Biomechanics and Functional Adaption of Tendons and Joint Ligaments

  • A. Viidik


In the present society of ever increasing mechanization the human body is subjected more and more to various mechanical stresses, which are resisted primarily by connective tissue in various forms. Interest has also been focused on connective tissue adaption to different functional states and to the changes induced by aging.


Tensile Strength Anterior Cruciate Ligament Achilles Tendon Elastic Stiffness Tensile Strength Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åkerblom, B.: Standing and sitting posture — with special reference to the construction of chairs, 1. ed. Stockholm: AB Nordiska Bokhandeln 1948.Google Scholar
  2. Akeson, W. H.: An experimental study of joint stiffness. J. Bone Jt Surg. A 43, 1022–1034 (1961).Google Scholar
  3. Akeson, W. H.: Relationship between the aging phenomena in connective tissue and the connective tissue response to immobility: a thermodynamic approach. Surg. Forum 14, 438–440 (1963).PubMedGoogle Scholar
  4. Akeson, W. H., and D. F. Laviolette: The connective tissue response to immobility. Total mucopolysaccharide changes in dog tendons. J. surg. Res. 4, 523–528 (1964).PubMedCrossRefGoogle Scholar
  5. Annovazzi, G.: Osservazioni sulla elasticità dei legamenti. Arch. Sci. biol. (Napoli) 11, 467–501 (1928).Google Scholar
  6. Banga, I., J. Baló, and D. Szabó: Submicroscopic structure of collagen fibres; their contraction and relaxation. Acta morph. Acad. Sci. hung. 6, 391–403 (1956a).Google Scholar
  7. Banga, I., J. Baló, and D. Szabó: The structure, aging and rejuvenation of collagen fibres. Experientia (Basel), Suppl. 4, 28–31 (1956b).Google Scholar
  8. Barnett, C. H., D. V. Davies, and M. A. Macconaill: Synovial joints. Their structure and mechanics, 1. ed. London: Longmans 1961.Google Scholar
  9. Bloom, W., and D. W. Fawcett: A textbook of histology, 8. ed. Philadelphia: W. B. Saunders Co. 1962.Google Scholar
  10. Braams, R.: The effect of electron radiation on the tensile strength of tendon. I. Int. J. Radiat. Biol. 4, 27–31 (1961).CrossRefGoogle Scholar
  11. Brand, P. W.: Tendon grafting. Illustrated by a new operation for intrinsic paralysis of the fingers. J. Bone Jt Surg. B 43, 444–453 (1961).Google Scholar
  12. Brooke, J. W., and H. G. B. Slack: Metabolism of connective tissue in limb atrophy in the rabbit. Ann. rheum. Dis. 18, 129–136 (1959).PubMedCrossRefGoogle Scholar
  13. Bucher, O.: Histologie und mikroskopische Anatomie des Menschen, 3. ed. Bern: Hans Huber 1962.Google Scholar
  14. Castor, C. W., and K. D. Muirden: Collagen formation in monolayer cultures of human fibroblasts. Lab. Invest. 13, 560–574 (1964).PubMedGoogle Scholar
  15. Chrisman, O. D.: The ground substance of connective tissue. Clin. orthop. 36, 184–193 (1964).Google Scholar
  16. Ciivapil, M., and Z. Roth: Connective tissue changes in wild and domesticated rats. J. Geront. 19, 414–418 (1964).Google Scholar
  17. Cowan, P. M., A. North, and J. T. Randall (1953): Cit. by Gosravson (1956).Google Scholar
  18. Cronkite, A. E.: The tensile strength of human tendons. Anat. Rec. 64, 173–186 (1936).CrossRefGoogle Scholar
  19. Curtis, D. H.: The effect of chemical crosslinking agents on the mechanical properties of rat-tail tendon, 1. ed. Ann Arbor: University Microfilms Inc. 1963.Google Scholar
  20. Davidsson, L.: Tensile strength, rupture and regeneration of tendons. Ann. Chir. Gynaec. Fenn. 43, 61–66 (1954).Google Scholar
  21. Davidsson, L.: Über die subkutanen Sehnenrupturen und die Regeneration der Sehne. Eine experimentelle, klinische und pathologisch-anatomische Untersuchung. Ann. Chir. Gynaec. Fenn., Suppl. 6, 1–113 (1956).Google Scholar
  22. Dick, J. C.: Tension and resistance to stretching of human skin and other membranes. J. Physiol. (Lond.) 112, 102–113 (1951).Google Scholar
