Advertisement

Biological Aspects of Pigment Cell Research

  • A. C. J. Burgers

Abstract

An important requisite in the struggle for life of many animals is camouflage. This capacity enables them to hide from predatory enemies or to spy upon their prey unobserved. Numerous invertebrates and nearly all poikilotherm vertebrates have developed this faculty into a fascinating art. These animals are able to adapt the colour of their skin rapidly to that of their environment. In cephalopods such a colour change is achieved within a few seconds; most fishes and some reptiles can change their skin colour in minutes, whereas in crustaceans, elasmobranchs and amphibians this phenomenon may take hours. Less spectacular colour changes are observed in leeches and echinoderms.

Keywords

Xenopus Laevis Pigment Cell Biological Aspect Colloid Vesicle Swimming Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Axelrod, J., and R. J. Wurtman: Melatonin synthesis in the hen pineal gland and its control by light. Nature 201, 1134 (1964).PubMedCrossRefGoogle Scholar
  2. [2]
    Bagnara, J. T.: Hypophysectomy and tail darkening reaction in Xenopus. Proc. Soc. exp. Biol. 94, 572–575 (1957).PubMedGoogle Scholar
  3. [3]
    Bagnara, J. T.: Tail melanophores of Xenopus in normal development and regeneration. Biol. Bull. 118, 1–8 (1960).CrossRefGoogle Scholar
  4. [4]
    Bagnara, J. T.: Pineal regulation of the body lightening reaction in Amphibian larvae. Science 132, 1481–1483 (1960).PubMedCrossRefGoogle Scholar
  5. [5]
    Bagnara, J. T.: The pineal and the body lightening reaction of larval Amphibians. Gen. comp. Endocr. 3, 86–100 (1963).Google Scholar
  6. [6]
    Bagnara, J. T.: Independent actions of pineal and hypophysis in the regulation of chromatophores of anuran larvae. Gen. comp. Endocr. 4, 299–303 (1964).Google Scholar
  7. [7]
    Barrington, E. J. W.: Hormones and the control of color. In: The Hormones, IV. p. 299–358. New York: Academic Press 1964.Google Scholar
  8. [8]
    Berde, B., und A. Cerletti: Cber den Melanophoreneffekt von D-Lysergsäure-diäthylamide und verwandten Verbindungen. Hely. physiol. pharmacol. Acta 14, 325–333 (1956).Google Scholar
  9. [9]
    Birr, Y., and C. H. Li: Isolation and properties of a new, biologically active peptide from sheep pituitary glands. J. Biol. Chem. 239, 1048 to 1052 (1963).Google Scholar
  10. [10]
    Bles, E. J.: The life history of Xenopus laevis Daud. Trans. roy. Soc. Edinb. 41, 789–822 (1905).Google Scholar
  11. [11]
    Burgers, A. C. J.: On the influence of adrenaline and adrenaline-like compound on the melanophore activity of Xenopus laevis. Acta physiol. pharmacol. neerl. 5, 1–2 (1956).Google Scholar
  12. [12]
    Burgers, A. C. J.: Investigations into the action of certain hormones and other substances on the melanophores of the South African clawed toad, Xenopus laevis. Thesis p. 1–95. Arnhem: van der Wiel 1956.Google Scholar
  13. [13]
    Burgers, A. C. J.: The reactions of the melanophores of the South African clawed toad, Xenopus laevis, to phenylalkylamines and some other substances. Acta physiol. pharmacol. neerl. 5, 263–270 (1957).PubMedGoogle Scholar
  14. [14]
    Burgers, A. C. J.: Investigations of the action of hormones and light on the erythromelanosomes of the swimming crab, Macropipus vernalis. Pubbl. Staz. Zool. Napoli 31, 139–145 (1959).Google Scholar
