Advertisement

General Inequalities

  • Dragoslav S. Mitrinović
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 165)

Abstract

Let a = (a1, ..., an) be a given sequence of positive numbers. Then the harmonic mean Hn (a) of the numbers a1, ..., an is defined as
$${{H}_{n}}(a)=\frac{n}{\frac{1}{{{a}_{1}}}+...+\frac{1}{{{a}_{n}}}};$$
their geometric mean Gn(a) is defined as
$${{G}_{n}}(a)={{({{a}_{1}} ... {{a}_{n}})}^{1/n}};$$
and their arithmetic mean An (a) is defined as
$${{\mathrm{A}}_{\mathrm{n}}}\mathrm{(a)=}\frac{{{\mathrm{a}}_{\mathrm{1}}}\mathrm{+}...\mathrm{+}{{\mathrm{a}}_{\mathrm{n}}}}{\mathrm{n}}$$
.

Keywords

Integral Inequality Discrete Analogue Related Inequality Elementary Symmetric Function General Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitrixović, D. S., and P. M. Vasić: Sredine. Matematicka Biblioteka, vol. 40. Beograd 1969, 124 pp.Google Scholar
  2. 2.
    Beckenbach, E. F., and R. Bellman: An Introduction to Inequalities. New York 1961, 133 pp.Google Scholar
  3. 3.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952, 324 pp.Google Scholar
  4. 4.
    Cauchy, A.: Cours d’Analyse de l’École Royale Polytechnique I. Analyse algébrique. Paris 1821, or Oeuvres complètes II, vol. 3. Paris 1897, pp. 375–377.Google Scholar
  5. 5.
    Liouville, J.: Sur la moyenne arithmétique et la moyenne géométrique de plusieurs quantités positives. J. Math. Pures Appl. 4, 493–494 (1839).Google Scholar
  6. Redheffer, R.: Problem 5642. Amer. Math. Monthly 76, 422 (1969).MathSciNetGoogle Scholar
  7. 1.
    Hanznvanov, N., and I. Prodanov: Bernoulli’s inequalities (Bulgarian). Fiz.-Mat. Spis. Billgar. Akad. Nauk 8 (41), 115–120 (1965).Google Scholar
  8. 2.
    Gerber, L.: An extension of Bernoulli’s inequality. Amer. Math. Monthly 75, 875–876 (1968).MathSciNetzbMATHGoogle Scholar
  9. 1.
    Labutin, D. N.: On inequalities (Russian). Pyatigorsk. Sb. Nauc. Trudov Ped. Inst. 1, 188–196 (1947).Google Scholar
  10. 2.
    Sasser, D. W., and M. L. Slater: On the inequality Exiyi (1/n) ExiEyi and the van der Waerden permanent conjecture. J. Comb. Theory 3, 25–33 (1967).MathSciNetzbMATHGoogle Scholar
  11. 3.
    Seitz, G.: Une remarque aux inégalités. Aktuarské Védv 6, 167–171 (1936/37).Google Scholar
  12. 4.
    Popoviciu, T.: On an inequality (Romanian). Gaz. Mat. Fiz. A 11 (64), 451–461 (1959).MathSciNetGoogle Scholar
  13. 5.
    Mclaughlix, H. W., and F. T. Metcalf: The Minkowski and Tchebychef inequalities as functions of the index set. Duke Math. J. 35, 865–873 (1968).Google Scholar
  14. 6.
    Dunkel, O.: Integral inequalities with applications to the calculus of variations.Amer. Math. Monthly 31, 326–337 (1924).MathSciNetzbMATHGoogle Scholar
  15. 7.
    Cebysev, P. L.: Polnoe Sobranie Socinenii (Complete Collected Works), vol. 3. Moscow-Leningrad 1948, pp. 128–131.Google Scholar
  16. 8.
    Biernacki, M.: Sur une inégalité entre les intégrales due à Tchébyscheff. Ann. Univ. Mariae Curie-Sklodowska A 5, 23–29 (1951).MathSciNetGoogle Scholar
  17. 9.
    Fujiwara, M.: Ein von Brunn vermuteter Satz über konvexe Flächen und eine Verallgemeinerung der Schwarzschen und der Tchebyscheffschen Ungleichungen für bestimmte Integrale. Tôhoku Math. J. 13, 228–235 (1918).Google Scholar
  18. 10.
    Isayama, S.: Extension of the known integral inequalities. Tôhoku Math. J. 26, 238–246 (1925/26).Google Scholar
  19. 11.
    Hayashi, T.: On some inequalities. Rend. Circ. Mat. Palermo 44, 336–340 (1920).zbMATHGoogle Scholar
  20. 12.
    Sapogov, N. A.: On an inequality of CebvIev (Russian). Uspehi Mat. Nauk (N.S.) 6, No. 2 (42), 157–159 (1951).MathSciNetGoogle Scholar
  21. 13.
    Shohat, J.: Sur les inégalités de Schwartz et Tchebycheff dans la théorie des intégrales définies. Boletin Mat. 2, 98–100 (1929).zbMATHGoogle Scholar
  22. 1.
    Cauchy, A.: Cours d’Analyse de l’École Royale Polytechnique I. Analyse algébrique. Paris 1821, or Oeuvres complètes II, vol. 3. Paris 1897.Google Scholar
  23. 2.
    Flor, P.: Über eine Ungleichung von S. S. Wagner. Elem. Math. 20, 136 (1965).zbMATHGoogle Scholar
  24. 3.
    Callebaut, D. K.: Generalization of the Cauchy-Schwarz inequality. J. Math. Anal. Appl. 12, 491–494 (1965).MathSciNetzbMATHGoogle Scholar
  25. 4.
    Mclaughlin, H. W., and F. T. Metcalf: Remark on a recent generalization of Cauchy-Schwarz inequality. J. Math. Anal. Appl. 18, 522–523 (1967).MathSciNetzbMATHGoogle Scholar
  26. 5.
    Eliezer, C. J., and D. E. DAYKIN: Generalizations and applications of Cauchy-Schwarz inequalities. Quart. J. Math. Oxford Ser. 18, 357–360 (1967).MathSciNetzbMATHGoogle Scholar
  27. 6.
    Mclaughíin, H. W.: Inequalities complementary to the Cauchy-Schwarz inequality for finite sums of quaternions; refinements of the Cauchy-Schwarz inequality for finite sums of real numbers; inequalities concerning ratios and differences of generalized means of different order. Univ. of Maryland, Techn. Note BN-454. 1966, 127 pp.Google Scholar
  28. 7.
    Signorini, A.: Una conseguenza della disuguaglianza di Schwarz. Boll. Un. Mat. Ital. 4, 199–200 (1925).Google Scholar
  29. 8.
    Kurepa, S.: On the Buniakowsky-Cauchy-Schwarz inequality. Glasnik Mat. Ser. III, 1 (21), 147–158 (1966).MathSciNetGoogle Scholar
  30. 9.
    Kurepa, S.: On an inequality. Glasnik Mat. Ser. III, 3 (23), 193–196 (1968).MathSciNetGoogle Scholar
  31. 10.
    Kurepa, S.: Note on inequalities associated with Hermitian functionals. Glasnik Mat. Ser. III, 3 (23), 197–206 (1968).MathSciNetGoogle Scholar
  32. 11.
    Diaz, J. B., and F. T. Metcalf: A complementary triangle inequality in Hilbert and Banach spaces. Proc. Amer. Math. Soc. 17, 88–97 (1966).MathSciNetzbMATHGoogle Scholar
  33. 12.
    Lorch, E. R.: The Cauchy-Schwarz inequality and self-adjoint spaces. Ann. of Math. 46, 468–473 (1945).MathSciNetzbMATHGoogle Scholar
  34. 13.
    Murnaghan, F. D.: Schwarz’ inequality and Lorentz spaces. Proc. Nat. Acad. Sci. U.S.A. 36, 673–676 (1950).MathSciNetzbMATHGoogle Scholar
  35. 1.
    Kurepa, S.: Konacno dimenzionalni vektorski prostori i primjene. Zagreb 1967.Google Scholar
  36. 2.
    Davis, P. J. Interpolation and Approximation. New York-Toronto-London 1965, 393 pp.Google Scholar
  37. 3.
    Everitt, W. N.: Inequalities for Gram determinants. Quart. J. Math. Oxford Ser. (2) 8, 191–196 (1957).MathSciNetzbMATHGoogle Scholar
  38. 4.
    Moppert, C. F.: On the Gram determinant. Quart. J. Math. Oxford Ser. (2) 10, 161–164 (1959).MathSciNetzbMATHGoogle Scholar
  39. 5.
    Metcalf, F. T.: A Bessel-Schwarz inequality for Gramians and related bounds for determinants. Ann. Mat. Pura Appl. (4) 68, 201–232 (1965).MathSciNetzbMATHGoogle Scholar
  40. 6.
    Toccai, L.: Sopra une generalizzazione della diseguaglianza di Schwarz. Giorn. Mat. Battaglini (3) 12 (59), 115–122 (1921).Google Scholar
  41. 1.
    Young, W. H.: On classes of summable functions and their Fourier series. Proc. Roy. Soc. London A 87, 225–229 (1912).Google Scholar
  42. 2.
    Riesz, F.: Su alcune disuguaglianze. Boll. Un. Mat. Ital. 7, 77–79 (1928).Google Scholar
  43. 3.
    Cooper, R.: Notes on certain inequalities I, II. J. London Math. Soc. 2, 17–21 and 159–163 (1927).Google Scholar
  44. 4.
