Advertisement

Introduction

  • Dragoslav S. Mitrinović
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 165)

Abstract

A systematic and a detailed construction of the real number system can be found, for example, in the book [1] of E. Landau, or in the book [2] of L. W. Cohen and G. Ehrlich.

Keywords

Real Number Convex Function Monotone Function ORLICZ Space Nondecreasing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landau, E.: Grundlagen der Analysis. Leipzig 1930, or second American edition, New York 1948.Google Scholar
  2. 2.
    Cohen, L. W., and G. Ehrlich: The Structure of the Real Number System. Princeton-New York-Toronto-London 1963.Google Scholar
  3. 3.
    Dieudonné, J.: Foundations of Modern Analysis. New York-London 1960.Google Scholar
  4. 4.
    Dieudonné, J.: Calcul infinitésimal. Paris 1968, p. 41.Google Scholar
  5. 1.
    Mott, T. E.: On the quotient of monotone functions. Amer. Math. Monthly 70, 195–196 (1963).MathSciNetMATHCrossRefGoogle Scholar
  6. 2.
    Redheffer, R. M.: Remarks about quotients. Amer. Math. Monthly 71, 69–71 (1964).MathSciNetMATHCrossRefGoogle Scholar
  7. 3.
    Boas, R. P.: More about quotients of monotone functions. Amer. Math. Monthly 72, 59–60 (1965).MathSciNetMATHCrossRefGoogle Scholar
  8. 1.
    Jensen, J. L. W. V.: Om konvexe funktioner og uligheder mellem middelvaerdier. Nyt. Tidsskr. for Math. 16B, 49–69 (1905).Google Scholar
  9. 2.
    Jensen, J. L. W. V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNetMATHCrossRefGoogle Scholar
  10. 3.
    Hölder, O.: Uber einen Mittelwerthssatz. Nachr. Ges. Wiss. Göttingen 1889, pp. 38–47.Google Scholar
  11. 4.
    Stolz, O.: Grundzüge der Differential-und Integralrechnung, vol. 1. Leipzig 1893, pp. 35–36.Google Scholar
  12. 5.
    Popoviclu, T.: Les fonctions convexes. Actualités Sci. Ind. No. 992. Paris 1945.Google Scholar
  13. 6.
    Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893).Google Scholar
  14. 7.
    Beckenbach, E. F.: Convex functions. Bull. Amer. Math. Soc. 54, 439–460 (1948).MathSciNetMATHCrossRefGoogle Scholar
  15. 8.
    Hamel, G.: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x) + f(y) = f(x + y). Math. Ann. 60, 459–462 (1905).MathSciNetMATHCrossRefGoogle Scholar
  16. 9.
    Aczél, J.: Lectures on Functional Equations and their Applications. New York-London 1966.Google Scholar
  17. 10.
    Bernstein, F., and G. Doetsch: Zur Theorie der konvexen Funktionen. Math. Ann. 76, 514–526 (1915).MathSciNetMATHCrossRefGoogle Scholar
  18. 11.
    Sierpikskl, W.: Sur les fonctions convexes mesurables. Fund. Math. 1, 124–129 (1920).Google Scholar
  19. 12.
    Ostrowski, A.: Zur Theorie der konvexen Funktionen. Comment. Math. Helv. 1, 157–159 (1929).MathSciNetMATHCrossRefGoogle Scholar
  20. 13.
    Kurepa, S.: Convex functions. Glasnik Mat.-Fiz. Astronom. Ser. II, Drustvo Mat.-Fiz. Hrvatske 11, 89–94 (1956).MathSciNetGoogle Scholar
  21. 14.
    Ger, R., and M. Kuczma: On the boundedness and continuity of convex functions and additive functions. Aequationes Math. (to appear).Google Scholar
  22. 15.
    Bourbaki, N.: Fonctions d’une variable réelle. Paris 1958, Chap. 1.Google Scholar
  23. 16.
    Galvani, L.: Sulle funzioni convesse di una o due variabili definite in aggregate qualunque. Rend. Circ. Mat. Palermo 41, 103–134 (1916).MATHCrossRefGoogle Scholar
  24. 17.
    Kurepa, S.: A property of a set of positive measure and its application. J. Math. Soc. Japan 13, 13–19 (1961).MathSciNetMATHCrossRefGoogle Scholar
  25. 18.
    Montel, P.: Sur les fonctions convexes et les fonctions sousharmoniques. J. Math. Pures Appl. (9) 7, 29–60 (1928).Google Scholar
  26. 19.
    Valiron, G.: Remarques sur certaines fonctions convexes. Proc. Phys.-Math. Soc. Japan (3) 13, 19–38 (1931).MATHGoogle Scholar