  23. Elden, H. R.: Aging of rat tail tendons. J. Geront. 19, 173–178 (1964).PubMedGoogle Scholar
  24. Elden, H. R.: Elasticity of aging tendons. Collagen Curr. 5, 484 (1965).Google Scholar
  25. Elden, H. R., and R. J. Boucek: Investigations of the aging process by physical-chemical means ? summary. In: Biological aspects of aging, p. 334–342 [N. W. Shock (ed.)]. New York: Columbia University Press 1962.Google Scholar
  26. Fink, R., O. A. M. Wyss: Experimentelle Untersuchungen über Rupturen am Knochen-Sehnen-Muskel-System beim Frosch. Mschr. Unfallheilk. 49, 379–389 (1942).Google Scholar
  27. Gallop, P. M.: Concerning some special structural features of the collagen molecule. In: Connective tissue — intercellular macromolecules, p. 79–92. Boston: Little, Brown & Co. 1964.Google Scholar
  28. Gelber, D., D. H. Moore, and H. Ruska: Observations of the myotendon junction in mammalian skeletal muscle. Z. Zellforsch. 52, 396–400 (1960).CrossRefGoogle Scholar
  29. Gratz, C. M.: Tensile strength and elasticity tests on human fascia lata. J. Bone Jt Surg. 13, 334–340 (1931).Google Scholar
  30. Gross, J.: Collagen. Sci. Amer. 204 (5), 120–130 (1961).CrossRefGoogle Scholar
  31. Gross, J.: Organization and disorganization of collagen. In: Connective tissue — intercellular macromolecules, p. 63–77. Boston: Little, Brown & Co. 1964.Google Scholar
  32. Gustavson, K. H.: The chemistry and reactivity of collagen, 1. ed. New York: Academic Press 1956.Google Scholar
  33. Hall, D. A.: Chemical studies on the relationship between elastin and collagen. Experientia (Basel), Suppl. 4, 19–27 (1956).Google Scholar
  34. Hall, M. C.: The locomotor system. Functional histology, 1. ed. Springfield (Ill.): Ch. C. Thomas 1965.Google Scholar
  35. Harkness, R. D.: Biological functions of collagen. Biol. Rev. 36, 399–463 (1961).PubMedCrossRefGoogle Scholar
  36. Herrick, E. H.: Tensile strength of tissues as influenced by male sex hormones. Anat. Rec. 93, 145–149 (1945).PubMedCrossRefGoogle Scholar
  37. Hisaw, F. L., and M. X. Zarrow: The physiology of relaxin. Vitam. and Horm. 8, 151–178 (1950).CrossRefGoogle Scholar
  38. Huggins, M. L.: Some developments concerned with the structure of collagen. In: Collagen, p. 79–80 [N. Ramanathan (ed.)]. New York: Interscience Publ. 1962.Google Scholar
  39. Ingelmark, B. E.: Cher den Bau der Sehnen während verschiedener Altersperioden und unter verschiedenen funktionellen Bedingungen. Upsala Läk.-Fören. Förh., N.F. 50, 357–396 (1945).Google Scholar
  40. Ingelmark, B. E.: Der Bau der Sehnen während verschiedener Altersperioden und unter wechselnden funktionellen Bedingungen. I. Acta anat. (Basel) 6, 113–140 (1948a).Google Scholar
  41. Ingelmark, B. E.: The structure of tendons at various ages and under different functional conditions. II. An electron microscopic investigation from white rats. Acta anat. (Basel) 6, 193–225 (1948b).Google Scholar
  42. Ingelmark, B. E.: Functionally induced changes in articular cartilage. In: Biomechanical studies of the musculo-skeletal system, p. 3–19 [F. G. Evans (ed.)]. Springfield (Ill.): Ch. C. Thomas 1961.Google Scholar
  43. Karner, H. E.: Electron microscope study of developing chick embryo aorta. J. Ultrastruct. Res. 4, 420–454 (1960).CrossRefGoogle Scholar
  44. Kratky, O., M. Lauer, M. Ratzenhofer, and A. Sekora: Dependence on age of the x-ray diagram of human tendon collagen. In: Collagen, p. 227–231 [N. Ramanathan (ed.)]. New York: Interscience Publ. 1962.Google Scholar
  45. Kuhnke, E.: The fine structure of collagen fibrils as the basis for functioning of tendon tissue. In: Collagen, p. 479–490 [N. Ramanathan (ed.)]. New York: Interscience Publ. 1962.Google Scholar
