eine Abschätzung von Mathieu. Math. Nachr. 7, 257–259 (1952).MathSciNetzbMATHCrossRefGoogle Scholar
  429. 3.
    Makai, E.: On the inequality of Mathieu. Publ. Math. Debrecen 5, 204–205 (1957).MathSciNetzbMATHGoogle Scholar
  430. 4.
    Tideman, M.: Kommentar till en gammal olikhet. Nord. Mat. Tidskr. 6, 27–28 (1958)MathSciNetGoogle Scholar
  431. 5.
    Gould, H. W., and T. A. Chapman: Some curious limits involving definite integrals. Amer. Math. Monthly 69, 651–653 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  432. 6.
    Van Der Corput, J. G., and L. O. Heflinger: On the inequality of Mathieu. Indagationes Math. 18, 15–20 (1956).Google Scholar
  433. 7.
    Emersleben, O.: liber die Reihe Ek(k2 c2)-2. Math. Ann. 125, 165–171 (1952).MathSciNetzbMATHCrossRefGoogle Scholar
  434. 8.
    Schröder, K.: Das Problem der eingespannten rechteckigen elastischen Platte. Math. Ann. 121, 247–320 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  435. 9.
    ZatoaovnV. A.: On an inequality of Mathieu (Russian). Izv. Vyss. Lcebn. Zay. Mat. 1960, No. 1 (14), 123–124.Google Scholar
  436. Shah, S. M., and U. C. Sharma: Some properties of a function of Ramanujan. J. Univ. Bombay 17, 1–4 (1948).MathSciNetzbMATHGoogle Scholar
  437. Boas, R. P.: A series considered by Ramanujan. Arch. Math. (Basel) 11, 350–351 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  438. Shapiro, H. S.: Problem E 1502. Amer. Math. Monthly 69, 922–923 (1962).MathSciNetCrossRefGoogle Scholar
  439. Levinson, N.: Generalization of an inequality of Ky Fan. J. Math. Anal. Appl. 8, 133–134 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  440. Popovlciu, T.: Sur une inégalité de N. Levinson. Mathematica (Cluj) 6 (29), 301–306 (1964).Google Scholar
  441. Block, H. D.: A class of inequalities. Proc. Amer. Math. Soc. 8, 844–851 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  442. Pryce, J. D.: Problem 5266. Amer. Math. Monthly 73, 212–213 (1966).MathSciNetCrossRefGoogle Scholar
  443. Bush, K. A.: On an application of the mean value theorem. Amer. Math. Monthly 62, 577–578 (1955).MathSciNetCrossRefGoogle Scholar
  444. 1.
    Popovlclu, T.: On an inequality (Romanian). Gaz. Mat. Bucurefti 51, 81–85 (1946).Google Scholar
  445. 2.
    Vasre, P. M.: Les inégalités pour les fonctions convexes d’ordre n. Mat. Vesnik 5 (20), 327–331 (1968).MathSciNetGoogle Scholar
  446. 3.
    Keefue, J. D.: Some inequalities for convex functions of order n. Mat. Vesnik 7 (22), 67–73 (1970).Google Scholar
  447. 1.
    Keexie, J. D., and I. B. Lackovié: Generalizations of some inequalities of P. M. Vasie. Mat. Vesnik 7 (22), 74–78 (1970).Google Scholar
  448. 2.
    Vasie, P. M.: Sur une inégalité de M. Petrovie. Mat. Vesnik 5 (20), 473–478 (1968).MathSciNetGoogle Scholar
  449. 3.
    Mkxovie, D.: On an inequality of M. Petrovie (Serbian). Bull. Soc. M.th. Phys. Serbie 11, 45–53 (1959).Google Scholar
  450. 1.
    Vasié, P. M.: An inequality of Mihailo Petrovié for convex functions (Serbian). Matematicka Biblioteka, vol. 38. Beograd 1968, pp. 101–104.Google Scholar
  451. 2.
    Marshall, A. W., I. Olkin and F. Proschan: Monotonicity of ratios of means and other applications of majorization. In: Inequalities, edited by O. Shisha. New York-London 1967, pp. 177–190.Google Scholar
  452. 3.
    Gatti, S.: Sul massimo di un indice di anormalità. Metron 18, 181–188 (1956).MathSciNetGoogle Scholar
  453. 4.
    Birnbaum, Z. W.: On an inequality due to S. Gatti. Metron 19, 243–244 (1958).MathSciNetGoogle Scholar
  454. 5.
    De Novellis, M.: Some applications and developments of Gatti-Birnbaum inequality. Metron 19, 245–247 (1958).MathSciNetGoogle Scholar
  455. Lorentz, G. G.: Problem 4517. Amer. Math. Monthly 61, 205 (1954).MathSciNetCrossRefGoogle Scholar
  456. Mixolas, M.: Sur un problème d’extremum et une extension de l’inégalité de Minkowski. Ann. Univ. Sci. Budapest Eötvös, Sect. Math. 1, 101–106 (1958).Google Scholar
  457. 1.