    Oppenheim, A.: Note on Mr. Cooper’s generalization of Young’s inequality. J. London Math. Soc. 2, 21–23 (1927).zbMATHGoogle Scholar
  45. 5.
    Takahashi, T.: Remarks on some inequalities. Tôhoku Math. J. 36, 99–106 (1932).Google Scholar
  46. 1.
    Holder, O.: Über einen Mittelwerthssatz. Nachr. Ges. Wiss. Göttingen 1889, pp. 38–47.Google Scholar
  47. 2.
    Jensen, J. L. W. V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNetzbMATHGoogle Scholar
  48. 3.
    Beckenbach, E. F.: On Hölder’s inequality. J. Math. Anal. Appl. 15, 21–29 (1966).MathSciNetzbMATHGoogle Scholar
  49. 4.
    Beckenbach, E. F.: A “workshop” on Minkowski’s inequality. In: Inequalities, edited by O. Shisha. New York-London 1967, pp. 37–55.Google Scholar
  50. 5.
    Daykin, D. E., and C. J. Eliezer: Generalization of Hölder’s and Minkowski’s inequalities. Proc. Cambridge Phil. Soc. 64, 1023–1027 (1968).MathSciNetzbMATHGoogle Scholar
  51. 6.
    Thorin, G. O.: Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. M.dd. Lunds Univ. Mat. Sem. 9, 1–57 (1948).MathSciNetGoogle Scholar
  52. 7.
    Everitt, W. N.: On the Hölder inequality. J. London Math. Soc. 36, 145–158 (1961).MathSciNetzbMATHGoogle Scholar
  53. 1.
    Daykin, D. E., and C. J. Eliezer: Generalization of Holder’s and Minkowski’s inequalities. Proc. Cambridge Phil. Soc. 64, 1023–1027 (1968).MathSciNetzbMATHGoogle Scholar
  54. 2.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg-New York 1965.Google Scholar
  55. 3.
    Mclaughlin, H. W., and F. T. Metcalf: The Minkowski and Tchebychef inequalities as functions of the index set. Duke Math. J. 35, 865–873 (1968).MathSciNetzbMATHGoogle Scholar
  56. 4.
    Mulholland, H. P.: On generalizations of Minkowski’s inequality in the form of a triangle inequality. Proc. London Math. Soc. (2) 51, 294–307 (1950).MathSciNetzbMATHGoogle Scholar
  57. 5.
    Achieser, N. I.: Vorlesungen über Approximationstheorie. Berlin 1953.Google Scholar
  58. 1.
    Aczil, J.: Some general methods in the theory of functional equations in one variable. New applications of functional equations (Russian). IJspehi Mat. Nauk (N.S.) 11, No. 3 (69), 3–68 (1956).Google Scholar
  59. 2.
    Popoviciu, T.: On an inequality (Romanian). Gaz. Mat. Fiz. A 11 (64), 451–461 (1959).MathSciNetGoogle Scholar
  60. 3.
    Bellman, R.: On an inequality concerning an indefinite form. Amer. Math. Monthly 63, 108–109 (1956).MathSciNetzbMATHGoogle Scholar
  61. 4.
    Kurepa, S.: Note on inequalities associated with Hermitian functionals. Glasnik Mat. Ser. III, 3 (23), 197–206 (1968).MathSciNetGoogle Scholar
  62. 5.
    Martin, M. H., and G. N. Trytten: Inequalities associated with quadratic forms. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 101, 285–290 (1966/67).Google Scholar
  63. 6.
    Kurepa, S.: On the Buniakowsky-Cauchy-Schwarz inequality. Glasnik Mat. Ser. III, 1 (21), 147–158 (1966).MathSciNetGoogle Scholar
  64. 1.
    Schweitzer, P.: An inequality concerning the arithmetic mean (Hungarian). Math. Phys. Lapok 23, 257–261 (1914).Google Scholar
  65. 2.
    Pôlya, G., and G. Szegö: Aufgaben and Lehrsätze aus der Analysis, vol. 1. Berlin 1925, p. 57 and pp. 213–214.Google Scholar
  66. 3.
    Kantorovi6, L. V.: Functional analysis and applied mathematics (Russian). Uspehi Mat. Nauk (N.S.) 3, No. 6 (28), 89–185 (1948) (in particular, pp. 142–144) [also translated from Russian into English by C. D. Benster, Nat. Bur. Standards Rep. No. 1509. 1952, 202 pp. (in particular, pp. 106109)].Google Scholar
  67. 4.
    Greub, W., and W. Rheinboldt: On a generalization of an inequality of L. V. Kantorovich. Proc. Amer. Math. Soc. 10, 407–415 (1959).MathSciNetzbMATHGoogle Scholar
  68. 5.
    Makai, E.: On generalizations of an inequality due to Pólya and Szegö. Acta Math. Acad. Sci. Hung. 12, 189–191 (1961).MathSciNetzbMATHGoogle Scholar
  69. 6.
    Henrici, P.: Two remarks on the Kantorovich inequality. Amer. Math. Monthly 68, 904–906 (1961).MathSciNetzbMATHGoogle Scholar
  70. 7.
    Schopf, A. H.: On the Kantorowitsch inequality. Numer. Math. 2, 344–346 (1960).MathSciNetzbMATHGoogle Scholar
  71. 8.
    Nakamura, M.: A remark on a paper of Greub and Rheinboldt. Proc. Japan Acad. 36, 198–199 (1960).MathSciNetzbMATHGoogle Scholar
  72. 9.
    Newman, M.: Kantorovich’s inequality. J. Res. Nat. Bur. Standards Sect. B, 64 B, 33–34 (1960).Google Scholar
  73. 10.
    Strang, W. G.: On the Kantorovich inequality. Proc. Amer. Math. Soc. 11, 468 (1960).MathSciNetzbMATHGoogle Scholar
  74. 11.
    Rennie, B. C.: An inequality which includes that of Kantorovich. Amer. Math. Monthly 70, 982 (1963).MathSciNetzbMATHGoogle Scholar
  75. 12.
    Rennie, B. C.: On a class of inequalities. J. Austral. Math. Soc. 3, 442–448 (1963).MathSciNetzbMATHGoogle Scholar
  76. 13.
    Meinardus, G.: Über eine Verallgemeinerung einer Ungleichung von L. V. Kantorowitsch. Numer. Math. 5, 14–23 (1963).MathSciNetzbMATHGoogle Scholar
  77. 14.
    Diaz, J. B., and F. T. Metcalf: Stronger forms of a class of inequalities of G. Pólya-G. Szegö, and L. V. Kantorovich. Bull. Amer. Math. Soc. 69, 415–418 (1963).MathSciNetzbMATHGoogle Scholar
  78. 15.
    Diaz, J. B., and F. T. Metcalf: Complementary inequalities I: Inequalities complementary to Cauchy’s inequality for sums of real numbers. J. Math. Anal. Appl. 9, 59–74 (1964).MathSciNetGoogle Scholar
  79. 16.
    Diaz, J. B., and F. T. Metcalf: Complementary inequalities II: Inequalities complementary to the Buniakowsky-Schwarz inequality for integrals. J. Math. Anal. Appl. 9, 278–293 (1964).MathSciNetGoogle Scholar
  80. 17.
    Diaz, J. B., and F. T. Metcalf: Complementary inequalities III: Inequalities complementary to Schwarz’s inequality in Hilbert space. Math. Ann. 162, 120–139 (1965).MathSciNetGoogle Scholar
  81. 18.
    Diaz, J. B., and F. T. Metcalf: Complementary inequalities IV: Inequalities complementary to Cauchy’s inequality for sums of complex numbers. Rend. Circ. Mat. Palermo (2) 13, 1–38 (1964).MathSciNetGoogle Scholar
  82. 19.
    Goldman, A. J.: A generalization of Rennie’s inequality. J. Res. Nat. Bur. Standards Sect. B, 68 B, 59–63 (1964).Google Scholar
  83. 20.
    Diaz, J. B., A. J. Goldman and F. T. Metcalf: Equivalence of certain inequalities complementary to those of Cauchy-Schwarz and Hölder. J. Res. Nat. Bur. Standards Sect. B, 68 B, 147–149 (1964).Google Scholar
  84. 21.
    Marshall, A. W., and I. Olkin: Reversal of the Lyapunov, Hölder, and Minkowski inequalities and other extensions of the Kantorovich inequality. J. Math. Anal Appl. 8, 503–514 (1964).MathSciNetzbMATHGoogle Scholar
  85. 22.
    Diaz, J. B., and F. T. Metcalf: Inequalities complementary to Cauchy’s inequality for sums of real numbers. In: Inequalities, edited by O. Shisha. New York-London 1967, pp. 73–77.Google Scholar
  86. 23.
    Mclaughlin, H. W.: Inequalities complementary to the Cauchy-Schwarz inequality for finite sums of quaternions; Univ. of Maryland, Techn. Note BN-454. 1966.Google Scholar
  87. 24.
    Nehari, Z.: Inverse Hölder inequalities. J. Math. Anal. Appl. 21, 405–420 (1968).MathSciNetzbMATHGoogle Scholar
  88. 25.
    Beck, E.: Komplementäre Ungleichungen bei vergleichbaren Mittelwerten. Monatsh. Math. 73, 289–308 (1969).MathSciNetzbMATHGoogle Scholar
  89. 1.
    Ostrowski, A.: Vorlesungen über Differential-und Integralrechnung, vol. 2. Basel 1951, p. 289.Google Scholar
  90. 2.
    Fan, K., and J. Todd: A determinantal inequality. J. London Math. Soc. 30, 58–64 (1955).MathSciNetzbMATHGoogle Scholar
  91. 3.
