Advertisement

Strahlenchemie des Wassers, wäßriger Lösungen und einfacher organischer Verbindungen

  • W. Minder
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 2 / 1)

Zusammenfassung

Trotz der Tatsache, daß Änderungen des chemischen Zustandes und des chemischen Geschehens nach Energieaufnahme aus ionisierender Strahlung die primäre Phase aller Strahlenreaktionen an biologischen Systemen beliebiger Natur und Differentiation darstellen müssen, ist die Strahlenchemie bis vor kurzem eine weitgehend vernachlässigte Wissensdisziplin geblieben. Andere und dringlicher scheinende Aufgaben haben in den ersten etwa 30 Jahren der Geschichte der Röntgenstrahlen und der Radioaktivität die Wissenschafter in Anspruch genommen; den medizinisch orientierten Forscher beschäftigten vorwiegend Fragen im Zusammenhang mit seiner diagnostischen und therapeutischen Tätigkeit, den Physiker solche nach der Natur der Strahlungen und ihrer primären Wechselwirkungen mit der Materie, vorzüglich in ihrer einfachsten Form. Änderungen der Phänomenologie wurden entweder als interessante Nebenerscheinungen kurz erwähnt oder aber als unliebsame Komplikationen der experimentellen Sachlage empfunden. Die Zeit war noch nicht reif für ein tieferes Eingehen auf strahlenchemische Erscheinungen, besonders auch, weil eine sachgerechte Molekulartheorie der Materie fehlte. Erst die von Kossel und Lewis begründeten Elektronentheorien der chemischen Bindung schufen im Zusammenspiel mit der erweiterten Quantentheorie und der Wellenmechanik die Voraussetzungen zum tieferen Verständnis strahlenchemischer Vorgänge.

Literatur

Bücher und zusammenfassende Abhandlungen

  1. Allen, A. O.: The mdiation chemistry of water and aqueous solutions. Princeton: D. van Norstmnd Co. 1961.Google Scholar
  2. Americ. Inst. Petroleum Research: Project 44; Catalogue of mass spectml data. Washington, D.C.: Nat. Bureau of Standards 1944/1954.Google Scholar
  3. Bacq, Z. M., and P. Alexander: Fundamentals of mdiobiology. London: Butterworths Publ. 1955.Google Scholar
  4. Bolt, R. O., and J. G. Carroll: Radiation effects in organic materials. New York and London: Academic Press 1963.Google Scholar
  5. Briegleb, G., Til Forster, H. Friedrich, P. Jordan, G. Kortum, A. Munster, G. Scheibe U. K. Wirtz: Zwischenmolekulare Krüfte. Karlsruhe: G. Braun 1949.Google Scholar
  6. Cüarlesby, A.: Atomic radiation and polymers. London: Pergamon Press 1960.Google Scholar
  7. Clark, G. L.: Applied X-rays. New York: McGraw Hill Book Co. 1955.Google Scholar
  8. Claus, W. D. (Editor): Radiation biology and medicine. Reading: Addison-Wesley Publ. Co. 1958.Google Scholar
  9. Darmois, E.: L’état liquide de la matiere. Paris: Alb. Michel 1943.Google Scholar
  10. Davies, K. S., u. J. A. Day: Das Wasser, der Spiegel der Wissenschaft. München: Kurt Oesch 1961.Google Scholar
  11. Dessauer, F.: Quantenbiologie. Berlin-Güttingen-Heidelberg: Springer 1954.Google Scholar
  12. Ebert, M., and A. Howard (Editors): Radiation effects in physics, chemistry and biology. Amsterdam: North-Holland Publ. Co. 1963.Google Scholar
  13. Errera, M., and A. Forssberg (Editors): Mechanisms in radiobiology, 2 vol. New York and London: Academic Press 1961.Google Scholar
  14. Field, F. H., and J. L. Franklin: Electron impact phenomena. New York: Academic Press Inc. 1957.Google Scholar
  15. Filinowskyi, V. J., u. J. A. Chizmadzcew (Herausgeber): Primarvorgange bei strahlenchemischen Reaktionen. [Russisch.] 1. Gesamtrussische Konferenz Uber Strahlenchemie. Moskau 1957.Google Scholar
  16. Glockler, G., and S. C. Lind: The electrochemistry of gases and other dielectrics. New York: John Wiley & Sons 1939.Google Scholar
  17. Green, H. S.: Molecular theory of fluids. Amsterdam: North-Holland Publ. Co. 1952.Google Scholar
  18. Haissinsky, M.: La chimie nucleaire et ses applications. Paris: Masson & Cie. 1957.Google Scholar
  19. Haissinsky, M.: (Editeur): Actions chimiques et biologiques des radiations, vol. 1–8. Paris: Masson & Cie. 1955–1965.Google Scholar
  20. Hannan, R. S. (Editor): Scientific and technical problems involved in using ionizing radiations for preservation of food. London: Her Majesty Stationary Office 1955.Google Scholar
  21. Hart, E. J., and R. L. Platzman: Radiation chemistry: Mechanisms in radiobiology, vol. 1. New York: Academic Press 1961.Google Scholar
  22. Heys, H. L.: An introduction to electronic theory of organic compounds. London: G. G. Harrap & Co. 1960.Google Scholar
  23. Hine, G. J., and G. L. Brownell (Editors): Radiation dosimetry. New York: Academic Press 1956.Google Scholar
  24. Hine, J.: Reaktivitiit und Mechanismus der organischen Chemie. Stuttgrut: Georg Thieme 1960.Google Scholar
  25. Hirschfelder, J. O., C. F. Curtiss, and R. Bird: Molecular theory of gases and liquids. New York: John Wiley & Sons 1954.Google Scholar
  26. Hollander, A. (Editor): Radiation biology, 2 vol. New York: McGraw-Hill Book Co. 1955.Google Scholar
  27. IAEA: Large radiation sources in industry. Vienna 1960.Google Scholar
  28. IAEA: Proceedings of a conference on industrial uses of large radiation sources. Vienna 1963.Google Scholar
  29. Ingram, D. J. E.: Free radicals as studied by electron spin Tesonance. London: Butterworths Publ. 1958.Google Scholar
  30. Latarjet, R. (Editeur): Les peroxydes organiques en radio biologie. Paris: Masson & Cie. 1958.Google Scholar
  31. Lea, D. E.: Action of radiations on living cells. Campbridge: Cambridge University Press 1946.Google Scholar
  32. Lind, S. C.: The chemical effects of alphaparticles and electrons. New York: The chemical Catalog Co. Inc. 1928.Google Scholar
  33. Lind, S. C., C. J. Hochanadel, and J. A. Ghormley: Radiation chemistry of gases. New York: Reinhold Publ. Corp. 1961.Google Scholar
  34. Massey, H. S. W., and E. H. S. Burhop: Electronic and ionic impact phenomena. Oxford: Clarendon Press 1952.Google Scholar
  35. Mohler, H. (Herausgeber): Chemische Reaktionen ionisierender Strahlen. Aarau u. Frankfurt: Sauelländer & Co. 1958.Google Scholar
  36. Nickson, J. J. (Editor): Symposium on radiobiology. New York: John Wiley & Sons 1952.Google Scholar
  37. Pauling, L.: The nature of chemical bonds, 2nd ed. Oxford: University Press 1948.Google Scholar
  38. Reid, C.: Excited states in chemistry and biology. London: Butterworths Publ. 1957.Google Scholar
  39. Rollefson, G. K., and M. Burton: Photochemistry and the mechanism of chemical reactions. New York: Prentice Hall 1938.Google Scholar
  40. Schoffa, G.: Elektronenspinresonanz in der Biologie. Frankfurt: Braun-Verlag 1963.Google Scholar
  41. Semenow, N. N.: Some problems in chemical kinetics and reactivity. Princeton: University Press 1958.Google Scholar
  42. Sommermeyer, K.: Quantenphysik der Strahlenwirkung in Biologie und Medizin. Leipzig: Akademische Verlagsgesellschaft 1952.Google Scholar
  43. Spinks, J. W. T., and R. J. Woods: An introduction to radiation chemistry. New York: John Wiley & Sons 1964.Google Scholar
  44. Swallow, A. J.: Radiation chemistry of organic compounds. London: Pergamon Press 1960.Google Scholar
  45. Weissberger, A. (Editor): Physical methods of organic chemistry, 2 vol. New York: Interscience Publ. 1945.Google Scholar
  46. Zimmer, K. G.: Studien zur quantitativen Strahlenbiologie. Wiesbaden: Verl. Akad. Wiss. und Lit. 1960.Google Scholar