  15. [15]
    Burgers, A. C. J.: Electrophoretic behavior of pituitary melanocyte stimulating activities of vertebrate origin. 1st. Int. Congr. End. Copenhagen. Abstract no. 165, p. 329–330 (1960).Google Scholar
  16. [16]
    Burgers, A. C. J.: Occurrence of three electrophoretic components with melanocyte stimulating activity in extracts of single pituitary glands from ungulates. Endocrinology 68, 698–703 (1961).PubMedCrossRefGoogle Scholar
  17. [17]
    Burgers, A. C. J.: Studies on chromatophores. In VAN OORDT, G. J.: His contributions to science, p. 56–64. Arnhem: van der Wiel 1962.Google Scholar
  18. [18]
    Burgers, A. C. J.: Melanophore stimulating hormones in vertebrates. Ann. N. Y. Acad. Sci. 100, 669–677 (1963).PubMedGoogle Scholar
  19. [19]
    Burgers, A. C. J.: The effect of serotonine on the erythrophores of the prawn Palaemon serratus. Acta physiol. pharmacol. neerl. 12, 103–104 (1963).Google Scholar
  20. [19]
    Burgers, A. C. J.: The effect of serotonine on the erythrophores of the prawn Palaemon serratus. Acta physiol. pharmacol. neerl. 12, 103–104 (1963).Google Scholar
  21. [21]
    Burgers, A. C. J.: The effect of serotonine and 5-hydroxytryptophan on the crustacean erythrophore. Experientia 21, 401–402 (1965).PubMedCrossRefGoogle Scholar
  22. [21]
    Burgers, A. C. J.: The effect of serotonine and 5-hydroxytryptophan on the crustacean erythrophore. Experientia 21, 401–402 (1965).PubMedCrossRefGoogle Scholar
  23. [23]
    Burgers, A. C. J., P. J. H. Bennink, and G. J. Van Oordt: Investigations into the regulation of the pigmentary system of the blind Mexican cave fish, Anoptichthys jordani. Proc. kon. med. Akad Wet. C. 66, 189–195 (1963).Google Scholar
  24. [24]
    Burgers, TH., A. C. Boschman, and J. C. Van De Kamer: Excitement darkening and the effect of adrenaline on the melanophores of Xenopus laevis. Acta endocrin. 14, 72–82 (1953).Google Scholar
  25. [25]
    Burgers, TH., and K. Imai: The melanophore stimulating potency of single pituitary glands of normal and of D-lysergic acid diethylamide (D-LSD)-treated Xenopus laevis. Gen. comp. Endocr. 2, 603–604 (1962).Google Scholar
  26. [26]
    Burgers, TH. and G. J. Van Oordt: The amount of melanophore stimulating hormone in single pituitary glands of Xenopus laevis kept under various conditions. Gen. comp. Endocr. 3, 53–57 (1963).Google Scholar
  27. [27]
    Burgers, A. C. J., W. Leemreis, T. Dominiczak, and G. J. Van Oordt: Inhibition of the secretion of intermedin by D-lysergic acid diethylamide (LSD 25) in the toad Xenopus laevis. Acta endocrinol. 29, 191–200 (1958).PubMedGoogle Scholar
  28. [28]
    Burgers, A. C. J., and G. J. Van Oordt: Regulation of pigment migration in the amphibian melanophore. Gen. comp. Endocr. Suppl. 1, 99–109 (1962).CrossRefGoogle Scholar
  29. [29]
    Burgers, A. C. J., D. I. Zandee, J. M. M. Van Bakel, G. M. L. Hillemans, and G. J. Van Oordt: The effect of LSD derivatives and serotonin on the melanophores of the Xenopus laevis. Acta physiol. pharmacol. neerl. 11, 431–442 (1962).Google Scholar
  30. [30]
    Canella, M. F.: Note di fisiologia dei cromatofori dei vertebrati pecilocromi particolarmente dei Lacertili. Mon. Zool. Ital. 70–71, 430–477, (1962/63).Google Scholar