    Chassan, J. B.: A statistical derivation of a pair of trigonometric inequalities. Amer. Math. Monthly 62, 353–356 (1955).MathSciNetzbMATHGoogle Scholar
  92. 1.
    Grüss, G. Über das Maximum des absoluten Betrages von Math. Z. 39, 215–226 (1935).MathSciNetGoogle Scholar
  93. 2.
    Bernstein, S.: Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle. Paris 1926.Google Scholar
  94. 3.
    Landau, E.: Über einige Ungleichungen von Herrn G. G.üss. Math. Z. 39, 742–744 (1935).Google Scholar
  95. 4.
    Landau, E.: Über mehrfach monotone Folgen. Prace Mat. Fiz. 44, 337–351 (1936).zbMATHGoogle Scholar
  96. 5.
    Hardy, G. H.: A note on two inequalities. J. London Math. Soc. 11, 167–170 (1936).Google Scholar
  97. 6.
    Franck, PH., and G. Pick: Distanzschätzungen im Funktionenraum I. Math. Ann. 76, 354–375 (1915).MathSciNetGoogle Scholar
  98. 7.
    Blaschke, W., and G. Picx: Distanzschätzungen im Funktionenraum II. Math. Ann. 77, 277–300 (1916).MathSciNetGoogle Scholar
  99. 8.
    Biernacki, M., H. Pidek and C. Ryll-Nardzewski: Sur une inégalité entre des intégrales définies. Ann. Univ. MariaeCurie-Sklodowska A 4, 1–4 (1950).MathSciNetzbMATHGoogle Scholar
  100. 9.
    Fempl, S.: On a Grüss’ inequality (Serbian). Mat. Vesnik 2 (17), 33–38 (1965).MathSciNetGoogle Scholar
  101. 10.
    Knopp, K.: Uber die maximalen Abstände und Verhältnisse verschiedener Mittelwerte. Math. Z. 39, 768–776 (1935).MathSciNetGoogle Scholar
  102. 11.
    Karamata, J.: Sur certaines inégalités relatives aux quotients et à la différence de f fg et f f f g. Acad. Serbe Sci. Publ. Inst. Math. 2, 131–145 (1948).MathSciNetGoogle Scholar
  103. 1.
    Mitrinovié, D. S., and P. M. VAsle: Sredine. Matematicka Biblioteka, vol. 40. Beograd 1969.Google Scholar
  104. 1.
    Mitrinovié, D. S., and P. M. VAsTO: Sredine. Matemati’eka Biblioteka, vol. 40. Beograd 1969.Google Scholar
  105. 2.
    Hardy, G. H., J. E. Littlewood and G. Póly: Inequalities. 2nd ed., Cambridge 1952.Google Scholar
  106. 3.
    Schlömilch, O.: Über Mittelgrößen verschiedener Ordnungen. Z. Math. Phys. 3, 301–308 (1858).Google Scholar
  107. 4.
    Simon, H.: Über einige Ungleichungen. Z. Math. Phys. 33, 56–61 (1888).Google Scholar
  108. 5.
    Bienaymé, J.: Société Philomatique de Paris, Extraits des Procès Verbaux des Séances pendant l’Année 1840. Paris 1841, Séance du 13 juin 1840, pp. 68–69.Google Scholar
  109. 6.
    Besso, D.: Teoremi elementari sui massimi e minimi. Annuario Istituto Tecnico, Roma 1879, pp. 7–24.Google Scholar
  110. 7.
    Norris, N.: Inequalities among averages. Ann. Math. Statistics 6, 27–29 (1935).zbMATHGoogle Scholar
  111. 8.
    Cooper, R.: Notes on certain inequalities II. J. London Math. Soc. 2, 159–163 (1927).Google Scholar
  112. 1.
    Knopp, K.: Liber die maximalen Abstände und Verhältnisse verschiedener Mittehverte. Math. Z. 39, 768–776 (1935).MathSciNetGoogle Scholar
  113. 2.
    Specht, W.: Zur Theorie der elementaren Mittel. Math. Z. 74, 91–98 (1960).MathSciNetzbMATHGoogle Scholar
  114. 3.
    Cargo, G. T., and O. Shisha: Bounds on ratios of means. J. Res. Nat. Bur. Standards Sect. B, 66 B, 169–170 (1962).Google Scholar
  115. 4.
    Beckenbach, E. F.: On the inequality of Kantorovich. Amer. Math. Monthly 71, 606–619 (1964).MathSciNetzbMATHGoogle Scholar
  116. 5.
    Shisha, O., and B. Mond: Differences of means. Bull. Amer. Math. Soc. 73, 328–333 (1967).MathSciNetzbMATHGoogle Scholar
  117. 6.
    Beck, E.: Komplementäre Ungleichungen be vergleichbaren Mittelwerten. Monatsh. Math. 73, 289–308 (1969).MathSciNetzbMATHGoogle Scholar
  118. 1.
    Kober, H.: On the arithmetic and geometric means and on Holder’s inequality. Proc. Amer. Math. Soc. 9, 452–459 (1958).MathSciNetzbMATHGoogle Scholar
  119. 2.
    Diananda, P. H.: On some inequalities of H. Kober. Proc. Cambridge Phil. Soc. 59, 341–346 (1963).MathSciNetzbMATHGoogle Scholar
  120. 3.
    Diananda, P. H.: On some inequalities of H. Kober: addendum. Proc. Cambridge Phil. Soc. 59, 837–839 (1963).MathSciNetzbMATHGoogle Scholar
  121. 4.
    Dinghas, A.: Zur Abschätzung der Differenz zwischen dem arithmetischen und dem geometrischen Mittel von positiven Zahlen. Norske Vid. Selsk. Forh. (Trondheim) 37, 22–27 (1964).MathSciNetzbMATHGoogle Scholar
  122. 5.
    Siegel, C. L.: The trace of totally positive and real algebraic integers. Ann. of Math. 46, 302–312 (1945).MathSciNetzbMATHGoogle Scholar
  123. 6.
    Schur, I.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 1, 377–402 (1918).MathSciNetGoogle Scholar
  124. 7.
    Hunter, J.: A generalization of the inequality of the arithmetic-geometric means. Proc. Glasgow Math. Assoc. 2, 149–158 (1956).MathSciNetzbMATHGoogle Scholar
  125. 1.
    Everitt, W. N.: On an inequality for the generalized arithmetic and geometric means. Amer. Math. Monthly 70, 251–255 (1963).MathSciNetzbMATHGoogle Scholar
  126. 2.
    Mitrinovié, D. S., and P. M. Vasié: Nouvelles inégalités pour les moyennes d’ordre arbitraire. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 159–170, 1–8 (1966).Google Scholar
  127. 3.
    Mclaughlin, H. W., and F. T. Metcalf: An inequality for generalized means. Pacific J. Math. 22, 303–311 (1967).MathSciNetzbMATHGoogle Scholar
  128. 4.
    Mitrinome, D. S., and P. M. Vasié: Une inégalité générale relative aux moyennes d’ordre arbitraire. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 81–85 (1968).Google Scholar
  129. 5.
    Bullen, P. S.: On some inequalities of Mitrinovié and Vasié. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 49–54 (1968).MathSciNetGoogle Scholar
  130. 1.
    Mitrinovié, D. S., and P. M. Vasté: Une classe d’inégalités où interviennent les moyennes d’ordre arbitraire. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 159–170, 9–14 (1966).Google Scholar
  131. 2.
    Mitrinovié, D. S., and P. M. Vasté: Nouvelles inégalités pour les moyennes d’ordre arbitraire. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 159–170, 1–8 (1966).Google Scholar
  132. 3.
    Kestelman, H.: On arithmetic and geometric means. Math. Gaz. 46, 130 (1962).Google Scholar
  133. 4.
    Dinghas, A.: Zum Beweis der Ungleichung zwischen dem arithmetischen und geometrischen Mittel von n Zahlen. Math.-Phys. Semesterber. 9, 157–163 (1963).Google Scholar
  134. 5.
    Bullen, P. S.: Some more inequalities involving the arithmetic and geometric means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 181–196, 61–66 (1967).Google Scholar
  135. 6.
    Mitrinovié, D. S., and P. M. Vaslé: Généralisation d’un procédé fournissant des inégalités du type de Rado. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 27–30 (1968).Google Scholar
  136. 7.
    Bullen, P. S.: On some inequalities of Mitrinovié and Vasié. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 49–54 (1968).MathSciNetGoogle Scholar
  137. 1.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg New York 1965.Google Scholar
  138. 2.
    Hardy, G. H., J. E. Littlewood and G. Pólva: Inequalities. 2nd ed., Cambridge 1952.Google Scholar
  139. 3.
    Uspensky, J.: Theory of Equations. New York 1948.Google Scholar
  140. 4.
    Miriivovié, D. S.: Some inequalities involving elementary symmetric functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 181–196, 21–27 (1967).Google Scholar
  141. 5.
    Mrrsitiovié, D. S.: Inequalities concerning the elementary symmetric functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 17–19 (1968).Google Scholar
  142. 6.
    Dougall, J.: Quantitative proofs of certain algebraic identities. Proc. Edinburgh Math. Soc. 24, 61–77 (1905/06).Google Scholar
  143. 7.
    Whiteley, J. N.: Some inequalities concerning symmetric forms. Mathematika 5, 49–57 (1958).MathSciNetzbMATHGoogle Scholar
  144. 8.
    Whiteley, J. N.: A generalisation of a theorem of Newton. Proc.Amer. Math. Soc. 13, 144–151 (1962).MathSciNetzbMATHGoogle Scholar
  145. 9.