Originalarbeiten

  1. Adamczewski, I.: Ionization chambers with liquids and their practical application. Selected topics in radiation dosimetry. IAEA 1961, p.191–201.Google Scholar
  2. Allen, A. O.: Radiation chemistry of aqueous solutions. J. phys. coll. Chem. 52, 479–490 (1948).Google Scholar
  3. Allen, A. O.: Mechanism of decomposition of water by ionizing radiations. Disc. Faraday Soc. 12, 79–87 (1952).Google Scholar
  4. Allen, A. O.: The yields of free Hand OH in the irradiation of water. Radiat. Res. 1, 85–96 (1954).PubMedGoogle Scholar
  5. Allen, A. O.: A surway of recent American research in the radiation chemistry of aqueous solutions. Geneva Conf. Proc. 7, 513–520 (1956).Google Scholar
  6. Allen, A. O., V. D. Hogan, and W. G. Rothschild: Studies in the radiolysis of ferrous sulfate solutions; effect of acid concentration in solutions containing oxygen. Radiat. Res. 7, 603–608 (1957).PubMedGoogle Scholar
  7. Allen, A. O., V. D. Hogan, and W. G. Rothschild: Studies in the radiolysis of ferrous sulfate solutions; effect of oxygen concentration in 0,8 N sulfuric acid. Radiat. Res. 7, 591–602 (1957).PubMedGoogle Scholar
  8. Allen, A. O., V. D. Hogan, and H. A. Schwarz: Decomposition of water under high energy radiation. Sec. Geneva Conf. 29, 30–37 (1958).Google Scholar
  9. Allsopp, C. B.: Radiochemistry; a review of recent progress. Trans. Faraday Soc. 40, 79–87 (1944).Google Scholar
  10. Allsopp, C. B.: Radiation chemistry in relation to radiobiology. Brit. J. Radiol. 24, 413–416 (1951).PubMedGoogle Scholar
  11. Allsopp, C. B., and J. Wilson: Effect of radiation on aqueous solutions of indole. Disc. Faraday Soc. 12, 299–305 (1952).Google Scholar
  12. Amphlett, C. B.: Radiation chemistry of the ferrous — ferric system. Nature (Lond.) 165, 977–978 (1950).Google Scholar
  13. Amphlett, C. B.: The radiation chemistry of the ferrous — ferric systems. Disc. Faraday Soc. 12, 144–155 (1952).Google Scholar
  14. Amphlett, C. B.: Reduction of ferric ion in aqueous solution by y-radiation. Nature (Lond.) 171, 690–693 (1953).Google Scholar
  15. Anbar, M., and J. K. Thomas: Pulse railiolysis studies of aqueous sodiumchloride solutions. J. phys. Chem. 68, 3829–3835 (1964).Google Scholar
  16. Anderson, A. R., and E. J. Hart: Molecular product and free radical yields in the decomposition of water by protons, deutons and heliumions. Radiat. Res. 14, 689–704 (1961).PubMedGoogle Scholar
  17. Anderson, A. R., and E. J. Hart: Radiation chemistry of water with pulsed high intensity electron beams. J. phys. Chem. 66, 70–75 (1962).Google Scholar
  18. Anderson, D. R., and B. J. Joseph: Radiation effects on aqueous solutions of S-(2aminoethyl) thiuronium salts. Radiat. Res. 10, 507–514 (1959).PubMedGoogle Scholar
  19. Anderson, R. S., and B. Harrison: The quantitative effect of X-rays on ascorbic acid in simple solution and in mixtures of naturally occuring compounds. J. gen. Physiol. 27, 69–75 (1943).PubMedGoogle Scholar
  20. Anta, M. C., et M. Lefort: Decomposition de l’eau par les myons alpha du polonium. J. Chim. phys. 51, 29–32 (1954).Google Scholar
  21. Anta, M. C., M. L. Roda Santos, and M. A. Paias: The action of ionizing radiations on aqueous solutions of indigocarmine. Sec. Geneva Conf. 29, 99–106 (1958).Google Scholar
  22. Armstrong, D., E. Collinson, F. S. Dainton, D. M. Donaldson, E. Hayon, N. Miller, and J. Veiss: Primary products in the irradiation of aqueous solutions with X-and gamma rays. Sec. Geneva Conf. 29, 80–91 (1958).Google Scholar
  23. Armstrong, W. A., and G. A. Grant: The use of triarylmethane compounds for chemistry dosimetry. Radiat. Res. 8, 375–387 (1958).PubMedGoogle Scholar
  24. Ausloos, P., and J. F. Paulson: Radiolysis of simple ketones. J. Amer. chem. Soc. 80, 5117–5121 (1958).Google Scholar
  25. Bach, N.: Radiolytic oxidation of organic compounds. Geneva Conf. Proc. 7, 538–545 (1956).Google Scholar
  26. Back, R. A., E. A. Cherniak, E. Collinson, W. Cooper, F. S. Dainton, G. M. Meaburn, N. Miller, W. H. Stafford, G. A. Swan, P. S. Timmons, D. C. Walker, and D. Wright: Chemical changes induced in organic systems by ionizing radiations. Sec. Geneva Conf. 29, 115–127 (1958).Google Scholar
  27. Bakh, N. A., V. I. Medwedowsky, and V. V. Saraeva: Radiolysis and radiation induced oxidation of organic substances. Sec. Geneva Conf. 29, 128–134 (1958).Google Scholar
  28. Barker, R., W. H. Hamille, and R. R. Williams: Ion-molecule reactions of 1,3-butadiene, of acetylene and of acetylene-methane mixtures. J. phys. Chem. 63, 825–828 (1959).Google Scholar
  29. Barr, N. F., and M. B. Stark: The destruction of the fluorescence of quinine by gamma mys. Radiat. Res. 12, 1–4 (1960).PubMedGoogle Scholar
  30. Barron, E. S. G., J. Ambrose, and P. Johnson: The effect of X-irradiation on some physicochemical properties of amino acids and proteins. Radiat. Res. 2, 145–158 (1955).PubMedGoogle Scholar
  31. Barron, E. S. G., J. Ambrose, and V. Flood: The oxidation of thiols by ionizing mdiations. J. gen. Physiol. 33, 229–241 (1950).PubMedGoogle Scholar
  32. Baumeister, L., u. R. Glocker: Beitrag zur Kenntnis der Wirkung der Rontgenstrahlen auf Jodoform-Chloroformlosungen. Z. phys. Chem. 97, 368–375 (1921).Google Scholar
  33. Baxendale, J. H., and D. H. Smithies: The radiation chemistry of organic compounds in aqueous solution. Z. phys. Chem. 7, 242–264 (1956).Google Scholar
  34. Baxendale, J. H., and D. H. Smithies: X-irradiation of aqueous benzene solutions. J. chem. Soc. 1959, 779–783 (1959).Google Scholar
  35. Becker, J. P.: Photochemische Anderung von I-Asparaginsaure, I-Aspamgin und chemisch verwandten Stoffen durch Rontgenstrahlen und Ultraviolett. Strahlenthempie 50, 357–363 (1934).Google Scholar
  36. Bell, R. P.: Über die Hydratation von lonen in wäßrigen Losungen. Endeavour 17, 31–35 (1958).Google Scholar
  37. Bernhardt, H. A., W. Dawis, and C. H. Shifflett: Radiation effects of alpha particles on Uranium hexafluoride. Sec. Geneva Conf. 29, 62–70 1958.Google Scholar
  38. Black, J. F., and E. F. Baxter: Radiation initiated sulfoxidation of hydrocarbons. Sec. Geneva Conf. 29, 162–165 (1958).Google Scholar
  39. Boag, J. W., and A. Müller: Electron spin resonance in irradiated desoxyribonucleic acid. Nature (Lond.) 183, 831 (1959).Google Scholar
  40. Bonet-Maury, P.: Hydrogen peroxide formation in water exposed to ionizing radiations. Brit. J. Radiol. 24, 422–428 (1951).PubMedGoogle Scholar
  41. Bonet-Maury, P.: Chemical phenomena in irradiated pure water. Disc. Faraday Soc. 12, 72–79 (1952).Google Scholar
  42. Bothner-By, C. T., and E. A. Balazs: Effect of ionizing radiations on glucose solutions. Radiat. Res. 6, 302–317 (1957).PubMedGoogle Scholar
  43. Box, H. C., and H. G. Freund: Paramagnetic resonance shows radiation effects. Nucleonics 17 (1), 66–70 (1951).Google Scholar
  44. Breger, I. A.: Transformation of organic substances by alpha particles and deuterons. J. phys. coli. Chem. 52, 551–563 (1948).Google Scholar
  45. Broida, H. P.: Fixierte Radikale. Endeavour 17, 208–215 (1958).Google Scholar
  46. Burch, P. R. J.: Calculations of energy dissipation chamcteristics in water for various radiations. Radiat. Res. 6, 289–301 (1957).Google Scholar