  46. Lang, J.: Über das Verschiebegewebe der Achillessehne. Anat. Anz. 108, 225–237 (1960).PubMedGoogle Scholar
  47. Lindsay, W. K., and H. G. Thomson: Digital flexor tendons: An experimental study. Brit. J. plast. Surg. 12, 289–316 (1960).PubMedCrossRefGoogle Scholar
  48. Lindsay, W. K., E. R. Tustanoff, and D. C. Birdsell: Uptake of tritiated proline in regenerating tendons. Surg. Forum 15, 459–461 (1964).PubMedGoogle Scholar
  49. Lundgren, H. P.: Synthetic fibers made from proteins. Advanc. Protein Chem. 5, 305–351 (1949).CrossRefGoogle Scholar
  50. Macmaster, P. E.: Tendon and muscle ruptures. J. Bone Jt Surg. 15, 705–722 (1933).Google Scholar
  51. Mason, M. L., and C. G. Shearon: The process of tendon repair. An experimental study of tendon structure and tendon graft. Arch. Surg. 25, 615–692 (1932).CrossRefGoogle Scholar
  52. Morgan, F. R.: The mechanical properties of collagen fibres: stress-strain curves. J. Soc. Leath. Trades Chem. 44, 170–182 (1960).Google Scholar
  53. Muller, T.: The effect of estrogen on the loose connective tissue of the albino rat. Anat. Rec. 111, 355–375 (1951).PubMedCrossRefGoogle Scholar
  54. Neuberger, A., J. C. Perrone, and H. G. B. Slack: Relative metabolic inertia of tendon collagen in the rat. Biochem. J. 49, 199–204 (1951).PubMedGoogle Scholar
  55. Neuberger, A., and H. G. B. Slack: The metabolism of collagen from liver, bone, skin and tendon in the normal rat. Biochem. J. 53, 47–52 (1953).PubMedGoogle Scholar
  56. Nisbet, N. W.: Anatomy of the calcaneal tendon of the rabbit. J. Bone Jt Surg. B 42, 360–366 (1960).Google Scholar
  57. Pahlke, G.: Elektronenmikroskopische Untersuchungen an der Interzellularsubstanz des menschlichen Sehnengewebes. Z. Zellforsch. 39, 412–430 (1954).CrossRefGoogle Scholar
  58. Partington, F. R., and G. C. Woon: The role of non-collagen components in the mechanical behaviour of tendon fibres. Biochim. biophys. Acta (Amst.) 69, 485–495 (1963).CrossRefGoogle Scholar
  59. Peacock, E. E.: Comparison of collagenous tissue surrounding normal and immobilized joints. Surg. Forum 14, 440–441 (1963).PubMedGoogle Scholar
  60. Pedersen, H. E., F. G. Evans, and H. R. Lissner: Deformation studies of the femur under various loadings and orientations. Anat. Rec. 103, 159–185 (1949).PubMedCrossRefGoogle Scholar
  61. Ramachandran, G. N.: Structure of collagen. Nature (Lond.) 177, 710–711 (1956).CrossRefGoogle Scholar
  62. Ramachandran, G. N., V. Sasisekharan, and Y. T. Thathachari: Structure of collagen at the molecular level. In: Collagen, p. 81–115 [N. Ramanathan (ed.)]. New York: Interscience Publ. 1962.Google Scholar
  63. Reutervall, O. P. P: son: Ober die Elastizität der Gefäßwände und die Methoden ihrer näheren Prüfung. Acta med. scand., Suppl. 2 (1921).Google Scholar
  64. Rich, A., and F. H. C. Crick: The structure of collagen. Nature (Lond.) 176, 915–916 (1955).CrossRefGoogle Scholar
  65. Rigby, B. J.: Effect of cyclic extension on the physical properties of tendon collagen and its possible relation to biological aging of collagen. Nature (Lond.) 202, 1072–1074 (1964).CrossRefGoogle Scholar
  66. Rigby, B. J., N. Hirai, J. D. Spikes, and H. Eyring: The mechanical properties of rat tail tendon. J. gen. Physiol. 43, 265–283 (1959).PubMedCrossRefGoogle Scholar
  67. Robertson, W. Van B.: Metabolism of collagen in mammalian tissues. In: Connective tissue-intercellular macromolecules, p. 93–106. Boston: Little, Brown & Co. 1964.Google Scholar
  68. Schmitt, F. O., C. E. Hall, and M. A. Jakus: Electron microscope investigations of the structure of collagen. J. cell. comp. Physiol. 20, 11–33 (1942).CrossRefGoogle Scholar
  69. Schneewind, J. H., F. K. Kline, and C. W. Monsour: The role of paratenon in healing of experimental tendon transplants. J. occup. Med. 6, 429–436 (1964).PubMedGoogle Scholar