    Whiteley, J. N.: Two theorems on convolutions. J. London Math. Soc. 37, 459–468 (1962).MathSciNetzbMATHGoogle Scholar
  146. 10.
    Bullen, P. S.: Some inequalities for symmetric means. Pacific J. Math. 14, 47–54 (1965).MathSciNetGoogle Scholar
  147. 11.
    Bullen, P. S., and M. Marcus: Symmetric means and matrix inequalities. Proc. Amer. Math. Soc. 12, 285–290 (1961).MathSciNetzbMATHGoogle Scholar
  148. 12.
    Mitrinovié, D. S., and P. M. VASIé: Inégalités pour les fonctions symétriques élémentaires. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 39–42 (1968).Google Scholar
  149. 13.
    Mitrinovié, D. S., and P. M. Vaste: Inégalités du type de Rado concernant des fonctions symétriques. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210–228, 31–34 (1968).Google Scholar
  150. 14.
    Mitrinovié, D. S.: Certain inequalities for elementary symmetric functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 181–196, 17–20 (1967).Google Scholar
  151. 15.
    Bullen, P. S.: Some more inequalities involving the arithmetic and geometric means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 181–196, 61–66 (1967).MathSciNetGoogle Scholar
  152. 16.
    Marcus, M., and L. Lopes: Symmetric functions and Hermitian matrices. Canad. J. Math. 9, 305–312 (1957).MathSciNetzbMATHGoogle Scholar
  153. 17.
    Mcleod, J. B.: On four inequalities in symmetric functions. Proc. Edinburgh Math. Soc. 11, 211–219 (1959).MathSciNetzbMATHGoogle Scholar
  154. 18.
    Bekisev, G.. A.: Inequalities for symmetric means. Math. Notes 3, 83–91 (1968).MathSciNetGoogle Scholar
  155. 19.
    Menon, K. V.: Inequalities for symmetric functions. Duke Math. J. 35, 37–45 (1968).MathSciNetzbMATHGoogle Scholar
  156. 20.
    Pólya, G.: Liber Annäherung durch Polynome mit lauter reellen Wurzeln. Rend. Circ. Mat. Palermo 36, 281–291 (1913).Google Scholar
  157. 21.
    Mahajani, G. S., V. R. Thiruvenkatachar and V. D. Thawani: An application of Tschebyscheff polynomials to a problem in symmetric functions. Proc. Indian Acad. Sci. 35, 211–223 (1952).MathSciNetzbMATHGoogle Scholar
  158. 22.
    Mahajani, G. S., and V. R. Thiruvenkatachar: Remarks on a problem in symmetric functions. Proc. Indian Acad. Sci. 41, 225–230 (1955).MathSciNetzbMATHGoogle Scholar
  159. 1.
    Steffensen, J. F.: On certain inequalities between mean values, and their application to actuarial problems. Skand. Aktuarietidskr. 1918, pp. 82–97.Google Scholar
  160. 2.
    Hayashi, T.: On curves with monotonous curvature. Tôhoku Math. J. 15, 236–239 (1919).zbMATHGoogle Scholar
  161. 3.
    Meidell, B.: Note sur quelques inégalités et formules d’approximation. Skand. Aktuarietidskr. 1918, pp. 180–198.Google Scholar
  162. 4.
    Steffensen, J. F.: On certain inequalities and methods of approximation. J. Inst. Actuaries 51, 274–297 (1919).Google Scholar
  163. 5.
    Jensen, J. L. W. V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNetzbMATHGoogle Scholar
  164. 6.
    Hayashi, T.: On certain inequalities. Tôhoku Math. J. 18, 75–89 (1920).zbMATHGoogle Scholar
  165. 7.
    Steffensen, J. F.: Bounds of certain trigonometrical integrals. C. R. 10e Congrès Math. Scandinaves, Copenhagen 1946, pp. 181–186 (1947).MathSciNetGoogle Scholar
  166. 8.
    Bellman, R.: On inequalities with alternating signs. Proc. Amer. Math. Soc. 10, 807–809 (1959).MathSciNetzbMATHGoogle Scholar
  167. 9.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg-New York 1965.Google Scholar
  168. 10.
    Szegö, G.: Über eine Verallgemeinerung des Dirichletschen Integrals. Math. Z. 52, 676–685 (1950).MathSciNetzbMATHGoogle Scholar
  169. 11.
    Weinberger, H. F.: An inequality with alternating signs. Proc. Nat. Acad. Sci. U.S.A. 38, 611–613 (1952).MathSciNetzbMATHGoogle Scholar
  170. 12.
    Bellman, R.: On an inequality of Weinberger. Amer. Math. Monthly 60, 402 (1953).Google Scholar
  171. 13.
    Wright, E. M.: An inequality for convex functions. Amer. Math. Monthly 61, 620–622 (1954).MathSciNetzbMATHGoogle Scholar
  172. 14.
    Hardy, G. H., J. E. Littlewood and G. Pôlya: Inequalities. Cambridge 1934.Google Scholar
  173. 15.
    Biernacki, M.: Sur les inégalités remplies par des expressions dont les termes ont des signes alternés. Ann. Univ. Mariae Curie-Sklodowska A 7, 89–102 (1953).MathSciNetGoogle Scholar
  174. 16.
    Brunk, H. D.: On an inequality for convex functions. Proc. Amer. Math. Soc. 7, 817–824 (1956).MathSciNetzbMATHGoogle Scholar
  175. 17.
    Olkin, I.: On inequalities of Szegö and Bellman. Proc. Nat. Acad. Sci. U.S.A. 45, 230–231 (1959).MathSciNetGoogle Scholar
  176. 18.
    Steffensen, J. F.: On a generalization of certain inequalities by Tchebychef and Jensen. Skand. Aktuarietidskr. 1925, pp. 137–147.Google Scholar
  177. 19.
    Marjanovié, M.: Some inequalities with convex functions. Publ. Inst. Math. Beograd 8 (22), 66–68 (1968).MathSciNetGoogle Scholar
  178. 20.
    Fan, K., and G. G. Lorentz: An integral inequality. Amer. Math. Monthly 61, 626–631 (1954).MathSciNetzbMATHGoogle Scholar
  179. 21.
    Veress, P.: On certain inequalities of Steffensen. Skand. Aktuarietidskr. 9, 113–119 (1926).zbMATHGoogle Scholar
  180. 22.
    Ciesielski, Z.: A note on some inequalities of Jensen’s type. Ann. Polon. Math. 4, 269–274 (1958).MathSciNetzbMATHGoogle Scholar
  181. 23.
    Apéry, R.: Une inégalité sur les fonctions de variable réelle. Atti del Quarto Congresso dell’Unione Matematica Italiana 1951, vol. 2. Roma 1953, pp. 3–4.Google Scholar
  182. 24.
    Godunova, E. K., and V. I. Levin: General class of inequalities containing the inequality of Steffensen (Russian). Mat. Zametki 3, 339–344 (1968).MathSciNetGoogle Scholar
  183. 25.
    Boccio, T., and F. Giaccardi: Compendio di matematica attuariale. 2nd ed., Torino, pp. 180–205. (The year of publication is not printed on the book, but the references in the book indicate that it was not published before 1953.)Google Scholar
  184. 26.
    Znoxovn, V. A.: On some inequalities (Russian). Izv. Polytehn. Inst. Kiev 19, 92–107 (1956).Google Scholar
  185. 27.
    Ostrowski, A.: Aufgabensammlung zur Infinitesimalrechnung, vol. 1. Basel-Stuttgart 1964.Google Scholar
  186. 28.
    Dieudonné, J.: Calcul infinitésimal. Paris 1968.Google Scholar
  187. 29.
    Bourbaki, N.: Fonctions d’une variable réelle. Paris 1958, Chap. 2, § 3.6, Exert. 2.Google Scholar
  188. 1.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952.Google Scholar
  189. 2.
    Barnard, S., and J. M. Child: Higher Algebra. London 1936.Google Scholar
  190. 3.
    Watson, G. N.: Two inequalities. Math. Gaz. 37, 244–246 (1953).MathSciNetzbMATHGoogle Scholar
  191. 4.
    Watson, G. N.: Schur’s inequality. Math. Gaz. 39, 207–208 (1955).MathSciNetzbMATHGoogle Scholar
  192. 5.
    Neville, E. H.: Schur’s inequality. Math. Gaz. 40, 216 (1956).zbMATHGoogle Scholar
  193. 6.
    Wright, E. M.: A generalization of Schur’s inequality. Math. Gaz. 40, 217 (1956).zbMATHGoogle Scholar
  194. 7.
    Oppenheim, A.: Generalizations of Schur’s inequality. Math. Gaz. 42, 35 (1958).Google Scholar
  195. 8.
    Guha, U. C.: Inequalities leading to generalizations of Schur’s inequality. Math. Gaz. 46, 227–229 (1962).Google Scholar
  196. 9.
    Amur, K. S.: An inequality of Schur’s type for five variables. Math. Gaz. 45, 211–213 (1961).Google Scholar
  197. 10.
    Oppenheim, A., and Roy O. Davies: Inequalities of Schur’s type. Math. Gaz. 48, 25–27 (1964).zbMATHGoogle Scholar
  198. 1.
    Turan, P.: Eine neue Methode in der Analysis und deren Anwendungen. Budapest 1953.Google Scholar
  199. 2.
    Dancs, I.: On an extremal problem. Acta Math. Acad. Sci. Hung. 9, 309–313 (1958).MathSciNetzbMATHGoogle Scholar
  200. 3.