  47. Burch, P. R. J.: A theoretical interpretation of the effect of radiation quality on yields of the ferrous and ceric sulfate dosimeters. Radiat. Res. 11, 481–497 (1959).PubMedGoogle Scholar
  48. Burns, W. G., W. Wild, and T. F. Williams: The effect of fast electrons and fast neutrons on polyphenyls at high temperatures. Sec. Geneva Conf. 29, 266–275 (1958).Google Scholar
  49. Burr, J. G.: A comparison of the radiolysis and mass spectrometry of seveml deuterated ethanols. J. Amer. chem. Soc. 79, 751–752 (1957).Google Scholar
  50. Burr, J. G.: The mdiolysis of deuterated and tritiated acetic acid. J. phys. Chem. 61, 1481–1483 (1957).Google Scholar
  51. Burton, M.: Radiation chemistry. J. phys. coli. Chem. 51, 611–625 (1947).Google Scholar
  52. Burton, M.: An interpretation of the effect of state on the behaviour of some organic compounds and solutions. J. phys. coli. Chem. 52, 564–578 (1948).Google Scholar
  53. Burton, M.: Radiation chemistry. Ann. Rev. phys. Chem. 1950, 113–132 (1950).Google Scholar
  54. Burton, M.: Elementary processes in the radiation chemistry of water and implications for radiobiology. Brit. J. Radiol. 24, 416–422 (1951).PubMedGoogle Scholar
  55. Burton, M., J. Chang, S. Lipsky, and M. P. Reddy: Radiation protection in cyclohexane. Radiat. Res. 8, 203–213 (1958).PubMedGoogle Scholar
  56. Burton, M., J. Chang, and J. L. Magee: Charge transfer in radiation chemistry of gases. J. phys. Chem. 56, 842–845 1952.Google Scholar
  57. Burton, M., J. Chang, and J. L. Magee: Einige chemische Aspekte der Strahlenbiologie. Naturwissenschaften 43, 433–442 1956.Google Scholar
  58. Burton, M., J. Chang, and W. N. Patrick: Radiation chemistry of mixtures of cyclohexane and benzene-D6. J. phys. Chem. 58, 421–423 (1954).Google Scholar
  59. Burtt, B. P., and J. F. Kircher: The X-ray decomposition of nitrous oxide. Radiat. Rec. 9, 1–12 (1958).Google Scholar
  60. Chapiro, A.: Chemical evidence of track effects in radiolysis of liquids. Radiat. Res. 6, 11–26 (1957).Google Scholar
  61. Charlesby, A.: The cross-linking and degredation of paraffin chains by high energy radiation. Proc. Roy. Soc. A 222, 60–74 (1954).Google Scholar
  62. Charlesby, A.: Effect of ionizing radiation on long chain olefines and acethylenes. Radiat. Res. 2, 96–107 (1955).PubMedGoogle Scholar
  63. Clark, G. L., and V. S. Coe: Photochemical reduction with X-rays and effects of additional agents. J. chem. Phys. 5, 97–105 (1937).Google Scholar
  64. Clark, G. L., and K. R. Fitsch: Chemical effects of X-rays upon some aromatic colours and dyes. Radiology 17, 285–293 (1931).Google Scholar
  65. Clark, G. L., and L. W. Pickett: Some new experiments on the chemical effects of X-rays and the energy relations involved. J. Amer. chem. Soc. 52, 465–479 (1930).Google Scholar
  66. Clay, P. G., G. R. A. Johnson, and J. Weiss: The action of ionizing radiations on aqueous solutions of ethylene and acethylene in the presence of oxygen. Proc. chem. Soc. 1957, 96–97 (1957).Google Scholar
  67. Cottin, M., M. Haissinsky et C. Vermeil: Oxydation radiochimique du sulfate ferreux en presence d’hydrocarbures et d’alcools. C. R. Acad. Sci. (Paris) 235, 542–544 (1952).Google Scholar
  68. Cronheim, G., U. P. Gunther: Die Energieausbeute bei der Zersetzung von Chloroform durch R6ntgenstrahlen und der Mechanismus solcher Reaktionen. Z. phys. Chem. B 9, 201–228 (1930).Google Scholar
  69. Dainton, F. S.: Effect of gamma-and X-rays on dilute aqueous solutions of acrylonitrile. Nature (Lond.) 160, 268–269 (1947).Google Scholar
  70. Dainton, F. S.: On the existence of free atoms and radicals in water and aqueous solutions subjected to ionizing radiation. J. phys. coll. Chem. 52, 52, 490–517 (1948).Google Scholar
  71. Dainton, F. S., and H. C. Sutton: Hydrogen-peroxide formation in the oxidation of dilute aqueous solutions of ferrous sulphate by ionizing radiations. Trans. Faraday Soc. 49, 1011–1025 (1953).Google Scholar
  72. Dale, W. M.: Actions of radiation on aqueous solutions; experimental work with enzymes in solution. Brit. J. Radiol., Suppl. 1, 46–50 (1947).Google Scholar
  73. Dale, W. M.: Protection effect and its specifity in irradiated aqueous solutions. Disc. Faraday Soc. 12, 293–299 (1952).Google Scholar
  74. Dale, W. M., and J. V. Davies: The deamination of aqueous solutions of I-serine by X-radiation. Nature (Lond.) 166, 1121 (1950).Google Scholar
  75. Dale, W. M., and J. V. Davies: The überation of hydrogen sulphide by X-radiation in cysteine and glutathione. Biochem. J. 48, 129–132 (1951).PubMedGoogle Scholar
  76. Dale, W. M., and J. V. Davies: Radiation effects on aqueous thiourea solutions. Radiat. Res. 7, 34–46 (1957).Google Scholar
  77. Dale, W. M., and G. W. Gilbert: The kinetics of deamination of nitrogeneous compounds by X-radiation. Biochem. J. 45, 93–99 (1949a).Google Scholar
  78. Dale, W. M., and G. W. Gilbert: The deamination of glycin by ex-radiation from desintegration of Boron in a nuclear reactor. Biochem. J. 45, 543–546 (1949b).PubMedGoogle Scholar
  79. Dale, W. M., and G. W. Gilbert, and J. P. Keene: The oxidation of ferrous sulphate solution. Brit. J. Radiol. 30, 340–342 (1957).PubMedGoogle Scholar
  80. Dale, W. M., and G. W. Gilbert, and W. J., Meredith: Further observations on the protection effect in radiation chemistry. Brit. J. Cancel. 3, 31–41 (1949).Google Scholar
  81. Dale, W. M., L. H. Gray, and W. J. Meredith: The inactivation of an enzyme (carboxypeptidase) by X-and ex-radiation. Phil. Trans. 242, 33–62 (1949).Google Scholar
  82. Dale, W. M., W. J. Meredith, and M. C. K. Tweedie: Mode of action of ionizing radiation on aqueous solutions. Nature (Lond.) 151, 280–281 (1943).Google Scholar
  83. Davison, H. W. T.: The radiolysis of liquid paraffins. Chem. and Ind. 57, 662–663 (1957).Google Scholar
  84. Day, M. J., and G. Stein: Chemical measurements of ionizing radiations. Nature (Lond.) 164, 671–672 (1949).Google Scholar
  85. Day, M. J., and G. Stein: The action of ionizing radiations on aqueous solutions of methylene blue. Radiat. Res. 6, 666–679 (1957).PubMedGoogle Scholar
  86. Debierne, A.: Recherches sur les gaz produits parles substances radioactives; decomposition de l’eau. Ann. de Phys. 2 (9), 97–127 (1914).Google Scholar
  87. Dewhurst, H. A.: Effect of organic substances on the y-ray oxidation of ferrous sulphate. J. chem. Phys. 19, 1329 (1951).Google Scholar
  88. Dewhurst, H. A.: Radiation chemistry of organic compounds. J. phys. Chem. 61, 1466–1471 (1957).Google Scholar
  89. Dewhurst, H. A., and M. Burton: Radiolysis of aqueous solutions of hydracine. J. Amer. chem. Soc. 77, 5781–5785 (1955).Google Scholar
  90. Dewhurst, H. A., A. H. Samuel, and J. L. Magee: A theoritical survey of the radiation chemistry of water and aqueous solutions. Radiat. Res. 1, 62–84 (1954).PubMedGoogle Scholar
  91. Dismukes, E. B., and V. S. Wilcox: The gamma radiolysis of butyl choride. Radiat. Res. 11, 754–760 (1959).PubMedGoogle Scholar
  92. Donaldson, D. M., and N. Miller: Radical yield measurements in irradiated aqueous solutions. Radiat. Res. 9, 487–497 (1958).PubMedGoogle Scholar
  93. Dondes, S.: Dosimetre a haut rendement pour la détection des rayons beta et gamma et des neutrons thermiques. Geneva Conf. Proc. 14, 196–198 (1956).Google Scholar