  27. 20.
    Valiron, G.: Fonctions convexes et fonctions entières. Bull. Soc. Math. France 60, 278–287 (1932).MathSciNetGoogle Scholar
  28. 21.
    Montel, P.: Sur les fonctions sousharmoniques et leurs rapports avec les fonctions convexes. C. R. Acad. Sci. Paris 185, 633–635 (1927).MATHGoogle Scholar
  29. 22.
    Thorin, G. O.: Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. M.dd. Lunds Univ. Mat. Sem. 9, 1–57 (1948).MathSciNetGoogle Scholar
  30. 23.
    Salem, R.: Convexity theorems. Bull. Amer. Math. Soc. 55, 851–859 (1949), or Oeuvres mathématiques de R. SALEM. Paris 1967, pp. 432–440.Google Scholar
  31. 24.
    Ovéarenko, I. E.: On three types of convexity (Russian). Zap. Meh.-Mat. Fak. Har’kov. Gos. Univ. i Har’kov. Mat. Obsc. 4 (30), 106–113 (1964).Google Scholar
  32. 25.
    Bonnesen, T.: Les problèmes des isopérimètres et des isépiphanes. Paris 1929, p. 30.Google Scholar
  33. 26.
    Krasnosel’skii, M. A., and Ya. B. Ruticeii: Convex Functions and Orlicz Spaces (Russian). Moscow 1958, and English edition, Groningen 1961.Google Scholar
  34. 27.
    Csaszar, A.: Sur une classe des fonctions non mesurables. Fund. Math. 36, 72–76 (1949).MathSciNetMATHGoogle Scholar
  35. 28.
    Csaszar, A.: Sur les fonctions internes, non monotones. Acta Sci. Math. (Szeged) 13, 48–50 (1949).MathSciNetGoogle Scholar
  36. 29.
    Marcus, S.: Fonctions convexes et fonctions internes. Bull. Sci. Math. 81, 66–70 (1957).MathSciNetMATHGoogle Scholar
  37. 30.
    Marcus, S.: Critères de majoration pour les fonctions sousadditives, convexes ou internes. C. R. Acad. Sci. Paris 244, 2270–2272 and 3195 (1957).Google Scholar
  38. 31.
    Aczl, J.: A generalization of the notion of convex functions. Norske Vid. Selsk. Forh. (Trondheim) 19, No. 24, 87–90 (1947).Google Scholar
  39. 32.
    Ostrowsxl, A.: Sur quelques applications des fonctions convexes et concaves au sens de I. Schur. J. Math. Pures Appl. (9) 31, 253–292 (1952).MathSciNetGoogle Scholar
  40. 33.
    Blumberg, H.: On convex functions. Trans. Amer. Math. Soc. 20, 40–44 (1919).MathSciNetMATHCrossRefGoogle Scholar
  41. 34.
    Mohr, E.: Beitrag zur Theorie der konvexen Funktionen. Math. Nachr. 8, 133–148 (1952).MathSciNetMATHCrossRefGoogle Scholar
  42. 35.
    Marcus, S.: Généralisation aux fonctions de plusieurs variables, des théorèmes de Alexander Ostrowski et de Masuo Hukuhara concernant les fonctions convexes (J). J. Math. Soc. Japan 11, 171–176 (1959).MathSciNetMATHCrossRefGoogle Scholar
  43. 36.
    Hukuhara, M.: Sur la fonction convexe. Proc. Japan Acad. 30, 683–685 (1954).MathSciNetMATHCrossRefGoogle Scholar
  44. 37.
    Nicolesco, M.: Familles de fonctions convexes et de fonctions doublement convexes. Bull. Soc. Roumaine Sci. 40, 3–10 (1938).Google Scholar
  45. 38.
    Beckenbach, E. F., and R. Bellman: Inequalities. 2nd ed., Berlin-Heidelberg-New York 1965.Google Scholar
  46. 39.
    Hardy, G. H., J. E. Littlewood and G. Pólya: Inequalities. 2nd ed., Cambridge 1952.Google Scholar
  47. 40.
    Beckenbach, E. F.: An inequality of Jensen. Amer. Math. Monthly 53, 501505 (1946).Google Scholar
  48. 41.
    Marcus, M., and H. Mrnc: A Survey of Matrix Theory and Matrix Inequalities. Boston 1964.Google Scholar
  49. 42.
    Ponstein, J.: Seven kinds of convexity. SIAM Review 9, 115–119 (1967).MathSciNetMATHCrossRefGoogle Scholar
  50. 43.
    Por’ovrcru, T.: Sur les fonctions convexes d’une variable réelle. C. R. Acad. Sci. Paris 190, 1481–1483 (1930).Google Scholar
  51. 44.
    Thunsdorff, H.: Konvexe Funktionen und Ungleichungen, Inaugural-Dissertation, Göttingen 1932.Google Scholar
  52. 45.
    Cinqunni, S.: Sopra una disuguaglianza di Jensen. Rend. Circ. Mat. Palermo 58, 335–358 (1934).CrossRefGoogle Scholar
  53. 46.