    Sós-Turan, V., and P. Turan: On some new theorems in the theory of Diophantine approximations. Acta Math. Acad. Sci. Hung. 6, 240–254 (1955).Google Scholar
  201. 4.
    Makai, E.: The first main theorem of P. Turân. Acta Math. Acad. Sci. Hung. 10, 405–411 (1959).MathSciNetzbMATHGoogle Scholar
  202. 5.
    de Bruijn, N. G.: On Turân’s first main theorem. Acta Math. Acad. Sci. Hung. 11, 213–216 (1960).zbMATHGoogle Scholar
  203. 6.
    Uchiyama, S.: A note on the second main theorem of P. Turân. Acta Math. Acad. Sci. Hung. 9, 379–380 (1958).MathSciNetzbMATHGoogle Scholar
  204. 7.
    Makai, E.: On a minimum problem II. Acta Math. Acad. Sci. Hung. 15, 63–66 (1964).MathSciNetzbMATHGoogle Scholar
  205. 8.
    Makai, E.: On a minimum problem. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 3–4, 177–182 (1961).MathSciNetGoogle Scholar
  206. 9.
    Atkinson, F. V.: On sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 12, 185–188 (1961).zbMATHGoogle Scholar
  207. 10.
    Atkinson, F. V.: On sums of powers of complex numbers; an improved estimate. Mathematics Research Center, Univ. of Wisconsin. MRC Techn. Summary Rep. No. 428. Dec. 1963.Google Scholar
  208. 11.
    Atkinson, F. V.: Some further estimates concerning sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 20, 193–210 (1969).zbMATHGoogle Scholar
  209. 12.
    Uchiyama, S.: Sur les sommes de puissances des nombres complexes. Acta Math. Acad. Sci. Hung. 9, 275–278 (1958).MathSciNetzbMATHGoogle Scholar
  210. 13.
    Lawrinowlcz, J.: Calculation of a minimum maximorum of complex numbers. Bull. Soc. Sci. Lettres 1ódí 11, 1–9 (1960).Google Scholar
  211. 14.
    Cassels, J. W. S.: On the sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 7, 283–289 (1956).MathSciNetzbMATHGoogle Scholar
  212. 15.
    Turan, P.: On an extremal-problem concerning power-sums of complex numbers with an application. Mat. Lapok 13, 279–288 (1962).MathSciNetzbMATHGoogle Scholar
  213. 16.
    Buckholtz, J. D.: Sums of powers of complex numbers. J. Math. Anal. Appl. 17, 269–279 (1967).MathSciNetzbMATHGoogle Scholar
  214. 17.
    Buckholtz, J. D.: Extremal problems for sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 17, 147–153 (1966).MathSciNetzbMATHGoogle Scholar
  215. 18.
    Turan, P.: On the eigenvalues of matrices. Ann. Mat. Pura Appl. (4) 54, 397–401 (1961).MathSciNetzbMATHGoogle Scholar
  216. 19.
    Komlós, J., A. Sarközy and E. Szemerédi: On sums of powers of complex numbers. Mat. Lapok 15, 337–347 (1964).MathSciNetzbMATHGoogle Scholar
  217. Benson, D. C.: Inequalities involving integrals of functions and their derivatives. J. Math. Anal. Appl. 17, 292–308 (1967).MathSciNetzbMATHGoogle Scholar
  218. 1.
    Redheffer, R.: Recurrent inequalities. Proc. London Math. Soc. (3) 17, 683–699 (1967).MathSciNetzbMATHGoogle Scholar
  219. 2.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952, p. 249.Google Scholar
  220. 3.
    Hardy, G. H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920).MathSciNetGoogle Scholar
  221. 4.
    Fan, K., O. Taussky and J. Todd: Discrete analogues of inequalities of Wirtinger. Monatsh. Math. 59, 73–90 (1955).MathSciNetzbMATHGoogle Scholar
  222. 1.
    Nesbitt, A. M.: Problem 15114. Educ. Times (2) 3, 37–38 (1903).Google Scholar
  223. 2.
    Shapiro, H. S.: Problem 4603. Amer. Math. Monthly 61, 571 (1954).MathSciNetGoogle Scholar
  224. 3.
    Shapiro, H. S.: Problem 4603. Amer. Math. Monthly 63, 191–192 (1956).MathSciNetGoogle Scholar
  225. 4.
    Durell, C. V.: Query. Math. Gaz. 40, 266 (1956).Google Scholar
  226. 5.
    Mordell, L. J.: On the inequality. and some others. Abh. Math. Sem. Univ. Hamburg 22, 229–240 (1958).MathSciNetzbMATHGoogle Scholar
  227. 6.
    Zulauf, A.: Note on a conjecture of L. J. Mordell. Abh. Math. Sem. Univ. Hamburg 22, 240–241 (1958).MathSciNetzbMATHGoogle Scholar
  228. 7.
    Herschorn, M., and J. E. L. Peck: Problem 4603. Amer. Math. Monthly 67, 87–88 (1960).MathSciNetGoogle Scholar
  229. 8.
    Thomas, Dina Gladys S.: On the definiteness of certain quadratic forms arising in a conjecture of L. J. Mordell. Amer. Math. Monthly 68, 472–473 (1961).zbMATHGoogle Scholar
  230. 9.
    Rankin, R. A.: An inequality. Math. Gaz. 42, 39–40 (1958).Google Scholar
  231. 10.
    Rankin, R. A.: A cyclic inequality. Proc. Edinburgh Math. Soc. (2) 12, 139147 (1960/61).Google Scholar
  232. 11.
    Zulauf, A.: On a conjecture of L. J. Mordell II. Math. Gaz. 43, 182–184 (1959).MathSciNetzbMATHGoogle Scholar
  233. 12.
    Mordell, L. J.: Note on the inequality. J. London Math. Soc. 37, 176–178 (1962).MathSciNetzbMATHGoogle Scholar
  234. 13.
    Zulauf, A.: Note on an inequality. Math. Gaz. 46, 41–42 (1962).Google Scholar
  235. 14.
    Diananda, P. H.: Inequalities for some cyclic sums. J. London Math. Soc. 38, 60–62 (1963).MathSciNetzbMATHGoogle Scholar
  236. 15.
    Diananda, P. H.: A cyclic inequality and an extension of it I. Proc. Edinburgh Math. Soc. (2) 13, 79–84 (1962/63).Google Scholar
  237. 16.
    Diananda, P. H.: A cyclic inequality and an extension of it II. Proc. Edinburgh Math. Soc. (2) 13, 143–152 (1962/63).Google Scholar
  238. 17.
    Dokovie, D. Z.: Sur une inégalité. Proc. Glasgow Math. Assoc. 6, 1–10 (1963).Google Scholar
  239. 18.
    Diananda, P. H.: On a cyclic sum. Proc. Glasgow Math. Assoc. 6, 11–13 (1963).MathSciNetzbMATHGoogle Scholar
  240. 19.
    Bajsanski, B.: A remark concerning the lower bound of. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 70–76, 19–20 (1962).MathSciNetGoogle Scholar
  241. 20.
    Nowosad, P.: Isoperimetric eigenvalue problems in algebras. Comm. Pure Appl. Math. 21, 401–465 (1968).MathSciNetzbMATHGoogle Scholar
  242. 21.
    Zulauf, A.: Note on the expression. Math. Gaz. 42, 42 (1958).Google Scholar
  243. 22.
    Zulauf, A.: Note on some inequalities. Math. Gaz. 42, 42–44 (1958).Google Scholar
  244. 23.
    Diananda, P. H.: On a conjecture of L. J. Mordell regarding an inequality involving quadratic forms. J. L.ndon Math. Soc. 36, 185–192 (1961).MathSciNetzbMATHGoogle Scholar
  245. 24.
    Baston, V. J. D.: On a cyclic sum of Mordell. Acta Arith. 11, 133–146 (1965).MathSciNetzbMATHGoogle Scholar
  246. 25.
    Diananda, P. H.: Extensions of an inequality of H. S. Shapiro. Amer. Math. Monthly 66, 489–491 (1959).MathSciNetzbMATHGoogle Scholar
  247. 26.
    Diananda, P. H.: Inequalities for a class of cyclic and other sums. J. London Math. Soc. 37, 424–431 (1962).MathSciNetzbMATHGoogle Scholar
  248. 27.
    Diananda, P. H.: Some cyclic and other inequalities II. Proc. Cambridge Phil. Soc. 58, 703–705 (1962).MathSciNetzbMATHGoogle Scholar
  249. 28.
    Diananda, P. H.: Some cyclic and other inequalities. Proc. Cambridge Phil. Soc. 58, 425–427 (1962).MathSciNetzbMATHGoogle Scholar
  250. 29.
    Mitrinovié, D. S.: Problem 75. Mat. Vesnik 4 (19), 103 (1967).Google Scholar
  251. 1.
    Snov, G. E. (Yu. G. Bossk ): On inequalities between derivatives (Russian). Sb. Rabot Student. Nau’enyh Kruzkov Moskov. Gos. Univ. 1937, pp. 17–27.Google Scholar
  252. 2.
    Gorny, A.: Sur les fonctions indéfiniment dérivables sur tout l’axe réel. C. R. Acad. Sci. Paris 206, 733–735 (1938).Google Scholar
  253. 3.
    Gorny, A.: Sur les fonctions indéfiniment dérivables. C. R. Acad. Sci. Paris 206, 1872–1874 (1938).Google Scholar
  254. 4.
    Gorny, A.: Sur les maxima des modules d’une fonction et de ses dérivées. C. R. Acad. Sci. Paris 206, 1245–1247 (1938).Google Scholar
  255. 5.