  94. Dorfman, L. M.: Radiolysis of ethane; isotopic and scavenger studies. J. phys. Chem. 62, 29–33 (1958).Google Scholar
  95. Dorfman, L. M.: The radiation chemistry of gases. Radiat. Res. 10, 607–609 (1959).PubMedGoogle Scholar
  96. Dorfman, L. M., and A. C. Wahl: The radiation chemistry of acetylene. Radiat. Res. 10, 680–690 (1959).PubMedGoogle Scholar
  97. Draganic, I.: L’action des rayons ionisants sur des solutions aqueuses de l’acide oxalique. J. Chim. phys. 52, 595–598 (1955).Google Scholar
  98. Draganic, I.: Oxalic acid; the only aequeous dosimeter for pile use. Nucleonics 21 (2), 33–35 (1963).Google Scholar
  99. Drimus, I., G. Ioanid, A. Dragut, P. Vasileco, and V. Dumitresco: Oxidation of technical quality Romanian paraffin under the action of radiation of 60CO. Sec. Geneva Conf. 29, 152–161 (1958).Google Scholar
  100. Duane, W., et O. Scheuer: Recherches sur la décomposition de l’eau par les rayons α. Le Radium 10, 33–46 (1913).Google Scholar
  101. Duran, L., and A. L. Tappel: Production of carbonyl compounds and sulfur compounds on irradiation of amino acids. Radiat. Res. 9, 489–501 (1958).Google Scholar
  102. Durup, M., J. Durup, F. Kuffer, and M. Magat: Peroxidation of organic compounds induced by ionizing radiations. Sec. Geneva Conf. 29, 143–151 (1958).Google Scholar
  103. Ebert, M., and J. W. Boag: The formation and decomposition of H20 2 in aqueous solutions by the action of high energy electrons and X-radiation. Disc. Faraday Soc. 12, 189–203 (1952).Google Scholar
  104. Ebert, M., P. Howard-Flanders, and D. Moore: The effect of oxygen on neutron yield of hydrogen peroxide in neutral water. Radiat. Res. 4, 110–116 (1956).PubMedGoogle Scholar
  105. ellrenberg, A., L. ellrenberg, and K. G. Zimmer: On production of magnetic centres in glycine. Acta chem. scand. 11, 199–203 (1957).Google Scholar
  106. ellrenberg, L., and E. Saeland: Chemical dosimetry of radiations giving different ion densities. An experimental determination of G-values for Fe2+-oxidation. Jener Publ. 8, 1–37 (1954).Google Scholar
  107. Eliezer, I., H. G. J. Hayman, and G. Stein: The radiation chemistry of unsaturated hydrocarbons in chloroform. Sec. Geneva Conf. 29, 113–114 (1958).Google Scholar
  108. Eltenton, G. C.: The mass spectrometric detection of free radicals. J. phys. coil. Chem. 52, 463–469 (1948).Google Scholar
  109. Eyring, H., J. O. Hirschfelder, and H. S. Taylor: The theoretical treatment of chemical reactions produced by ionization processes. J. chem. Phys. 4, 479–491 (1936).Google Scholar
  110. Fassbender, R. W., and R. H. Schuler: On the use of iodine as a radical detector in hydrocarbon radiolysis. J. Amer. chem. Soc. 79, 273–276 (1957).Google Scholar
  111. Feller, R., W. Minder, U. A. Liechti: Untersuchungen über die Strahlenhydrolyse einfacher Halogenverbindungen des Benzols unter besonderer Beriicksichtigung der Temperatur. Radiol. clin. (Basel) 17, 156–173 (1948).Google Scholar
  112. Feng, P. Y.: The radiation chemistry of fluorinated organic compounds. Sec. Geneva Conf. 29, 166–170 (1958).Google Scholar
  113. Fleischer, E.: Beitrage zur Bestrahlung von Thiamin. Diss. med. Fak. Erlangen 1957.Google Scholar
  114. Foner, S. N.: Free radicals and unstable molecules. Science 143, 441–450 (1964).PubMedGoogle Scholar
  115. Freeman, G. R., A. B. Van Cleve, and J. W. T. Spinks: Irradiation of one molar aqueous solutions of chloralhydrate with y-rays and betatron X-rays. Canad. J. Chem. 31, 1164–1172 (1953).Google Scholar
  116. Freund, W.: Eine neue Methode zur Strahlendosismessung. Wiener Klin. Wschr. 17, 417–418 (1904).Google Scholar
  117. Fricke, H.: Reduction of O2 to H2O2 by the irradiation of its aqueous solution with X-rays. J. chem. Phys. 2, 556–557 (1934).Google Scholar
  118. Fricke, H.: Track effect on ion chemistry of aqueous solutions. Ann. N. Y. Acad. Sci. 59, 567–573 (1955).PubMedGoogle Scholar
  119. Fricke, H., and E. J. Hart: The transformation of formic acid by irradiation of its aqueous solution with X-rays. J. chem. Phys. 2, 824 (1934).Google Scholar
  120. Fricke, H., and E. J. Hart: The oxidation of ferrous, ferrocyanide, arsenite and selenite ions by the irradiation of their aqueous solutions with X-rays. J. chem. Phys. 3, 60–61 (1935).Google Scholar
  121. Fricke, H., and H. P. Smith: Chemical reactions of organic compounds with X-ray activated water. J. chem. Phys. 6, 229–240 (1938).Google Scholar
  122. Fricke, H., and S. Morse: The action of Roentgen rays on solutions of ferrosulphate in water. Amer. J. Roentgenol. 18, 4213–430 (1927).Google Scholar
  123. Fricke, H., and S. Morse: The action of X-rays on ferrous sulphate in solution. Phil. Mag. 7, 129–141 (1929).Google Scholar
  124. Frilley, M.: The radiochemistry of aqueous solutions; a survey of recent French work. Brit. J. Radiol., Suppl. 1, 50–55 (1947).Google Scholar
  125. Gxumann, T.: Strahlenchemie der Kohlenwasserstoffe; Benzol-Cyclohexan. Helv. chim. Acta 44, 1337–1349 (1961).Google Scholar
  126. Gxumann, T.: Die Radiolyse flüssigen Hexans. Chimia 18, 345–349 (1964).Google Scholar
  127. Gxumann, T., and R. H. Schuler: The radiolysis of benzene by den sly ionizing radiations. J. phys. Chem. 65, 703–704 1961.Google Scholar
  128. Gallico, E., u. B. Camerino: Reduzierende Virkung von Rontgenstrahlen auf Losungen von Methylenblau. Experienta (Basel) 4, 109–110 (1948).Google Scholar
  129. Garrison, W. M., W. Bennett, and S. Cole: Synthesis of higher molecular weight products in the radiolysis of aqueous solutions of formic acid. Radiat. Res. 9, 647–659 (1958).PubMedGoogle Scholar
  130. Garrison, W. M., W. Bennett, S. Cole, H. R. Haymond, and B. M. Weeks: Indirect and direct action of heavy-particle radiation on acetic acid in aqueous solution. J. Amer. chem. Soc. 77, 2720–2727 (1955).Google Scholar
  131. Garrison, H. M., H. R. Haymond, W. Bennett, and S. Cole: Radiation induced oxidation of aqueous acetic acid-oxygen solutions. Radiat. Res. 10, 273–282 (1959).PubMedGoogle Scholar
  132. Garrison, H. M., H. R. Haymond, W. Bennett D. C. Morrison, B. M. Weeks, and J. Gile-Melchert: High energy helium-ion irradiation of aqueous acetic acid solutions. J. Amer. chem. Soc. 75, 2459–2464 1953.Google Scholar
  133. Garrison, H. M., H. R. Haymond, W. Bennett D. C. Morrison, B. M. Weeks, and B. M. Weeks: Some effects of heavy particle irradiation of aqueous acetic acid. Radiat. Res. 1, 97–108 (1954).PubMedGoogle Scholar
  134. Garrison, H. M., D. C. Morrison, H. R. Haymond, and J. G. Hamilton: High energy heliumtion irradiation of formic acid in aqueous solution. J. Amer. chem. Soc. 74, 4216 (1952).Google Scholar
  135. Garrison, H. M., and G. K. Rollefson: Radiation chemistry of aqueous solutions containing both ferrous ion and carbondioxide. Disc. Faraday Soc. 12, 155–161 (1952).Google Scholar
  136. Ghormley, J. A.: Lifetime of intermediates in water subjected to electron irradiation. Radiat. Res. 5, 247–251 (1956).PubMedGoogle Scholar
  137. Ghormley, J. A., and A. G. Stewart: Fluorescence phenomena in irradiated ice. J. Amer. chem. Soc. 78, 2934–2939 (1956).Google Scholar
  138. Giesel, F.: Über Radium und radioaktive Stoffe. Ber. dtsch. chem. Ges. 35, 3608–3611 (1902).Google Scholar