  31. [31]
    Carlisle, D. B., and F. G. W. Knowles: Endocrine control in crustaceans. Cambridge University Press 1959.Google Scholar
  32. [32]
    Case, J. D., and M. R. Wright: Effect of 0-methylation and other substitutions in indoles on lightening of frog melanocytes. Fed. Proc. 19, 282–286 (1960).Google Scholar
  33. [33]
    Cerletti, A., und B. Berde: Die Wirkung von D-Lysergsäure-diäthylamid (LSD-25) und 5-Oxytryptamine auf die Chromatophoren on Poecilia reticulatus. Experientia 11, 312–313 (1955).PubMedCrossRefGoogle Scholar
  34. [34]
    Charlton, H. M.: Uptake of labelled precursors of melatonin by the epiphysis of Xenopus laevis. Nature 204, 1093–1094 (1964).PubMedCrossRefGoogle Scholar
  35. [35]
    Corona, A., e A. Moroni: Contributo allo studio dell’ estratto di capsule surrenali. Rif. med. 14 (1898).Google Scholar
  36. [36]
    Courrier, R., et G. Cehovic: Action de l’hormone melanophorotrope purifiée (a-MSH) sur la fonction thyroidienne chez le lapin. C. R. Acad. Sci. (Paris) 251, 832–834 (1960).Google Scholar
  37. [37]
    Dawson, A. B.: The integument of Necturus maculosus. J. Morph. 34, 487–580 (1920).CrossRefGoogle Scholar
  38. [38]
    Duchon, J., and Z. Pechan: Biochemie melaninu a melanogenese. Prague: Stâtnf zdravotnické nakladatelstoi 1964.Google Scholar
  39. [39]
    Dyster-Aas, K., and C. E. T. Krakau: Increased permeability of the blood-aqueous humor barrier in the rabbit’s eye provoked by melanocyte stimulating peptides. Endocrinology 74, 255–265 (1964).PubMedCrossRefGoogle Scholar
  40. [40]
    Edman, P., R. Fänge, and E. Ostlund: Isolation of the red pigment concentrating hormone of the crustacean eyestalk. Zweites Intern. Symp. Neurosekr., p. 119–123. Berlin: Springer 1958.Google Scholar
  41. [41]
    Evans, L. T., and L. H. Geronimus: Effect of ergot drugs on Betta splendens. Science 123, 26 (1956).PubMedCrossRefGoogle Scholar
  42. [42]
    Falk, S., and J. Rhodin: Mechanism of pigment migration within teleost melanophores. In: Electron microscopy: Proceedings of the Stockholm conference, p. 213–215. New York Acad. Press. Inc. Sjöstrand, F. S., and J. Rhodin 1957.Google Scholar
  43. [43]
    Ferrari, W.: Behavioural changes in animals after intracisternal injection with adrenocorticotrophic hormone and melanocyte-stimulating hormone. Nature 181, 925–926 (1958).PubMedCrossRefGoogle Scholar
  44. [44]
    Ferrari, W., G. L. Gessa, and L. Vargul: Stretching activity in dogs intracisternally injected with a synthetic melanocyte stimulating peptide. Experientia 17, 90 (1961).PubMedCrossRefGoogle Scholar
  45. [45]
    Fingerman, M.: The control of chromatophores. Oxford: Pergamon Press 1963.Google Scholar
  46. [46]
    Ferrari, W., and W. C. Mobberly: Physicochemical properties and differentiation of chromatophorotropins and retinal pigment light-adapting hormone in the dwarf crayfish, Carnbarellus shufeldtii. Am. Midl. Nat. 64, 474 to 484 (1960).Google Scholar
  47. [47]
    Forsdahl, K. A.: Mechanism of pigment-granule movement in melanophores of the lizard Anolis carolinensis. Nytt. Mag. Zool. 8, 38 (1959).Google Scholar
  48. [48]
    Friesen, H.: Hypocalcemic effect of pituitary polypeptides in rabbits. Endocrinology 75, 692–697 (1964).PubMedCrossRefGoogle Scholar