    Gorny, A.: Contribution à l’étude des fonctions dérivables d’une variable réelle. Acta Math. 71, 317–358 (1939).MathSciNetGoogle Scholar
  256. 6.
    Kolmogoroff, A.: Une généralisation de l’inégalité de M. J. Hadamard entre les bornes supérieurs des dérivées successives d’une fonction. C. R. Acad. Sci. Paris 207, 764–765 (1938).Google Scholar
  257. 7.
    Kolmogoroff, A.: On inequalities between upper bounds of consecutive derivatives of an arbitrary function defined on an infinite interval (Russian). Ucen. Zap. Moskov. Gos. Univ. Mat. 30, 3–16 (1939).MathSciNetGoogle Scholar
  258. 8.
    Steckin, S. B.: Inequalities between the upper bounds of the derivatives of an arbitrary function on the half-line (Russian). Mat. Zametki 1, 665–674 (1967).MathSciNetGoogle Scholar
  259. 9.
    Bessmertnyh, G. A., and A. Yu. Levin: Some bounds for differentiable functions of one variable (Russian). Doklady Akad. Nauk SSSR 144, 471–474 (1962).MathSciNetGoogle Scholar
  260. 10.
    Dieudonné, J.: Foundations of Modern Analysis. New York-London 1960, p. 181.Google Scholar
  261. 11.
    Aumann, G.: Eine Verallgemeinerung des Rolleschen Satzes auf komplexwertige Funktionen. Math. Z. 37, 578–581 (1933).MathSciNetGoogle Scholar
  262. 1.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952, pp. 184–187.Google Scholar
  263. 2.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-HeidelbergNew York 1965, pp. 177–180.Google Scholar
  264. 3.
    Blaschke, W.: Kreis and Kugel. Leipzig 1916, pp. 105–106.Google Scholar
  265. 4.
    Almansi, E.: Sopra una delle esperienze di Plateau. Ann. Mat. Pura Appl. (3) 12, 1–17 (1905).Google Scholar
  266. 5.
    Levi, E. E.: Sulle condizioni sufficienti per il minimo nel calcolo delle variazioni (Gli integrali sotto forma non parametrica). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (5) 22, 425–431 (1911); or Opere, vol. 2. Bologna 1960, pp. 347–359.Google Scholar
  267. 6.
    Tonelli, L.: Su una proposizione dell’Almansi. Rend. R. Accad. Lincei 23, 676–682 (1914); or Opere scelte, vol. 1. Roma 1960, pp. 236–242.Google Scholar
  268. 7.
    Picard, É. Traité d’analyse, vol. 3. Paris 1896, pp. 100–128.Google Scholar
  269. 8.
    Beesack, P. R.: Integral inequalities of the Wirtinger type. Duke Math. J. 25, 477–498 (1958).MathSciNetzbMATHGoogle Scholar
  270. 9.
    Hadamard, J.: Leçons sur le calcul des variations, vol. 1. Paris 1910, pp. 334–336 and p. 467.Google Scholar
  271. 10.
    Schwarz, H. A.: Ober ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung. Acta Soc. Sci. Fenn. 15, 315–362 (1885); or Gesammelte Math. Abhandlungen von H. A. Schwarz, vol. 1. Berlin 1890, pp. 223–268 and, in particular, pp. 257–259.Google Scholar
  272. 11.
    Poincaré, H.: Sur les équations de la physique mathématique. Rend. Circ. Mat. Palermo 8, 57–156 (1894); or Oeuvres de Henri Poincaré. Paris 1954, pp. 123–196.Google Scholar
  273. 12.
    Levi, E. E.: Su un lemma del Poincaré. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (5) 15, 83–89 and 353–358 (1906); or Opere, vol. 2. Bologna 1960, pp. 3–18.Google Scholar
  274. 13.
    Levi, E. E.: Sui criteri sufficienti peril massimo e per il minimo nel calcolo delle variazioni. Ann. Mat. Pura Appl. (3) 21, 173–218 (1913); or Opere, vol. 2. Bologna 1960, pp. 375–426.Google Scholar
  275. 14.
    Pleijel, A.: An inequality (Swedish). Mat. Tidsskr. A 1949, pp. 67–69.Google Scholar
  276. 15.
    Janet, M.: Sur le rapport des valeurs moyennes des carrés de deux dérivées d’ordre consécutifs. C. R. Acad. Sci. Paris 188, 681–683 (1929).zbMATHGoogle Scholar
  277. 16.
    Janet, M.: Sur une suite de fonctions considérée par Hermite et son application à un problème de calcul des variations. C. R. Acad. Sci. Paris 190, 32–34 (1930).zbMATHGoogle Scholar
  278. 17.
    Cimmino, G.: Su una questione di minimo. Boll. En. Mat. Ital. 9, 1–6 (1930).Google Scholar
  279. 18.
    Janet, M.: Détermination explicite de certains minima dans des problèmes sans conditions aux limites. C. R. Acad. Sci. Paris 194, 2109–2111 (1932).Google Scholar
  280. 19.
    Janet, M.: Détermination explicite de certains minima. Congrès Intern. Math. Zürich 1932.Google Scholar
  281. 20.
    Janet, M.: Les valeurs moyennes des carrés de deux dérivées d’ordre consécutifs, et le développement en fraction continue de tan x. Bull. Sci. Math. (2) 55, 1–13 (1931).Google Scholar
  282. 21.
    Janet, M.: Sur la méthode de Legendre-Jacobi-Clebsch et quelques-unes de ses applications. Bull. Sci. Math. (2) 53, 144–160 (1929).Google Scholar
  283. 22.
    Janet, M.: Sur le minimum du rapport de certaines intégrales. C. R. Acad. Sci. Paris 193, 977–979 (1931).Google Scholar
  284. 23.
    Cimdiino, G.: Problem 37, Risposte. Boll. Un. Mat. Ital. 8, 225–226 (1929).Google Scholar
  285. 24.
    Tcheng Tciiou: Sur les inégalités différentielles. Paris 1934, 39 pp.Google Scholar
  286. 25.
    Schmidt, E.: Ober die Engleichung, welche die Integrale über eine Potent einer Funktion und über eine andere Potenz ihrer Ableitung verbindet. Math. Ann. 117, 301–326 (1940).MathSciNetGoogle Scholar
  287. 26.
    Bellman, R.: A note on an inequality of E. Schmidt. Bull. Amer. Math. Soc. 50, 734–736 (1944).zbMATHGoogle Scholar
  288. 27.
    Sznagy, B.: Ober Integralungleichungen zwischen einer Funktion und ihrer Ableitung. Acta Sci. Math. (Szeged) 10, 64–74 (1941).Google Scholar
  289. 28.
    Northcott, D. G.: Some inequalities between periodic functions and their derivatives. J. London Math. Soc. 14, 198–202 (1939).MathSciNetGoogle Scholar
  290. 29.
    Bellman, R.: A note on periodic functions and their derivatives. J. London Math. Soc. 18, 140–142 (1943).MathSciNetzbMATHGoogle Scholar
  291. 30.
    Kim, W. J.: On the zeros of solutions of v(n) pr = 0. J. Math. Anal. Appl. 25, 189–208 (1969).MathSciNetzbMATHGoogle Scholar
  292. 31.
    Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 545–551 (1949).MathSciNetzbMATHGoogle Scholar
  293. 32.
    Beesack, P. R.: Extensions of Wirtinger’s inequality. Trans. Roy. Soc. Canada Sect. III, (3) 53, 21–30 (1959).Google Scholar
  294. 33.
    Coles, W. J.: A general Wirtinger-type inequality. Duke Math. J. 27, 133–138 (1960).MathSciNetzbMATHGoogle Scholar
  295. 34.
    Coles, AV. J.: Wirtinger-type integral inequalities. Pacific J. Math. 11, 871–877 (1960).MathSciNetGoogle Scholar
  296. 35.
    Diaz, J. B., and F. T. Metcalf: Variations of Wirtinger’s inequality. In: Inequalities, edited by O. Shisha. New York 1967, pp. 79–103.Google Scholar
  297. 36.
    Halperin, I., and H. Pitt: Integral inequalities connected with differential operators. Duke Math. J. 4, 613–625 (1938).MathSciNetGoogle Scholar
  298. 37.
    Müller, W.: Über eine Ungleichung zwischen den Normen von f, f’ und f“. Math. Z. 78, 420–422 (1962).MathSciNetzbMATHGoogle Scholar
  299. 38.
    Nirenberg, L.: Remarks on strongly elliptic partial differential equations. Appendix. Comm. Pure Appl. Math. 8, 649–675 (1955).MathSciNetzbMATHGoogle Scholar
  300. 39.
    Redheffer, R.: Über eine beste Ungleichung zwischen den Normen von j, f’, f“. Math. Z. 80, 390–397 (1963).MathSciNetzbMATHGoogle Scholar
  301. 40.
    Pfeffer, A. M.: On certain discrete inequalities and their continuous analogs. J. Res. Nat. Bur. Standards Sect. B, 70 B, 221–231 (1966).Google Scholar
  302. 41.
    Troesch, B. A.: Integral inequalities for two functions. Arch. Rational Mech. Anal. 24, 128–140 (1967).MathSciNetzbMATHGoogle Scholar
  303. 42.
    Problem 37. Boll. Un. Mat. Ital. 8, 113 and 164–165 (1929).Google Scholar
  304. 43.
    Weinstein, A.: Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques. Mémorial Sci. Math. No. 88. Paris 1937. - See, in particular, pp. 8–14.Google Scholar
  305. 44.