  139. Gilat, Y., and G. Stein: On the mechanism of oxidation of aerated ferrous sulphate solutions by gamma rays. Sec. Geneva Cord. 29, 43 (1958).Google Scholar
  140. Glass, A. L.: Optical rotation dosimetry for 60CO gamma facilities. Nucleonics 20 (12), 66–70 (1962).Google Scholar
  141. Glocker, R., u. O. Riese: Über die photochemische Wirkung von Rontgenstrahlen verschiedener Wellenlange. Z. Physik 48, 845–851 (1928).Google Scholar
  142. Glockler, G.: Controlled electron reactions. J. phys. coli. Chem. 52, 451–456 (1948).Google Scholar
  143. Glockler, G., and F. W. Martin: Polymerization of acetylene by slow electrons. Trans. electrochem. Soc. 74, 67–81 (1938).Google Scholar
  144. Gordon, S., and M. Burton: Radiation sensitivity of benzene-Ds. Science 115, 406 (1952).PubMedGoogle Scholar
  145. Gordon, S., and M. Burton: Radiation chemistry of pure organic compounds. Disc. Faraday Soc. 12, 88–98 (1952).Google Scholar
  146. Gordon, S., and E. J. Hart: Radiation decomposition of water under static and bubbling conditions. Sec. Geneva Conf. 29, 13–18 (1958).Google Scholar
  147. Gordon, S., and E. J. Hart: Spectrometrie detection of hydrated electrons in C0 60-γ-ray irradiated solutions. J. Amer. Chem. Soc. 86, 5343 (1964).Google Scholar
  148. Gordy, W., W. B. Ard, and H. Shields: Paramagnetic resonance in X-irradiated carboxylic and hydroxy acids. Proc. nat. Acad. Sci. (Wash.) 41, 996–1004 (1955).Google Scholar
  149. Gordy, W., W. B. Ard, and I. Miyagawa: Electron spin resonance studies for chemical protection from ionizing radiations. Radiat. Res. 12, 211–229 (1960).PubMedGoogle Scholar
  150. Greinacher, H.: Über die Erhöhung der Leitfähigkeit flüssiger Dielektrica durch α-Strahlen. Phys. Z. 10, 986–997 (1909).Google Scholar
  151. Grossweiner, L. I., and M. S. Matheson: Fluorescence and thermoluminescence in ice. J. chem. Phys. 22, 1514–1526 (1954).Google Scholar
  152. Gunther, P., U. L. Holzapfel: Die Zersetzung von Wasserdampf durch Rontgenstrahlen. Z. phys. Chem. B 42, 346–358 (1939).Google Scholar
  153. Gunther, P., H. D. Von Der Horst U. G. Cronheim: Die Einwirkung von Rontgenstrahlen auf Chloroform und ähnliche Verbindungen. Z. Elektrochem. 34, 616–625 (1928).Google Scholar
  154. Haissinsky, M.: Mechanism of radiochemical transformations in aqueous dilute solutions. Disc. Faraday Soc. 12, 133–143 (1952).Google Scholar
  155. Haissinsky, M., and M. Duflo: Heterogenous catalysis in radiation chemistry. Sec. Geneva Conf. 29, 47–51 (1958).Google Scholar
  156. Haissinsky, M., et M. Lefort: Role des radicaux oxygenes dans les oxydations et reductions produites par des rayonnements ionisants. J. Chimie phys. 48, 429–437 (1951).Google Scholar
  157. Haissinsky, M., et M. Magat: Sur les reaetions primaires produites par des radiations ionisantes dans l’eau. C. R. Acad. Sci. (Paris) 233, 954–956 (1951).Google Scholar
  158. Hamashima, M., M. P. Reddy, and M. Burton: Radiolysis of neopentane and cyelohexane by 60Co-γ-radiation. J. phys. Chem. 62, 246–247 (1958.Google Scholar
  159. Hardwick, T. J.: The effeet of the energy of, ionizing eleetrons on the yield in irradiated aqueous systems. Disc. Faraday Soc. 12, 203–211 (1952).Google Scholar
  160. Hardwick, T. J.: On the radiolysis of aqueous sodium formiate solutions. Radiat. Res. 12, 5–12 (1960).PubMedGoogle Scholar
  161. Hardy, W. B., and E. G. Willcock: On the oxidizing aetion of the rays from radium bromide as shown by the deeomposition of iodoform. Proc. Roy. Soc. 72, 200–204 (1903).Google Scholar
  162. Harker, G.: The decomposition of chloroform by the radiations of radon. J. Roy. Soc. N.S. Wales 67, 96–117 (1933).Google Scholar
  163. Harker, G.: The influence of sensitizers on chemical reactions produced by gamma-radiation. Nature (Lond.) 133, 378–379 (1934).Google Scholar
  164. Hart, E. J.: Mechanism of γ-ray-induced oxidation of formic acid in aqueous solution. J. Amer. chem. Soc. 73, 68–73 (1951).Google Scholar
  165. Hart, E. J.: The radical pair yield of ionizing radiation in aqueous solutions of formie acid. J. phys. Chem. 56, 594–599 (1952).Google Scholar
  166. Hart, E. J.: Gamma-ray indueed oxidation of aqueous formie aeid solutions. J. Amer. chem. Soc. 74, 4174–4178/4198–4201 (1954).Google Scholar
  167. Hart, E. J.: Gamma ray induced oxidation of aqueous formic aeid-oxygen solutions. J. Amer. chem. Soc. 76, 4312–4315 (1954a).Google Scholar
  168. Hart, E. J.: Molecular product and free radical yields of ionizing radiations in aqueous solutions. Radiat. Res. 1, 53–61 (1954b).PubMedGoogle Scholar
  169. Hart, E. J.: Radiation ehemistry of the aqueous formic acid-ferric sulfate system. J. Amer. chem. Soc. 77, 5786–5788 (1955).Google Scholar
  170. Hart, E. J.: Chemical effects of ionizing radiations on aqueous inorganic solutions. J. chem. Educ. 34, 586–593 (1957).Google Scholar
  171. Hart, E. J.: Recent studies on reactions in irradiated water. Sec. Geneva Conf. 29, 5–12 (1958).Google Scholar
  172. Hart, E. J.: The hydrated electron. Science 146, 19–25 (1964).PubMedGoogle Scholar
  173. Hart, E. J., and S. Gordon: Gas evolution for dosimetry of high gamma neutron fluxes. Nucleonics 12 (4), 40–43 (1954).Google Scholar
  174. Hart, E. J., and M. S. Matheson: Mechanism and rate constants of the y-ray induced decomposition of hydrogen peroxide in aqueous solutions. Disc. Faraday Soc. 12, 169–188 (1952).Google Scholar
  175. Hart, E. J., W. J. Ramler, and S. R. Rocklin: Chemical yields of ionizing particles in aqueous solutions; effect of energy of protons and deuterons. Radiat. Res. 4, 378–393 (1956).Google Scholar
  176. Haybittle, J. L., R. D. Saunders, and A. J. Swallow: X-and y-irradiation of ferrous sulphate in dilute aqueous solution. J. chem. Phys. 25, 1213–1217 (1956).Google Scholar
  177. Hayon, E., G. Scholes, and J. Weiss: Some aspects of the reduction of methylene blue by X-rays in aqueous systems. J. chem. Soc. 1957, 301–311 (1957).Google Scholar
  178. Heglein, A.: Large radiation sources in industry. IAEA Wien 1960, p. 139–147.Google Scholar
  179. Helmlin, W.: Über den Einfluß von Losungsgenossen bei der Strahlenoxydation von Ferrosulfat in wäßriger Lösung. Diss. med. Fak. Bern 1961.Google Scholar
  180. Hems, G., and M. L. Eidinoff: Effect of X-radiation on aqueous solutions of adenosine diphosphate. Radiat. Res. 9, 305–311 (1958).PubMedGoogle Scholar
  181. Henglein, A., and CH. Schneider: Degradation and crosslinking of polystyrene in solution by y-radiation. Radiat. Res. 9, 128–136 (1958).Google Scholar
  182. Henriksen, T., and A. Pihl: Electron paramagnetic resonance. Nature (Lond.) 185, 307 (1960).Google Scholar
  183. Hentz, R. R., and M. Burton: Studies in photochemistry and radiation chemistry of toluene, mesitylene and ethylbenzene. J. Amer. chem. Soc. 73, 532–536 (1951).Google Scholar
  184. Hipple, J. A.: Spontaneous dissociation of ions. J. phys. coll. Chem. 52, 456–462 (1948).Google Scholar
  185. Hirschfelder, J. O.: Chemical reactions produced by ionizing processes. J. phys. coll. Chem. 52, 447–450 (1948).Google Scholar
  186. Hochanadel, C. J., and S. C. Lind: Radiation chemistry. Ann. Rev. phys. Chem. 7, 83–106 (1956).Google Scholar
  187. Hoigne, J.: Anwendung hochenergischer Strahlung zur chemischen Produktenbildung. Chimia 19, 18–21 (1965).Google Scholar