  49. [49]
    Fuji, R.: Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokio 9, 171–196 (1961).Google Scholar
  50. [50]
    Geschwind, I. I.: The control of pigmentary effectors. In: Comparative Endocrinology, p. 421–443. Wiley New York: A. Gorbman 1959.Google Scholar
  51. [51]
    Guardabassi, A., M. G. Lattes e A. Noravo: La reazione al buffo e al trattamento con tiroxina dei melanofori di larve di Xenopus laevis normali, cieche e private dell’ encefalo anteriore. Arch. ital. Anat. Embriol. 69, 61–81 (1964).Google Scholar
  52. [52]
    Guttmann, ST.: Synthetische Peptid-Analoge von a-MSH und ACTH. Angew. Chemie 72, 47–48 (1960).Google Scholar
  53. [53]
    Hadley, C. E.: Color changes in excised and intact reptilian skin. J. exp. Zool. 58, 321–331 (1931).CrossRefGoogle Scholar
  54. [54]
    Hofmann, K.: Relation of structure and function in the melanocyte expanding hormone series. Meeting Am. Chem. Soc. Atlantic City, Abstr. 21–22 (1959).Google Scholar
  55. [55]
    Iturriza, F. C., and O. R. Koch: Effect of the administration of Lysergic acid diethylamide (LSD) on the colloid vesicles of the pars intermedia of the toad pituitary. Endocrinology 75, 615–616 (1964).PubMedCrossRefGoogle Scholar
  56. [56]
    Kahr, H., und W. Fischer: Die Wirkung des 5-Oxytryptamines auf das Pigmentsystem der Haut. Klin. Wschr. 35, 41–44 (1957).PubMedCrossRefGoogle Scholar
  57. [57]
    Kawaguti, S., and S. Ohgishi: Electron microscopic study on iridophores of a cuttlefish Sepia esculenta. Biol. J. Okayama Univ. 8, 115–129 (1962).Google Scholar
  58. [58]
    Ketterer, B., and E. Remilton: Studies on the pituitary melanophoreexpanding hormone with reference to its identity with ACTH. J. Endocrinol. 11, 7–13 (1954).PubMedCrossRefGoogle Scholar
  59. [59]
    Kleinholz, L. H.: Studies in reptilian colour changes, III Control of the light phase and behaviour of isolated skin. J. exp. Biol. 15, 492–498 (1938).Google Scholar
  60. [60]
    Knowles, F. G. W.: The control of the white reflecting chromatophores in crustacea. Pubbl. Staz. Zool. Napoli 17, 1–19 (1939).Google Scholar
  61. [61]
    Knowles, F. G. W.: Response of isolated white chromatophores of crustacea to change of illumination. Nature 146, 131–132 (1940).CrossRefGoogle Scholar
  62. [62]
    Kulemann, H.: Untersuchungen der Pigmentbewegungen in embryonalen Melanophoren von Xeno pus laevis in Gewebekulturen. Zool. Jb. allgem. Zool. 69, 169–192 (1960).Google Scholar
  63. [63]
    Lek, Van Der, B., J. De Heer, A. C. J. B.rgers, and G. J. Van Oordt: The direct reaction of the tailfin melanophores of Xenopus tadpoles to light. Acta physiol. pharmacol. neerl. 7, 409–419 (1958).Google Scholar
  64. [64]
    Lerner, A. B.: Vitiligo. J. invest. Dermat. 32, 285–310 (1959).CrossRefGoogle Scholar
  65. [65]
    Lerner, A. B., and J. D. Case: Pigment cell regulatory factors. J. invest. Dermat. 32, 211–221 (1959).CrossRefGoogle Scholar
  66. [66]
    Lerner, A. B., and J. D. Case: Melatonin. Intersoc. Symp. on new and neglected hormones. Fed. Proc. 19, 590–592 (1960).Google Scholar
  67. [67]
    Lerner, A. B., and R. V. Heinzelman: Structure of melatonin. J. Amer. Chem. Soc. 81, 6084–6085 (1959).CrossRefGoogle Scholar
  68. [68]