    Mangeron, D.: Sur le rapport des saleurs moyennes des carrés de deux dérivées totales d’ordre consécutif. C. R. Acad. Sci. Paris A 266, 1103–1106 (1968).MathSciNetzbMATHGoogle Scholar
  306. 45.
    Block, H. D.: A class of inequalities. Proc. Amer. Math. Soc. 8, 844–851 (1957).MathSciNetzbMATHGoogle Scholar
  307. 46.
    Levin, V. I., and S. B. Steékin: Inequalities. Amer. Math. Soc. Transi. (2) 14, 1–29 (1960). - See, in particular, pp. 11–13.Google Scholar
  308. 47.
    Boyd, D. W.: Best constants in a class of integral inequalities. Pacific J. Math. 30, 367–383 (1969).zbMATHGoogle Scholar
  309. 48.
    Arai1ä, O.: Sur un problème d’interpolation relatif aux solutions des équations différentielles linéaires du quatrième ordre. Mathematica (Cluj) 10 (33), 5–15 (1968). - See, in particular, pp. 7–8.Google Scholar
  310. 49.
    Fan, K., O. Taussky and J. Todd: Discrete analogues of inequalities of Wirtinger. Monatsh. Math. 59, 73–90 (1955).MathSciNetzbMATHGoogle Scholar
  311. 50.
    Block, H. D.: Discrete analogues of certain integral inequalities. Proc. Amer. Math. Soc. 8, 852–859 (1957).MathSciNetzbMATHGoogle Scholar
  312. 51.
    Pólya, G.: Two more inequalities between physical and geometrical quantities. J. Indian Math. Soc. (N.S.) 24, 413–419 (1960).MathSciNetGoogle Scholar
  313. 52.
    Makai, E.: On the principal frequency of membrane and the torsional rigidity of a beam. In: Studies in Mathematical Analysis and Related Topics. Stanford 1962, pp. 227–231.Google Scholar
  314. 53.
    Pólya, G., and G. Szegö: Isoperimetric Inequalities in Mathematical Physics. Princeton 1951.Google Scholar
  315. 54.
    Mitrinovié, D. S., and P. M. Vasié: An inequality ascribed to Wirtinger, and its variations and generalizations. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 247–273, 157–170 (1969).Google Scholar
  316. 55.
    Janet, M.: Sur l’inégalité classique du problème isopérimétrique. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 274–301, 9–10 (1969).MathSciNetGoogle Scholar
  317. 1.
    Opial, Z.: Sur une inégalité. Ann. Polon. Math. 8, 29–32 (1960).MathSciNetzbMATHGoogle Scholar
  318. 2.
    Olech, C.: A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8, 61–63 (1960).MathSciNetzbMATHGoogle Scholar
  319. 3.
    Beesack, P. R.: On an integral inequality of Z. Opial. Trans. Amer. Math. Soc. 104, 470–475 (1962).MathSciNetzbMATHGoogle Scholar
  320. 4.
    Levinson, N.: On an inequality of Opial and Beesack. Proc. Amer. Math. Soc. 15, 565–566 (1964).MathSciNetzbMATHGoogle Scholar
  321. 5.
    Mallows, C. L.: An even simpler proof of Opial’s inequality. Proc. Amer. Math. Soc. 16, 173 (1965).MathSciNetzbMATHGoogle Scholar
  322. 6.
    Pedersen, R. N.: On an inequality of Opial, Beesack and Levinson. Proc. Amer. Math. Soc. 16, 174 (1965).MathSciNetGoogle Scholar
  323. 7.
    Yang, G.-S.: On a certain result of Z. Opial. Proc. Japan Acad. 42, 78–83 (1966).zbMATHGoogle Scholar
  324. 8.
    Hua, L.-K.: On an inequality of Opial. Sci. Sinica 14, 789–790 (1965).MathSciNetzbMATHGoogle Scholar
  325. 9.
    Calvert, J.: Some generalizations of Opial’s inequality. Proc. Amer. Math. Soc. 18, 72–75 (1967).MathSciNetzbMATHGoogle Scholar
  326. 10.
    Wong, J. S. W.: A discrete analogue of Opial’s inequality. Canad. Math. Bull. 10, 115–118 (1967).MathSciNetzbMATHGoogle Scholar
  327. 11.
    Beesack, P. R., and K. M. Das: Extensions of Opial’s inequality. Pacific J. Math. 26, 215–232 (1968).MathSciNetzbMATHGoogle Scholar
  328. 12.
    Boyd, D. W., and J. S. W. Wong: An extension of Opial’s inequality. J. Math. Anal. Appl. 19, 100–102 (1967).MathSciNetzbMATHGoogle Scholar
  329. 13.
    Godunova, E. K., and V. I. Levin: On an inequality of Maroni (Russian). Mat. Zametki 2, 221–224 (1967).MathSciNetGoogle Scholar
  330. 14.
    Maroni, P. M.: Sur l’inégalité d’Opial-Beesack. C. R. Acad. Sci. Paris A 264, 62–64 (1967).MathSciNetzbMATHGoogle Scholar
  331. 15.
    Redheffer, R.: Inequalities with three functions. J. Math. Anal. Appl. 16, 219–242 (1966).MathSciNetzbMATHGoogle Scholar
  332. 16.
    Willett, D.: The existence-uniqueness theorem for an n-th order linear ordinary differential equation. Amer. Math. Monthly 75, 174–178 (1968).MathSciNetzbMATHGoogle Scholar
  333. 17.
    Das, K. M.: An inequality similar to Opial’s inequality. Proc. Amer. Math. Soc. 22, 258–261 (1969).MathSciNetzbMATHGoogle Scholar
  334. 18.
    Boyd, D. W.: Best constants in inequalities related to Opial’s inequality. J. Math. Anal. Appl. 25, 378–387 (1969).MathSciNetzbMATHGoogle Scholar
  335. 19.
    Boyd, D. W.: Best constants in a class of integral inequalities. Pacific J. Math. 30, 367–383 (1969).zbMATHGoogle Scholar
  336. 20.
    Holt, J. M.: Integral inequalities related to non-oscillation theorems for differential equations. SIAM J. 13, 767–794 (1965).MathSciNetzbMATHGoogle Scholar
  337. 21.
    Lee, Cheng-Ming: On a discrete analogue of inequalities of Opial and Yang. Canad. Math. Bull. 11, 73–77 (1968).MathSciNetzbMATHGoogle Scholar
  338. 1.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Some simple inequalities satisfied by convex functions. Messenger Math. 58, 145–152 (1928/29).Google Scholar
  339. 2.
    Fucxs, L.: A new proof of an inequality of Hardy-Littlewood-Phlva. Mat. Tidsskr. B 1947, pp. 53–54.Google Scholar
  340. 3.
    Karamata, J.: Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade 1, 145–148 (1932).zbMATHGoogle Scholar
  341. 4.
    Tome, M.: Gauss’ theorem on the centroid and its application (Serbian). Bull. Soc. Math. Phys. Serbie 1, No. 1, 31–40 (1949).Google Scholar
  342. 5.
    Pólya, G.: Remark on Weyl’s note “Inequalities between the two kinds of eigenvalues of a linear transformation”. Proc. Nat. Acad. Sci. U.S.A. 36, 49–51 (1950).MathSciNetzbMATHGoogle Scholar
  343. 6.
    Weyl, H.: Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. U.S.A. 35, 408–411 (1949).MathSciNetzbMATHGoogle Scholar
  344. 7.
    Gauss, C. F.: Werke, vol. 3. Göttingen 1876, p. 112.Google Scholar
  345. 8.
    Popoviciu, T.: Notes sur les fonctions convexes d’ordre supérieur III. Mathematica (Cluj) 16, 74–86 (1940).MathSciNetzbMATHGoogle Scholar
  346. 9.
    Popoviciu, T.: Notes sur les fonctions convexes d’ordre supérieur IV. Disquisitiones Math. 1, 163–171 (1940).MathSciNetGoogle Scholar
  347. 10.
    Popoviciu, T.: Les fonctions convexes. Actualités Sci. Ind. No. 992. Paris 1945.Google Scholar
  348. 11.
    Fan, K.: Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Nat. Acad. Sci. U.S.A. 37, 760–766 (1951).MathSciNetzbMATHGoogle Scholar
  349. 12.
    Mirsky, L.: Inequalities for certain classes of convex functions. Proc. Edinburgh Math. Soc. 11, 231–235 (1959).MathSciNetzbMATHGoogle Scholar
  350. 13.
    Marshall, A. W., I. Olkin and F. Proschan: Monotonicity of ratios of means and other applications of majorization. In: Inequalities, edited by O. Shisha. New York-London 1967, pp. 177–190. — See, in particular, pp. 179–180.Google Scholar
  351. 14.
    Marshall, A. W., and F. Proschan: An inequality for convex functions involving majorization. J. Math. Anal. Appl. 12, 87–90 (1965).MathSciNetzbMATHGoogle Scholar
  352. 15.
    Muirhead, R. F.: Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinburgh Math. Soc. 21, 144–157 (1903).Google Scholar
  353. 16.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952.Google Scholar
  354. 17.
    Rado, R.: An inequality. J. London Math. Soc. 27, 1–6 (1952).MathSciNetzbMATHGoogle Scholar
  355. 18.
    Bekiiev, G. A.: Inequalities for symmetric means (Russian). Mat. Zametki 3, 133–144 (1968).MathSciNetGoogle Scholar
  356. 19.
    Ostrowsxi, A.: Sur quelques applications des fonctions convexes et concaves au sens de I. Schur. J. Math. Pures Appl. (9) 31, 253–292 (1952).MathSciNetGoogle Scholar
  357. 20.