  188. Honig, R. E., and C. W. Sheppard: An experimental comparison of the effects of deuterons and alpha-particles on methane and n-butane. J. phys. Chem. 50, 119–143 (1946).Google Scholar
  189. Huber, W.: High energy radiation for research in biochemistry and micro biology. Nucl. Instr. and Methods 11, 210–226 (1961).Google Scholar
  190. Hummel, R. W., and J. W. T. Spinks: Irradiation of ferrous sulphate solutions with different radiations. Canad. J. Chem. 31, 250–262 (1953).Google Scholar
  191. Hunt, J. W., L. H. Gray, and J. W. Boag: The effect of paramagnetic gases on the electron spin resonance signal from activated charcoal. Radiat. Res. 12, 319–324 (1960).Google Scholar
  192. Hutchinson, F.: The distance that a radical formed by ionization can diffuse in a yest cell. Radiat. Res. 7, 473–483 (1957).PubMedGoogle Scholar
  193. Hutchinson, F.: Reduced yield in dilute solutions at very high dose rates. Radiat. Res. 9, 13–23 (1958).PubMedGoogle Scholar
  194. Hutchinson, F., and D. A. Ross: Some kinetics of the indirect effect of ionizing radiation in aqueous solutions. Radiat. Res. 10, 477–489 (1959).PubMedGoogle Scholar
  195. Ilg, E.: Untersuchungen über den Strahleneffekt an Methylenblau. Diss. med. Fak. Bern 1961.Google Scholar
  196. Jaffe, G.: Über die spezifische Geschwindigkeit und Wiedervereinigung von Ionen in Hexan. Ann. Phys. 32, 148–178 (1910).Google Scholar
  197. Jaffe, G.: Zur Theorie der Ionisation in Kolonnen. Ann. Phys. 42, 303–344 (1913).Google Scholar
  198. Jayko, M. E., and W. M. Garrison: Formation of C = 0 bonds in the radiation induced oxidation of proteins in aqueous systems. Nature (Lond.) 181, 413–414 (1958).Google Scholar
  199. Jayson, G. G., G. Scholes, and J. Weiss: Formation of formylkynureine by the action of X-rays on tryptophan in aqueous solution. Biochem. J. 57, 386–390 (1954).PubMedGoogle Scholar
  200. Jayson, G. G., G. Scholes, and J. Weiss: Action of X-rays (200 kV) on ethanol in aqueous solution. J. chem. Soc. 1957, 1358–1368 (1957).Google Scholar
  201. Johnson, G. R. A., G. Stein, and J. Weiss: Some free radical reactions of chlorobenzene. J. chem. Soc. 1951, 3275–3278 (1951).Google Scholar
  202. Jones, A. R.: Radiation induced reactions in the N2-02-H2O system. Radiat. Res. 10, 655–663 (1959).PubMedGoogle Scholar
  203. Karczag, L., u. M. Hanak: Spektroskopische Studien über die Röntgenstrahlenempfindlichkeit des Magensaftes und einiger wasserlöslicher Vitamine. Z. klin. Med. 130, 310–312 (1936).Google Scholar
  204. Keene, J. P.: The oxidation of ferrous ammonium sulfate solutions by electron irradiation at high dose rates. Radiat. Res. 6, 424–429 (1957).PubMedGoogle Scholar
  205. Khenokh, M. A.: Die Wirkung der γ-Strahlung von 60CO auf Kohlehydrate. Dohl. Akad. Nauk. USSR 104, 746–749 (1955).Google Scholar
  206. Kilian, A.: Der Einfluß durchdringender Strahlen auf sterile wäßrige Lösungen von Rohrzucker. Mh. Chem. 34, 359–364 (1913).Google Scholar
  207. Kilian, A.: Über Reaktionen von durchdringenden Radiumstrahlen und von Quarz-Ultraviolett. Z. phys. Chem. 95, 125–246 (1920).Google Scholar
  208. Kilian, A.: Die Wirkung der durchdringenden Radiumstrahlung auf Oxalsaure, Kaliumoxalat und Kaliumchlorate. Mh. Chem. 43, 1–12 (1922).Google Scholar
  209. Kircher, J. F., J. S. Mcnulty, J. L. Mcfarling, and A. Levy: Irradiation of gaseous and liquid oxygen. Radiat. Res. 13, 452–465 (1960).PubMedGoogle Scholar
  210. Klopfer, A., and W. Schmidt: An omegatron mass spectrometer and its charakteristics. Vacuum 10, 363–372 (1960).Google Scholar
  211. Krenz, F. H.: The effects of high energy radiation on water and aqueous systems. Canad. J. Res. B 26, 647–656 (1948).Google Scholar
  212. Krenz, F. H.: Radiolysis of liquid n-hexane and solutions of anthracene in n-hexane. Nature (Lond.) 176, 1113–1114 (1955).Google Scholar
  213. Krenz, F. H., and H. A. Dewhurst: Mechanism of oxidation of ferrous sulfate by y-rays in aerated water. J. chem. Phys. 17, 1337 (1949).Google Scholar
  214. Kurien, K. C., P. V. Phung, and M. Burton: Radiolysis of aqueous solutions of benzene and phenol. Radiat. Res. 11, 283–290 (1959).PubMedGoogle Scholar
  215. Lampe, F. W.: The direct radiolysis and the radiation-sensitized hydrogenation of ethylene. Radiat. Res. 10, 691–702 (1959).PubMedGoogle Scholar
  216. Lampe, F. W. W. S. Koski, E. R. Werner, and W. H. Johnson: Industrial uses of large radiation sources. IAEA, Wien, 1963, p. 225–230.Google Scholar
  217. Lea, D. E.: The actions of radiations on dilute aqueous solutions; the spatial distribution of Hand OH. Brit. J. Radiol., Suppl. 1, 59–63 (1947).Google Scholar
  218. Lefort, M.: Actions des rayonnements ionisants sur l’eau et les solutions aqueuses. J. Chim. phys. 47, 624–643, 776–794 (1950).Google Scholar
  219. Lemmon, R. M.: Radiation decomposition of carbon-14-labbelled compounds. Nucleonics 10 (11), 44–45 (1953).Google Scholar
  220. Liebenthal, J. L., F. L. Albright, and A. Sesonske: The effect of gamma radiations on the low temperature oxidation of propane. Sec. Geneva Conf. 29, 107–112 (1958).Google Scholar
  221. Liechti, A., W. Minder u. F. Wegmuller: Über einige chemische Strahlenreaktionen. Radiol. clin. (Basel) 14, 167–176 (1945).Google Scholar
  222. Lind, S. C., and D. C. Bradwell: The chemical action of gazeous ions produced by α-particles; the catalytic influence of ions of inert gazes. J. Amer. chem. Soc. 48, 1575–1584 (1926).Google Scholar
  223. Lind, S. C., and D. C. Bradwell: Chemical action of gazeous ions produced by alpha-particles; saturated hydrocarbons. J. Amer. chem. Soc. 48, 2335–2351 (1926).Google Scholar
  224. Lind, S. C. and J. H. Perry: The chemical action of gazeous ions produced by α-particles; unsaturated carbon compounds. J. Amer. chem. Soc. 48, 1556–1575 (1926).Google Scholar
  225. Lind, S. C., J. C. Jungers, and C. H. Schifflett: The polymerization of deutero-acethylene by α-rays. J. Amer. chem. Soc. 57, 1032–1034 (1935).Google Scholar
  226. Littman, F. E., E. M. Carr, and A. P. Brady: The action of atomic hydrogen on aqueous solutions. Radiat. Res. 7, 107–119 (1957).PubMedGoogle Scholar
  227. Loebl, H., G. Stein, and J. Weiss: Chemical actions of ionizing radiations on aqueous solutions. J. chem. Soc. 1951, 405–407 (1951).Google Scholar
  228. Loiseleur, J.: L’action du radon sur les aminoacids. C. R. Soc. Biol. (Paris) 114, 589–591 (1933).Google Scholar
  229. Lotz, A.: Reaktionskinetische Untersuchungen an strahlenchemischen Systemen mit Hilfe impulsmodulierter Rontgenstrahlen. Festschr. 25 Jahre Max Planck Inst. Biophysik 1962, 123–134.Google Scholar
  230. Luck, C. F., and W. Gordy: Effects of X-irradiation upon some organic substances in the solid state; simple alcohols, amines, amides and mercaptans. J. Amer. chem. Soc. 78, 3240–3243 (1956).Google Scholar
  231. Lunz, J. D.: Tritium tracing, a rediscovery. Nucleonics 16 (3), 62–67 (1958).Google Scholar
  232. Magee, J. L.: Charge neutralisation by reaction between positive and negative ions. Disc. Faraday Soc. 12, 33–44 (1952).Google Scholar
  233. Magee, J. L.: Radiation chemistry. Ann. Rev. phys. Chem. 12, 389–410 (1961).Google Scholar
  234. Magee, J. L.:, and K. Funabashi: The clustering of ions in irradiated gases. Radiat. Res. 10, 622–635 (1959).PubMedGoogle Scholar