    Carlson, F.: Une inégalité. Ark. Mat. Astr. Fys. 25 B, No. 1, 1–5 (1934).Google Scholar
  458. 2.
    Sznagy, B.: On Carlson’s and related inequalities (Hungarian). Mat. Fiz. Lapok 48, 162–175 (1941).MathSciNetGoogle Scholar
  459. 3.
    Levin, V. I.: Exact constants in the inequalities of Carlson’s type (Russian). Doklady Akad. Nauk SSSR (N.S.) 59, 635–638 (1948).zbMATHGoogle Scholar
  460. 4.
    Caton, W. B.: A class of inequalities. Duke Math. J. 6, 442–461 (1940).MathSciNetzbMATHCrossRefGoogle Scholar
  461. 5.
    Bellman, R.: An integral inequality. Duke Math. J. 9, 547–550 (1943).CrossRefGoogle Scholar
  462. 6.
    Kjellberg, B.: Ein Momentenproblem. Ark. Mat. Astr. Fys. 29 A, No. 2, 1–33 (1942).MathSciNetGoogle Scholar
  463. 7.
    Kjellberg, B.: On some inequalities. C. R. 10e Congrès Math. Scandinaves, Copenhagen 1946, pp. 333–340 (1947).Google Scholar
  464. 8.
    Kjellberg, B.: A note on an inequality. Ark. Mat. 3, 293–294 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  465. 9.
    Levin, V. I., and E. K. Godunova: A generalization of Carlson’s inequality (Russian). Mat. Sb. 67 (109), 643–646 (1965).MathSciNetGoogle Scholar
  466. 10.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg-New York 1965.Google Scholar
  467. 11.
    Levin, V. I., and S. B. Steckin: Inequalities. Amer. Math. Soc. Transi. (2) 14, 1–29 (1960). — See, in particular, pp. 5–11.Google Scholar
  468. 1.
    Atkinson, F. V., G. A. Watterson and P. A. P. Moran: A matrix inequality. Quart. J. Math. Oxford Ser. (2) 11, 137–140 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  469. 2.
    Mandel, S. P. H., and I. M. Hughes: Change in mean viability at a multi-allelic locus in a population under random mating. Nature (London) 182, 63–64 (1958).zbMATHCrossRefGoogle Scholar
  470. 3.
    Kingman, J. F. C.: On an inequality in partial averages. Quart. J. Math. Oxford Ser. (2) 12, 78–80 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  471. 4.
    Kingman, J. F. C.: An inequality involving Radon-Nikodym derivatives. Proc. Cambridge Phil. Soc. 63, 195–198 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  472. 5.
    Beesack, P. R.: Inequalities involving iterated kernels and convolutions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 274–301, 1116 (1969).Google Scholar
  473. 6.
    Mulholland, H. P., and C. A. B. Smith: An inequality arising in genetical theory. Amer. Math. Monthly 66, 673–683 (1959).MathSciNetCrossRefGoogle Scholar
  474. 1.
    Gronwall, T. H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. of Math. (2) 20, 292–296 (1919).MathSciNetzbMATHCrossRefGoogle Scholar
  475. 2.
    Chu, S. C., and F. T. Metcalf: On Gronwall’s inequality. Proc. Amer. Math. Soc. 18, 439–440 (1967).MathSciNetzbMATHGoogle Scholar
  476. 3.
    Coddington, E. A., and N. Leviison: Theory of Ordinary Differential Equations. New York 1955, p. 37.zbMATHGoogle Scholar
  477. 4.
    Jones, G. S.: Fundamental inequalities for discrete and discontinuous functional equations. J. Soc. Indust. Appl. Math. 12, 43–57 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  478. P. R. Beesack in Zentralblatt für Mathematik 154, 57–59 (1968).Google Scholar
  479. 5.
    Conlan J.: A generalization of Gronwall’s inequality. Contrib. Differential Equations 3, 37–42 (1964).MathSciNetGoogle Scholar
  480. 6.
    Willett, D.: A linear generalization of Gronwall’s inequality. Proc. Amer. Math. Soc. 16, 774–778 (1965).MathSciNetzbMATHGoogle Scholar
  481. 7.
    Willett, D., and J. S. W. Wong: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatsh. Math. 69, 362–367 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  482. 8.
    Beesack, P. R.: Comparison theorems and integral inequalities for Volterra integral equations. Proc. Amer. Math. Soc. 20, 61–66 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  483. 9.
    Schmaedeke, W. W., and G. R. Sell: The Gronwall inequality for modified Stieltjes integrals. Proc. Amer. Math. Soc. 20, 1217–1222 (1969).MathSciNetGoogle Scholar
  484. 1.