    Lerner, A. B., W. Mori, and M. R. Wright: Melatonin in peripheral nerve. Nature 183, 1821 (1959).PubMedCrossRefGoogle Scholar
  69. [69]
    Lerner, A. B., Y. Takahashi, T. H. Lee, and W. Mori: Isolation of melatonin, the pineal factor that lightens melanocytes. J. Amer. Chem. Soc. 80, 2587 (1958).CrossRefGoogle Scholar
  70. [70]
    Lerner, A. B., and J. S. Mcguire: Effect of alpha and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189, 176–179 (1961).PubMedCrossRefGoogle Scholar
  71. [71]
    Lerner, A. B., and J. S. Mcguire: Melanocyte-stimulating hormone and adrenocorticotropic hormone. Their relation to pigmentation. New. Engl. J. Med. 270, 539–546 (1964).PubMedCrossRefGoogle Scholar
  72. [72]
    Li, C. H.: Lipotropin, a new active peptide from pituitary glands. Nature 201, 924 (1964).PubMedCrossRefGoogle Scholar
  73. [73]
    Li, C. H.: Studies on the relation between structure and the melanotropic and lipotropic activities of synthetic peptides. In: The biochemical aspects of hormone action, p. 49–65. Little Brown Comp. Eisenstein 1964.Google Scholar
  74. [74]
    Long, J. M., W. A. Krivoy, and R. Guillemin: On the possible role of fi-melanocyte stimulating hormone (ß-MSH) in the central nervous system of Mammalia. Endocrinology 69, 176–181 (1961).PubMedCrossRefGoogle Scholar
  75. [75]
    Mccord, C. P., and F. P. Allen: Evidences associating pineal gland function with alterations in pigmentation. J. exp. Zool. 23, 207–224 (1917).CrossRefGoogle Scholar
  76. [76]
    Mackie, G. O.: Pigment effector cells in a Cnidarian. Science 137, 689 to 690 (1962).Google Scholar
  77. [77]
    Mira, E.: Studio quantitativo fotometrico della modificazioni dei cromatofori di Scardinius erythrophthalmus L. Mikroskopie 18, 216–222 (1963).PubMedGoogle Scholar
  78. [78]
    Mishima, Y., and A. V. Loud: The ultrastructure of unmelanized pigment cells in induced melanogenesis. Ann. N. Y. Acad. Sci. 100, 607–617 (1963)Google Scholar
  79. [79]
    Mori, W., and A. B. Lerner: A microscopic bioassay for melatonin. Endocrinology 67, 443–450 (1960).PubMedCrossRefGoogle Scholar
  80. [80]
    Novales, R. R.: Responses of cultured melanophores to the synthetic hormones a-MSH, melatonin and epinephrine. Ann. N. Y. Acad. Sci. 100, 1035–1047 (1963).PubMedGoogle Scholar
  81. [81]
    Novales, R. R., and B. J. Novales: Dynamics of tissue cultured melanophore responses to hormones, as revealed by frame analysis. Amer. Zool. 2, 267 (1962).Google Scholar
  82. [82]
    Obika, M., and J. T. Bagnara: Photic influences on Xenopus melanophores in tissue culture. Amer. Zool. 3, 495 (1963).Google Scholar
  83. [83]
    Östlund, E., and R. Fänge: On the nature of the eye-stalk hormone which causes concentration of red pigment in shrimps (Natantia).Ann. Sci. Nat. Zool. 11, 325–334 (1956).Google Scholar
  84. [84]
    Parker, G. H.: Animal colour changes and their neurohumours. Cambridge: University Press (1948).Google Scholar
  85. [85]
    Prop, N., and J. Ariens-Kappers: Demonstration of some compounds present in the pineal organ of the albino rat by histochemical methods and paper chromatography. Acta anat. 45, 90–109 (1961).PubMedCrossRefGoogle Scholar
  86. [86]
    Quay, W. B., and J. T. Bagnara: Relative potencies of indolic and related compounds in the body-lightening reaction of larval Xenopus. Arch. in Pharmacodyn. 150, 137–143 (1964).Google Scholar