  235. Mahlman, H. A., and J. W. Boyle: Primary cobalt-60 radiolysis of heavy water. J. Amer. chem. Soc. 80, 773–774 (1958).Google Scholar
  236. Manion, J. P., and M. Burton: Radiolysis of hydrocarbon mixtures. J. phys. Chem. 56, 560–569 (1952).Google Scholar
  237. Massey, H. S. W.: Gaseous ions and their reactions. Disc. Faraday Soc. 12, 24–33 (1952).Google Scholar
  238. Matheson, M. S.: Radiation chemistry in rigid organic materials; the detection of intermediates. Sec. Geneva Conf. 29, 217–227 (1958).Google Scholar
  239. Matheson, M. S.: Radiation chemistry. Ann. Rev. phys. Chem. 13, 77–106 (1962).Google Scholar
  240. Matheson, M. S., and B. Smaller: Paramagnetic resonance in irradiated ice. J. chem. Phys. 23, 521–529 (1955).Google Scholar
  241. Maurer, H. J.: Beitrage zur Wirkung ionisierender Strahlen auf Vitamine; Riboflavin. Strahlentherapie 106, 294–299 (1958).PubMedGoogle Scholar
  242. Maurer, H. J.: Zum Reaktionsmechanismus der Radiolyse wäßrig loslicher Vitamine. Fortschr. Rontgenstr. 91, 799–803 (1959).Google Scholar
  243. Maurer, H. J., u. R. Dittmeyer: Beitrage zur Wirkung ionisierender Strahlungen auf Vitamine. Vorlaufige Mitteilung. Strahlentherapie 102, 531–534 (1957).PubMedGoogle Scholar
  244. Maxwell, C. R., D. C. Peterson, and N. E. Sharpless: The effect of ionizing radiation on amino acids. Radiat. Res. 1, 530–545 (1954).PubMedGoogle Scholar
  245. Mcdonell, W. R.: Decomposition of methyl alcohol-water solutions by 60CO gamma radiation. J. chem. Phys. 23, 208–209 (1955).Google Scholar
  246. Mcdonell, W. R., and E. J. Hart: Oxidation of aqueous ferrous sulphate solutions by charged particle radiations. J. Amer. chem. Soc. 76, 2121–2124 (1954).Google Scholar
  247. Mcdonell, W. R., and A. S. Newton: The radiation chemistry of aliphatic alcohols. J. Amer. chem. Soc. 76, 4651–4658 (1954).Google Scholar
  248. Meisels, G. G., W. H. Hamil, and R. R. Williams: The radiation chemistry of methane. Z. phys. Chem. 61, 1456–1461 (1957).Google Scholar
  249. Meister, A., u. W. Minder: Über die Wirkung von Rontgenstrahlen auf einige einfache aliphatische Bromverbindungen. Radiol. clin. (Basel) 19, 238–257 (1950).Google Scholar
  250. Mellows, F. W., and M. Burton: A kinetic study of telomer production from chloroform ethylene-mixtures initiated by Cobalt-60 y-radiation. J. phys. Chem. 66, 2164–2168 (1962).Google Scholar
  251. Melville, H. W.: Die Reaktionsfahigkeit freier Radikale in Losung. Endeavour 9, 98–101 (1950).Google Scholar
  252. Meshitsuka, G., and M. Burton: Radiolysis of liquid methanol by gamma radiation. Radiat. Res. 8, 285–297 (1958).PubMedGoogle Scholar
  253. Meshitsuka, G., and M. Burton: Hydrogen iodide production in radiolysis of organic liquids containig dissolved iodine; cyclohexane, n-hexane benzene. Radiat. Res. 10, 499–506 (1959).PubMedGoogle Scholar
  254. Meshitsuka, G., K. Ouchi, K. Hirota, and G. Kusumoto: Decomposition of methyl alcohol by cobalty-radiation. J. chem. Soc. Japan 78, 129–131 (1957).Google Scholar
  255. Miller, N.: Effects of ionizing radiation on aqueous media. Rev. pure appl. Chem. 7, 123–154 (1957).Google Scholar
  256. Miller, N.: Radical yield measurements on irradiated aqueous solutions. Radiat. Res. 9, 633–646 (1958).PubMedGoogle Scholar
  257. Miller, N., and J. Wilkinson: Actinometry of ionizing radiation. Disc. Faraday Soc. 12,50–60 (1952).Google Scholar
  258. Minder, H., W. Minder U. A. Liechti: Uber den Verlauf der Strahlenhydrolyse von einfachen Halogenbenzolverbindungen. Radiol. clin. (Basel) 18, 108–126 (1949).Google Scholar
  259. Minder, W.: Versuch einer reaktionskinetischen Deutung der biologischen Strahlenwirkung. Radiol. clin. (Basel) 15, 30–35 (1946a).Google Scholar
  260. Minder, W.: Uber das Problem der Energiewanderung bei der biologischen Strahlenwirkung. Radiol. clin. (Basel) 15, 81–85 (1946b).Google Scholar
  261. Minder, W.: Chemische Modellversuche zum Primareffekt der biologischen Strahlenwirkung. Schweiz. med. Wschr. 77, 194–196 (1947a).Google Scholar
  262. Minder, W.: Versuch einer neuen Theorie der Strahlenwirkung. Radiol. clin. (Basel) 16, 73–81 (1947b).Google Scholar
  263. Minder, W.: Bestrahlungsergebnisse an organischen Losungen. Radiol. clin. (Basel) 19, 277–283 (1950).Google Scholar
  264. Minder, W.: Uber chemische Dosismessung. Radiol. clin. (Basel) 20, 286–295 (1951a).Google Scholar
  265. Minder, W.: Radiation chemistry of organic halogen compounds. Brit. J. Radiol. 24, 435–440 (1951b).PubMedGoogle Scholar
  266. Minder, W.: Irradiation de solutions alcoholiques aux rayonx X. J. Chim. phys. 48, 423–428 (1951c)Google Scholar
  267. Minder, W.: Bemerkungen zu den Primareffekten biologischer Strahlenwirkungen. Bull. schweiz. Akad. med. Wiss. 11, 290–302 (1955).PubMedGoogle Scholar
  268. Minder, W.: Uber einige definierte Strahlenreaktionen. Bull. schweiz. Akad. med. Wiss. 12, 353–363 (1956a)PubMedGoogle Scholar
  269. Minder, W.: Chemical dosimetry. Sem. ICRUM 54–60 (1956b).Google Scholar
  270. Minder, W.: Progress in chemical dosimetry. Verh. IX. Int. Kongr. Radiol. 2, 1186–1193 (1960).Google Scholar
  271. Minder, W.: Chemical dose measurements of high energy photons and electrons. Proc. Symp. on selected topics of radiation dosimetry (IAEA) 1961, p.315–323.Google Scholar
  272. Minder, W., and E. Heydrich: Radiation chemistry of organic solutions. Disc. Faraday Soc. 12, 305–312 (1952).Google Scholar
  273. Minder, M., H. Knuchel U. P. Gurtner: Über die Anderung der Hydrolyse von Tetrachlorkohlenstoff durch Rontgenstrahlen bei Zugabe von Alkohol. Experientia (Basel) 4, 219–220 (1948).Google Scholar
  274. Minder, M., u. A. Liechti: Uber den Temperatureinfluß bei der Strahlenoxydation von Ferrosulfat. Experientia (Basel) 2, 410–411 (1946).Google Scholar
  275. Minder, M., u. D. Schoen: Vergleichende Untersuchungen über den Schutzeffekt bei der Bestrahlung definierter Systeme. Strahlentherapie 91, 126–134 (1953).PubMedGoogle Scholar
  276. Mittl, R. L., and M. H. Theys: 16N concentration in EBWR. Nucleonics 19 (3), 81–83 (1961).Google Scholar
  277. Mohler, F. L., and L. S. Taylor: The ionization of liquid carbon disulphide by Roentgen rays. Amer. J. Roentgenol. 34, 84–88 (1934).Google Scholar
  278. Muller, A., U. K. G. Zimmer: Einige Anwendungsmoglichkeiten der Mikrowellenspektroskopie in der quantitativen Strahlenbiologie. Strahlentherapie 109, 192–206 (1959).Google Scholar
  279. Munzel, H., U. O. Aerne: Strahlendoismetrie mit Hilfe von radioaktiv markiertem Eisensulfat. Interner Untersuchungsrapport 1960.Google Scholar
  280. Mullis, A., W. Minder, A. Liechti U. F. Wegmuller: Uber die Wirkungen der Rontgenstrahlen auf einige Halogenverbindungen des Benzols. Radiol. clin. (Basel) 15, 295–312 (1946).Google Scholar
  281. Mund, W., et W. Koch: La polymerisation de racethylEme so us Paction des particules CI. Bull. Soc. chim. Belg. 34, 241–255 (1925).Google Scholar
  282. Mund, W., and C. Rosenblum: The formation of benzene in the radiochemical polymerization of acethylene. J. phys. Chem. 41, 469–475 (1937).Google Scholar
  283. Newton, A. S.: A survey of the radiation chemistry of some aliphatic ethers. J. phys. Chem. 61, 1485–1490 (1957a).Google Scholar