    Taylor, A. E.: Derivatives in the calculus. Amer. Math. Monthly 49, 631–642 (1942).MathSciNetCrossRefGoogle Scholar
  54. 47.
    Beckenbach, E. F., and R. H. Bing: On generalized convex functions. Trans. Amer. Math. Soc. 58, 220–230 (1945).MathSciNetMATHGoogle Scholar
  55. 48.
    Woods, C. L.: A restricted class of convex functions. Bull. Amer. Math. Soc. 52, 117–128 (1946).MathSciNetMATHCrossRefGoogle Scholar
  56. 49.
    Sengenhorst, P.: Über konvexe Funktionen. Math.-Phys. Semesterber. 2, 217–230 (1952).MathSciNetMATHGoogle Scholar
  57. 50.
    Wright, E. M.: An inequality for convex functions. Amer. Math. Monthly 61, 620–622 (1954).MathSciNetMATHCrossRefGoogle Scholar
  58. 51.
    Mirsky, L.: Inequalities for certain classes of convex functions. Proc. Edinburgh Math. Soc. 11, 231–235 (1959).MathSciNetMATHGoogle Scholar
  59. 52.
    Bruckner, A.: Minimal superadditive extensions of superadditive functions. Pacific J. Math. 10, 1155–1162 (1960).MathSciNetMATHGoogle Scholar
  60. 53.
    Gotusso, L.: Sulle funzioni convesse e su una estensione del teorema di Cavalieri-Lagrange. Periodico Mat. (4) 40, 287–313 (1962).Google Scholar
  61. 54.
    Bruckner, A. M.: Tests for the superadditivity of functions. Proc. Amer. Math. Soc. 13, 126–130 (1962).MathSciNetMATHGoogle Scholar
  62. 55.
    Bruckner, A. M., and E. Ostrow: Some function classes related to the class of convex functions. Pacific J. Math. 12, 1203–1215 (1962).MathSciNetMATHGoogle Scholar
  63. 56.
    Karlin, S., and A. Novikoff: Generalized convex inequalities. Pacific J. Math. 13, 1251–1279 (1963).MathSciNetMATHGoogle Scholar
  64. 57.
    Bruckner, A. M.: Some relationships between locally superadditive functions and convex functions. Proc. Amer. Math. Soc. 15, 61–65 (1964).MathSciNetMATHGoogle Scholar
  65. 58.
    Marshall, A. W., and F. Proschan: An inequality for convex functions involving majorization. J. Math. Anal. Appl. 12, 87–90 (1965).MathSciNetMATHCrossRefGoogle Scholar
  66. 59.
    Ciesielski, Z.: Some properties of convex functions of higher orders. Ann. Polon. Math. 7, 1–7 (1959).MathSciNetMATHGoogle Scholar
  67. 60.
    Boehme, T. K., and A. M. Bruckner: Functions with convex means. Pacific J. Math. 14, 1137–1149 (1964).MathSciNetMATHGoogle Scholar
  68. 61.
    Godunova, E. K.: Inequalities based on convex functions (Russian). Izv. Vyss. Ucebn. Zay. Mat. 1965, No. 4 (47), 45–53.Google Scholar
  69. 62.
    Godunova, E. K.: An integral inequality with an arbitrary convex function (Russian). Uspehi Mat. Nauk 20, No. 6 (126), 66–67 (1965).Google Scholar
  70. 63.
    Popovictu, T.: Sur certaines inégalités qui caractérisent les fonctions convexes. An.,Sti. Univ. Al. I Cuza Iasi Sect. I a Mat. (N.S.) 11B, 155–164 (1965).MathSciNetGoogle Scholar
  71. 64.
    Godunova, E. K.: Convexity of composed functions and its applications to the proof of inequalities (Russian). Mat. Zametki 1, 495–500 (1967).MathSciNetGoogle Scholar
  72. 65.
    Moldovan-Popovrciu, E.: On the notion of convex functions (Serbian). Matematicka Biblioteka, vol. 42. Beograd 1969, pp. 25–40.Google Scholar
  73. 66.
    Beckenbach, E. F.: Superadditivity inequalities. Pacific J. Math. 14, 421–438 (1964).MathSciNetMATHGoogle Scholar
  74. 67.
    Petxovré, M.: Sur une fonctionnelle. Pub]. Math. Univ. Belgrade 1, 149–156 (1932).Google Scholar
  75. 68.
    Maxxovré, D.: On an inequality of M. Petrovié (Serbian). Bull. Soc. M.th. Phys. Serbie 11, 45–53 (1959).Google Scholar
  76. 69.
    Vasle, P. M.: Sur une inégalité de M. Petrovié. Mat. Vesnik 5 (20), 473–478 (1968).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1970

Authors and Affiliations

  • Dragoslav S. Mitrinović
    • 1
  1. 1.Belgrade UniversityBelgradeYugoslavia

Personalised recommendations