    Ryff, J. V.: On Muirhead’s theorem. Pacific J. Math. 21, 567–576 (1967).MathSciNetzbMATHGoogle Scholar
  358. 21.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg-New York 1965.Google Scholar
  359. 22.
    de Bruijn, N. G.: Inequalities concerning minors and eigenvalues. Nieuw Arch. Wisk. (3) 4, 18–35 (1956).zbMATHGoogle Scholar
  360. 23.
    Mirsey, L.: Majorization of vectors and inequalities for convex functions. Monatsh. Math. 65, 159–169 (1961).MathSciNetGoogle Scholar
  361. 24.
    Duff, G. F. D.: Differences, derivatives, and decreasing rearrangements. Ca-nad. J. Math. 19, 1153–1178 (1967).MathSciNetzbMATHGoogle Scholar
  362. 1.
    Hornich, H.: Eine Engleichung für Vektorlängen. Math. Z. 48, 268–274 (1942).MathSciNetGoogle Scholar
  363. 2.
    Smiley, D. M., and M. F. Smiley: The polygonal inequalities. Amer. Math. Monthly 71, 755–760 (1964).MathSciNetzbMATHGoogle Scholar
  364. 3.
    Kelly, L. M., D. M. Smiley and M. F. Smiley: Two dimensional spaces are quadrilateral spaces. Amer. Math. Monthly 72, 753–754 (1965).MathSciNetzbMATHGoogle Scholar
  365. 4.
    Lucié, R.: Sur une inégalité de Hornich. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 101–106, 5–6 (1963).Google Scholar
  366. 5.
    Djoxovte, D. Z.: Hornich inequality and sonie generalizations. Bull. Soc. Math. Phys. Serbie 15, 33–36 (1963).MathSciNetGoogle Scholar
  367. 6.
    Adamovie, D. D.: Généralisation d’une identité de Hlawka et de l’inégalité correspondante. Mat. Vesnik 1 (16), 39–43 (1964).MathSciNetGoogle Scholar
  368. 7.
    Vasie, P. M.: Les inégalités pour les fonctions convexes d’ordre n. Mat. Vesnik 5 (20), 327–331 (1968).MathSciNetGoogle Scholar
  369. 8.
    Djoxovré, D. Z.: Generalizations of Hlawka’s inequality. Glasnik Mat.-Fiz. Astronom. Ser. II, Drustvo Mat.-Fiz. Hrvatske 18, 169–175 (1963).Google Scholar
  370. 9.
    Popovrcru, T.: Sur certaines inégalités qui caractérisent les fonctions convexes. An. *ti. Univ. Al. I Cuza Iasi Sect. I a Mat. (N.S.) 11 B, 155–164 (1965).Google Scholar
  371. 10.
    Vasie, P. M., and D. D. Adamovié: Sur un système infini d’inégalités fonctionnelles. Publ. Inst. Math. Beograd 9 (23), 107–114 (1969).MathSciNetGoogle Scholar
  372. 11.
    Freudenthal, H.: Problem 141. `Fisk. Opgaven 21, 137–139 (1963).Google Scholar
  373. 12.
    Levi, F. W.: Ein Reduktionsverfahren für lineare Vektorungleichungen. Arch. Math. (Basel) 2, 24–26 (1949).Google Scholar
  374. 13.
    Marjanovié, M.: An elementary inequality. Mat. Vesnik 1 (16), 153–156 (1964).MathSciNetGoogle Scholar
  375. 14.
    Gross, W.: Bedingt konvergente Reihen. Monatsh. Math. Phys. 28, 221–237 (1917).MathSciNetzbMATHGoogle Scholar
  376. 15.
    Bergstrom, V.: Ein neuer Beweis eines Satzes von E. Steinitz. Abh. Math. Sem. Univ. Hamburg 8, 148–152 (1930).Google Scholar
  377. 16.
    Damsteeg, I., and I. Halperin: The Steinitz-Gross theorem on sums of vectors. Trans. Roy. Soc. Canada Sect. 111 (3) 44, 31–35 (1950).MathSciNetzbMATHGoogle Scholar
  378. 17.
    Behrend, F. A.: The Steinitz-Gross t heorem on sums of vectors. Canad. J. Math. 6, 108–124 (1954).MathSciNetzbMATHGoogle Scholar
  379. 1.
    Gordon, R. D.: Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Statistics 12, 364–366 (1941).MathSciNetzbMATHGoogle Scholar
  380. 2.
    Birnbaum, Z. W.: An inequality for Mills’ ratio. Ann. Math. Statistics 13, 245–246 (1942).MathSciNetzbMATHGoogle Scholar
  381. 3.
    Sampford, M. R.: Some inequalities on _Mills’ ratio and related functions. Ann. Math. Statistics 24, 130–132 (1953).MathSciNetzbMATHGoogle Scholar
  382. 4.
    Tate, R. F.: On a double inequality of the normal distribution. Ann. Math. Statistics 24, 132–134 (1953).MathSciNetzbMATHGoogle Scholar
  383. 5.
    Komatu, Y.: Elementary inequalities for Mills’ ratio. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4, 69–70 (1955).MathSciNetGoogle Scholar
  384. 6.
    Pollak, H. O.: A remark on “Elementary inequalities for Mills’ ratio” by Y. Komatu. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4, 110 (1956).MathSciNetGoogle Scholar
  385. 7.
    Boyd, A. V.: Inequalities for Mills’ ratio. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 6, 44–46 (1959).MathSciNetGoogle Scholar
  386. 8.
    Shenton, L. R.: Inequalities for the normal integral including a new continued fraction. Biometrika 41, 177–189 (1954).MathSciNetzbMATHGoogle Scholar
  387. 9.
    Ruben, H.: A new asymptotic expansion for the normal probability integral and Mills’ ratio. J. Roy. Statist. Soc. B 24, 177–179 (1962).MathSciNetzbMATHGoogle Scholar
  388. 10.
    Ruben, H.: A convergent asymptotic expansion for Mills’ ratio and the normal probability integral in terms of rational functions. Math. Ann. 151, 355–364 (1963).MathSciNetzbMATHGoogle Scholar
  389. 11.
    Ruben, H.: Irrational fraction approximations to Mills’ ratio. Biometrika 51, 339–345 (1964).MathSciNetzbMATHGoogle Scholar
  390. 12.
    Gautschi, W.: Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. and Phys. 38, 77–81 (1959).MathSciNetzbMATHGoogle Scholar
  391. 13.
    Abraiowicz, M., and I. A. Stegun: Handbook of Mathematical Functions. New York 1965, p. 298.Google Scholar
  392. 14.
    Hart, R. G.: A close approximation related to the error function. Math. Comp. 20, 600–602 (1966).MathSciNetzbMATHGoogle Scholar
  393. 15.
    Sciiccaxy, W. R., and H. L. Gray: A new approximation related to the error function. Math. Comp. 22, 201–202 (1968).Google Scholar
  394. 16.
    Coleman, A. J.: The probability integral. Amer. Math. Monthly 61, 710–711 (1954).MathSciNetGoogle Scholar
  395. 17.
    Conte, J. M., et al.: Solution of Problem 5607. Revue Math. Spéc. 74, 227–230 (1963/64).Google Scholar
  396. 18.
    Jiills, J. P.: Table of the ratio: area to boundary ordinate, for any portion of normal curve. Biometrika 18, 395–400 (1926).Google Scholar
  397. 1.
    Ceslao, E.: Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung. Leipzig 1922, p. 154.Google Scholar
  398. 2.
    Buchner, P.: Bemerkungen zur Stirlingschen Formel. Elem. Math. 6, 8–11 (1951).MathSciNetzbMATHGoogle Scholar
  399. 3.
    Voellmy, E.: Fünfstellige Logarithmen-und Zahlentafeln, bearb. von P. Buchner. 12. Aufl., Zürich 1958, p. 134.Google Scholar
  400. 4.
    Darmois, G.: Statistique mathématique. Paris 1928, pp. 315–317.Google Scholar
  401. 5.
    Ijspensky, J. V.: Introduction to Mathematical Probability. New York 1937, p. 352.Google Scholar
  402. 6.
    Robbins, H.: A remark on Stirling’s formula. Amer. Math. Monthly 62, 26–29 (1955).Google Scholar
  403. 7.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. New York 1961, p. 52.Google Scholar
  404. 8.
    Milton, J. R.: A note on Stirling’s theorem. Math. Notes 28, 12–13 (1933).Google Scholar
  405. 9.
    Hummel, P. M.: A note on Stirling’s formula. Amer. Math. Monthly 47, 97–99 (1940).Google Scholar
  406. 10.
    Berger, E. R.: Eine Verbesserung der Stirlingschen Formel. Z. Angew. Math. Mech. 35, 69–70 (1955).MathSciNetzbMATHGoogle Scholar
  407. 11.
    Nanjt-Noiah, T. S.: Note on Stirling’s formula. Amer. Math. Monthly 66, 701–703 (1959).MathSciNetGoogle Scholar
  408. 12.
    Maria, A. J.: A remark on Stirling’s formula. Amer. Math. Monthly 72, 1096–1095 (1965).MathSciNetzbMATHGoogle Scholar
  409. 13.
    Iialinin, V. M.: Analogues of Stirling’s formula (Russian). Doklady Akad. Nauk SSSR 181, 18–21 (1968).Google Scholar
  410. 14.
    Beesack, P. R.: Improvement of Stirling formula by elementary methods. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 274–301, 17–21 (1969).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1970

Authors and Affiliations

  • Dragoslav S. Mitrinović
    • 1
  1. 1.Belgrade UniversityBelgradeYugoslavia

Personalised recommendations