  70. Schwarzacher, H. G.: Untersuchungen über die Skelettmuskelsehnenverbindung. Acta anat. (Basel) 40, 59–86 (1960).Google Scholar
  71. Sinex, F. M.: Cross-linkage and aging. Advanc. Geront. Res. 1, 165–180 (1964).Google Scholar
  72. Smith, J. W.: The elastic properties of the anterior cruciate ligament of the rabbit. J. Anat. (Lond.) 88, 369–380 (1954).Google Scholar
  73. Stanisavljevic, S., and R. Pool, Jr.: The paratendinous apparatus of the digits. J. Bone Jt Surg. B 44, 910–912 (1962).Google Scholar
  74. Stegemann, H.: Mikrobestimmung von Hydroxyprolin mit Chloramin-T und p-Dimethylaminobenzaldehyd. Hoppe-Seylers Z. physiol. Chem. 311, 41–45 (1958).Google Scholar
  75. Storey, E.: Relaxation in the pubic symphysis of the mouse during pregnancy and after relaxin administration, with special reference to the behaviour of collagen. J. Path. Bact. 74, 147–162 (1957).CrossRefGoogle Scholar
  76. Stucke, K.: Ober das elastische Verhalten der Achillessehne im Belastungsversuch. Langen-becks Arch. klin. Chir. 265, 579–599 (1950).Google Scholar
  77. Stucke, K.: Sehnenbelastung und -ruptur im Tierversuch. Chirurg 22, 16–18 (1951).PubMedGoogle Scholar
  78. Takashima, K., and N. Tamiya: Studies on collagen biosynthesis with C14 as a tracer. Collagen Curr. 5, 36 (1964).Google Scholar
  79. Thompson, R. C., and J. E. Ballou: Studies of metabolic turnover with tritium as a tracer. V. The predominantly non-dynamic state of body constituents in the rat. J. biol. Chem. 223, 795–809 (1956).PubMedGoogle Scholar
  80. Tsurufuji, S., and Y. Ogata: Mechanism of the formation of insoluble collagen. Collagen Curr. 5, 36 (1964).Google Scholar
  81. Verzar, F.: The aging of collagen fibres. Experientia (Basel), Suppl. 4, 35–41 (1956).Google Scholar
  82. Verzar, F.: (1957): Cit. by Hall (1965), p. 392.Google Scholar
  83. Verzar, F.: The aging of collagen. Sci. Amer. 208 (4), 104–114 (1963).PubMedCrossRefGoogle Scholar
  84. Vhdik, A.: Biomekaniska studier av rörelseapparatens komponenter. Nord. Med. 72, 1455 (1964).Google Scholar
  85. Viidik, A. and T. Lewin: Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta orthop. scand. 37, 141–155 (1966).PubMedCrossRefGoogle Scholar
  86. Viidik, A., L. Sandqvist, and M. Magi: Influence of postmortal storage on tensile strength characteristics and histology of rabbit ligaments. Acta orthop. scand., Suppl. 79 (1965).Google Scholar
  87. Vis, J. H.: Histological investigations into the attachments of tendons and ligaments to the mammalian skeleton. Proc. kon. ned. Akad. Wet. 60, 147–157 (1957).Google Scholar
  88. Vogel, A.: Fine structural characteristics of collagen fibers. Path. et Microbiol. (Basel) 27, 436–446 (1964).Google Scholar
  89. Walker, L. B., Jr., E. H. Harris, and J. V. Benedict: Stress-strain relationship in human cadaveric plantaris tendon: a preliminary study. Med. Electron. Biol. Eng. 2, 31–38 (1964).PubMedCrossRefGoogle Scholar
  90. Walls, E. W.: The microanatomy of muscle. In: Structure and function of muscle. I. Structure, p. 21–61 [G. H. Bourne (ed.)]. New York: Academic Press 1960.Google Scholar
  91. Wertheim, M. G.: Mémoire sur l’élasticité et la cohésion des principaux tissus du corps humain. Ann. Chim. Phys. 21, 385–414 (1847).Google Scholar
  92. Wright, D. G., and D. C. Rennels: A study of the elastic properties of plantar fascia. J. Bone Jt Surg. A 46, 482–492 (1964).Google Scholar
  93. Zarzycki, J.: Origin of collagenous fibers in the mammary gland by electron microscope investigations. Folia morph. (Warszawa) 15, 219–226 (1964).Google Scholar
  94. Zelander, T.: Ultrastructure of articular cartilage. Z. Zellforsch. 49, 720–738 (1959).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • A. Viidik

There are no affiliations available

Personalised recommendations