  87. [87]
    Raven, Chr. P.: Zur Entwicklung der Ganglienleiste. V. Ober die Differenzierung des Rumpfganglienleistenmaterials. Roux Arch. 134, 122 bis 146 (1936).Google Scholar
  88. [88]
    Raven, Chr. P.: Experiments on the origin of the sheath cells and sympathetic neuroblasts in Amphibia. J. comp. Neur. 67, 221–240 (1937).CrossRefGoogle Scholar
  89. [89]
    Redfield, A. C.: The physiology of the melanophores of the horned toad Phrynosoma. J. exp. Zool. 26, 275–335 (1948).CrossRefGoogle Scholar
  90. [90]
    Schwyzer, R., H. Kappeler, B. Iselin, W. Rittel, and H. Zuber: Syn-these und biologische Aktivität von geschützten Polypeptidsequenzen des ß-Melanophoren stimulierenden Hormons (fi-MSH) des Rindes. Hely. chim. Acta 42, 1702–1708 (1959).Google Scholar
  91. [91]
    Snell, R. S.: Effect of the melanocyte stimulating hormone of the pituitary on melanocytes and melanin in the skin of guinea pigs. J. endocr. 25, 249–258 (1962).PubMedCrossRefGoogle Scholar
  92. [92]
    Spaeth, R. A.: Evidence proving the melanophore to be disguised type of smooth muscle cell. J. exp. Zool. 20, 193–213 (1916).CrossRefGoogle Scholar
  93. [93]
    Sprague, R. G., M. H. Power, H. L. Mason, D. R. Mathiesen, P. S. Hench, F. S. Kendall, C. H. Slocum, and H. F. Poley: Observations on the physiologic effects of cortisone and ACTH in man. Arch. int. Med. 85, 199–258 (1950).Google Scholar
  94. [94]
    Steelman, S. L., and R. Guillemin: Adrenocorticotropic activity of alpha melanocyte stimulating hormones (a-MSH).Proc. Soc. exp. Biol. Med. 101, 600–601 (1959).Google Scholar
  95. [95]
    Steelman, S. L., and W. W. Smith: The adipokinetic activities of the corticotrophins and MSH. Acta end. 33, 67–72 (1960).Google Scholar
  96. [96]
    Stoppani, A. O. M.: Neuroendocrine mechanism of color change in Bufo arenarum Hensel. Endocrinology 30, 782–786 (1942).CrossRefGoogle Scholar
  97. [97]
    Supnieuwski, J., T. Maczynski, and T. Misztal: Biological properties of Melatonin (5-Methoxy-N-acetyltryptamine).Bull. Acad. pol. Sci. 8, 483–487 (1960).Google Scholar
  98. [98]
    Szmuskovicz, J., W. C. Anthony, and R. V. Heinzelman: Synthesis of N-acetyl-5-methoxytryptamine. J. org. Chem. 28, 857–858 (1960).CrossRefGoogle Scholar
  99. [99]
    Welsh, J. H., and M. Moorhead: The quantitative distribution of 5hydroxy-tryptamine in the invertebrates, especially in their nervous systems. J. Neurochem. 6, 146–169 (1960).CrossRefGoogle Scholar
  100. [100]
    Wyman, L. C.: Blood and nerve as controlling agents in the movements of melanophores. J. exp. Zool. 39, 73–132 (1924).CrossRefGoogle Scholar
  101. [101]
    Yoshida, M.: On the light response of the chromatophore of the sea-urchin Diadema setosum (Leske). J. exp. Biol. 33, 119–123 (1956).Google Scholar
  102. [102]
    Zettner, A.: Über die Lichtreaktion der Froschhautchromatophoren. Z. Biol. 108, 210–216 (1956).PubMedGoogle Scholar
  103. [103]
    Zimmerman, S. B., and H. C. Dalton: Physiological responses of amphibian melanophores. Physiol. Zool. 34, 21–33 (1961).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • A. C. J. Burgers
    • 1
  1. 1.Zoological LaboratoryUniversity of UtrechtThe Netherlands

Personalised recommendations