    De La Vallée Porssin, C.: Sur l’équation différentielle linéaire du second ordre. J. Math. Pures Appl. (9) 8, 125–144 (1929).Google Scholar
  485. 2.
    Hartman, Ph., and A. Wintner: On an oscillation criterion of de la Vallée Poussin. Quart. Appl. Math. 13, 330–332 (1955).MathSciNetzbMATHGoogle Scholar
  486. 3.
    Opial, Z.: Sur une inégalité de C. de la Vallée Poussin. Ann. Polon. Math. 6, 87–91 (1959).MathSciNetzbMATHGoogle Scholar
  487. 1.
    Nehari, Z.: On an inequality of Lyapunov. In: Studies in Mathematical Analysis and Related Topics. Stanford 1962, pp. 256–261.Google Scholar
  488. 2.
    Fink, A. M., and D. F. St. Mary: On an inequality of \Chari. Notices Amer. Math. Soc. 16, 91 (1969).Google Scholar
  489. 3.
    Magnus, W., and S. Winkler: Hill’s Equation. New York 1966.Google Scholar
  490. 4.
    Hochstadt, H.: On an inequality of Lyapunov. Proc. Amer. Math. Soc. 22, 282–284 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  491. 5.
    Hartman, P.: On disconjugacy criteria. Proc. Amer. Math. Soc. (to appear).Google Scholar
  492. Knuth, D. E., W. G. Dotson and G. C. Marshall: Problem 5264. Amer. Math. Monthly 73, 211–212 (1966).MathSciNetCrossRefGoogle Scholar
  493. 1.
    Bourbakl, N.: Intégration. Paris 1965, Chap. 4, § 6, Exerc. 10, p. 257.Google Scholar
  494. Kober, H.: On the arithmetic and geometric means and on Holder’s inequality. Proc. Amer. Math. Soc. 9, 452–459 (1958).MathSciNetzbMATHGoogle Scholar
  495. 1.
    Landau, E.: Einige Ungleichungen für zweimal differentierbare Funktionen. Proc. London Math. Soc. (2) 13, 43–49 (1914).Google Scholar
  496. 2.
    Avakumovic, V. G., and S. Aljancic: Sur la meilleure limite de la dérivée d’une fonction assujettie à des conditions supplémentaires. Acad. Serbe Sci. Publ. Inst. Math. 3, 235–242 (1950).MathSciNetzbMATHGoogle Scholar
  497. Picone, M.: Relazioni fra le derivate delle funzioni periodiche. Boll. Un. Mat. Ital. 6, 251–253 (1927).Google Scholar
  498. 1.
    Brillouin, L.: Science and Information Theory. New York 1956, pp. 13–14.Google Scholar
  499. 2.
    Kirmser, P. G.: Problem E 1274. Amer. Math. Monthly 64, 432 (1957).MathSciNetGoogle Scholar
  500. 3.
    Aczei, J.: Problem 3 from Reports of Meetings. Aequationes Math. 1, 300 (1968).Google Scholar
  501. 4.
    Fischer, P.: Sur l’inégalité F pif (pi) 111 pif (qi). Aequationes Math. 2, 363 (1969)Google Scholar
  502. 5.
    Muszély, Gy.: t’ber die stetigen Lösungen der Ungleichung pf(p) (1-p) x f(1-p) 111 pf(q) + (1-p) f(1-q). Aequationes Math. 2, 362–363 (1969).Google Scholar
  503. 1.
    Mitrinovié, D. S.: Problem 5626. Amer. Math. Monthly 75, 911–912 (1968).Google Scholar
  504. 2.
    Karamata, J.: Problem 1. Bull. Soc. Math. Phys. Serbie 1, No. 1, 77–78 (1949).Google Scholar
  505. 3.
    Blaxusa, D.: Problem 13. Bull. Soc. Math. Phys. Serbie 1, No. 3–4, 156–157 (1949).Google Scholar
  506. 1.
    Ernös,P.: Note on some elementary properties of polynomials. Bull. Amer. Math. Soc. 46, 954–958 (1940).MathSciNetCrossRefGoogle Scholar
  507. 2.
    Hayman, W. K.: Research Problems in Function Theory. London 1967.Google Scholar
  508. 3.
    Keas, H.: Uber eine Vermutung von P. Erdös. Arch. Math. (Basel) (to appear).Google Scholar
  509. Turner, J. C., and V.Conway: Problem 68–1. SIAM Review 11, 402–406 (1969).CrossRefGoogle Scholar
  510. 1.
    Chu, J.T.: On bounds for the normal integral. Biometrika 42, 263–265 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  511. Barnes, D.C.: Some complements of Holder’s inequality. J. Math. Anal. Appl. 26, 82–87 (1969).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1970

Authors and Affiliations

  • Dragoslav S. Mitrinović
    • 1
  1. 1.Belgrade UniversityBelgradeYugoslavia

Personalised recommendations