  284. Newton, A. S.: Note on the helium ion radiolysis produced in liquid acetic and propionic acids. J. chem. Phys. 26, 1746–1747 (1957b).Google Scholar
  285. Nowacki, W., U. H. Burki: Die Kristallstruktur der purinanalogen Verbindung Xanthazol. Z. Kristallogr. 106, 339–387 (1955).Google Scholar
  286. Ottoleghi, M., and G. Stein: The radiation chemistry of chloroform. Radiat. Res. 14, 281–290 (1961).Google Scholar
  287. Pages, M., and M. Haissinky: Action of gamma and alpha rays on plutonium solutions. Sec. Geneva Conf. 29, 44–46 (1958).Google Scholar
  288. Patrick, W. N., and M. Burton: Polymer production in radiolysis of benzene. J. Amer. chem. Soc. 76, 2626–2629 (1954).Google Scholar
  289. Patten, F., and W. Gordy: Temperature effects on the formation of free radicals in amino acids. Radiat. Res. 14, 573–589 (1961).PubMedGoogle Scholar
  290. Philips, G. O.: Action of ionizing radiations on aqueous solutions of carbohydates. Nature (Lond.) 173, 1044–1045 (1954).Google Scholar
  291. Philips, G. O., G. L. Mattok, and G. J. Moody: Action of ionizing radiations on aqueous solutions of carbohydrates. Sec. Geneva Conl. 29, 92–98 (1958).Google Scholar
  292. Phung, P. V., and M. Burton: Radiolysis of aqueous solutions of hydrocarbons, benzene, benzende-d6, cyclohexane. Radiat. Res. 7, 199–216 (1957).PubMedGoogle Scholar
  293. Polak, L. S., A. V. Topkiew, and N. Y. Chernyak: Radiolysis of alkanes. Sec. Geneva Conf. 29, 135–142 (1958).Google Scholar
  294. Pottie, R. F., R. Barker, and W. H. Hamill: Ion-molecule reactions of methyl and ethyl iodides. Radiat. Res. 10, 664–670 (1959).Google Scholar
  295. Prevost-Bernas, A., A. Chapiro, C. Cousin, Y. Landler, and M. Magat: The radiolysis of some organic liquids. Disc. Faraday Soc. 12, 98–109 (1952).Google Scholar
  296. Proctor, B. E., and D. S. Bhatia: Mode of action of high voltage cathode rays on aqueous solutions of amino acids. Biochem. J. 53, 1–3 (1953).PubMedGoogle Scholar
  297. Proctor, B. E., and S. E. Goldblith: Effect of soft X-rays on vitamines. Nucleonics 6 (3), 56–62 (1949).Google Scholar
  298. Proskurnin, M. A., and Y. M. Kolotyrkin: Studies in the radiation chemistry of aqueous solutions. Sec. Geneva Conf. 29, 52–61 (1958).Google Scholar
  299. Pucheault, J., and C. Ferradini: Determination of yields from the radiolysis of water by alpha rays. Sec. Geneva Conf. 29, 24–29 (1958).Google Scholar
  300. Putney, F. K., and A. W. Pratt: X-irradiation of I-maleic acid in aqueous solution. Radiat. Res. 5, 134–145 (1956).PubMedGoogle Scholar
  301. Ramsay, W. A., and A. T. Cameron: The chemical action of radium emanation. J. chem. Soc. 91, 1593–1606 (1907).Google Scholar
  302. Randolph, M. L., and D. L. Barrish: Measurements of electron spin resonances induced in amino acids by irradiation. Radiat. Res. 9, 170–171 (1958).Google Scholar
  303. Read, J.: The lateral distribution of ions across the track of an ionizing particle Brit. J. Radiol. 22, 366–374 (1949).Google Scholar
  304. Reinhard, M. C., and K. L. Tucker: The effects of X-radiation on cristalline and dissolved sucrose. Radiology 12, 151–153 (1929).Google Scholar
  305. Richards, E. W. T.: Radiations from water under alpha particle bombardment. Proc. phys. Soc. A 67, 922–926 (1954).Google Scholar
  306. Richards, E. E.: Kernmagnetische Resonanz. Endeavour 16, 185–192 (1957).Google Scholar
  307. Riehl, N.: Die Energiewanderung in Kristallen und MolekiUkomplexen. Naturwissenschaften 28, 601–607 (1940).Google Scholar
  308. Rigg, T., G. Stein, and J. Weiss: The action of X-rays on ferrous and ferric salts in aqueous solutions. Proc. Roy. Soc. A 211, 375–398 (1952).Google Scholar
  309. Risse, O.: Einige Bemerkungen zum Mechanismus chemischer Röntgenreaktionen in wallrigen Lösungen. Strahlentherapie 34, 578–581 (1929).Google Scholar
  310. Risse, O.: Uber die Riintgenphotolyse des Hydroperoxyds. Z. phys. Chem. A 140, 133–157 (1929).Google Scholar
  311. Rochers, T. H.: A high intensity source of long wave-Iegth X-rays. Machlett news 1947.Google Scholar
  312. Rosenblum, C.: The formation of benzene in the radiochemical polymerization of acetylene. J. phys. Chem. 41, 651–660 (1937).Google Scholar
  313. Rosenblum, C.: Benzene formation in the radiochemical polymerization of acetylene. J. phys. coil. Chem. 52, 474–478 (1948).Google Scholar
  314. Rothschild, W. G., and A. O. Allen: Studies in the radiolysis of ferrous sulfate solutions; air free solutions at higher pH. Radiat. Res. 8, 101–110 (1958).PubMedGoogle Scholar
  315. Rowbottom, J.: The radiolysis of aqueous solutions of tyrosine. J. biol. Chem. 212, 877–885 (1955).PubMedGoogle Scholar
  316. Rufer, A.: Beitrage zyr Bestrahlung von Riboflavin. Diss. med. Fak. Erlangen 1956.Google Scholar
  317. Schaeffer, O. A., and S. O. Thomson: The exchange of hydrogen and deuterium in the presence of electrons and ultraviolet radiation. Radiat. Res. 10, 671–679 (1959).PubMedGoogle Scholar
  318. Schmidt, K.: Anwendung elektrischer Leitfahigkeitsmessungen zum Studium der Radiolyse des Wassel’s. Z. Naturforsch. 16b, 260–210 (1961).Google Scholar
  319. Schoepfle, C. S., and C. H. Fellows: Gaseous products from actions of cathode rays on hydrocarbons. Ind. Eng. Chem. 23, 1396–1398 (1931).Google Scholar
  320. Schoffa, G.: ESR-Untersuchungen an bestrahlten Aminosauren. Biophysik 1, 297–298 (1964).Google Scholar
  321. Scholes, G., J. Weiss, and C. M. Wheller: Formation of hydroperoxides from nucleic acid by irradiation with X-rays in aqueous systems. Nature (Lond.) 178, 157 (1956).Google Scholar
  322. Schubert, C. S., and R. H. Schuler: On the effect of iodine in the radiolysis of hydrocarbons. J. chem. Phys. 20, 518–519 (1952).Google Scholar
  323. Schuler, R. H.: The effect of ferrous sulfate concentration on the yield of oxidation of feITous ion by radiations of high LET. Radiat. Res. 8, 388–391 (1958).PubMedGoogle Scholar
  324. Schuler, R. H., and A. O. Allen: Yield of the ferrous sulphate dosimeter; an improved cathode ray determination. J. chem. Phys. 24, 56–59 (1956).Google Scholar
  325. Schuler, R. H., and R. C. Petry: Decomposition of liquid alkyl iodides by 120 kv X-radiation. J. Amer. chem. Soc. 78, 3954–3958 (1956).Google Scholar
  326. Schulte, J. W., J. S. Suttle, and R. Wilhelm: Chemical effects produced in chloroform by y-rays. J. Amer. chem. Soc. 76, 2222–2227 (1953).Google Scholar
  327. Schwarz, H. A.: The effects of solutes on the molecular yields in radiolysis of aqueous solutions. J. Amer. chem. Soc. 77, 4960–4964 (1955).Google Scholar
  328. Schwarz, H. A., and A. J. Salzman: The radiation chemistry of aqueous nitrite solutions; the hydrogen peroxide yield. Radiat. Res. 9, 502–508 (1958).PubMedGoogle Scholar
  329. Schwibach, J.: Strahlenchemie wallriger Lösungen aliphatischer Chlorverbindungen. Diss. phil. nat. Fak. München 1961.Google Scholar
  330. Senvar, C. B., and E. J. Hart: Decomposition of aqueous solutions by alpha particles. Sec. Geneva Conf. 29, 19–23 (1958).Google Scholar
  331. Serat, W. F., and J. F. Mead: The irradiation chemistry of dilute aqueous solutions of cyclohexane. Radiat. Res. 11, 370–382 (1959).PubMedGoogle Scholar
  332. Shalek, R. J., and T. W. Bonner: Formation of hydrogen peroxid in water by 1 mev protons. Nature (Lond.) 172, 259 (1953).Google Scholar
  333. Shapiro, B., and E. A. Dickens: The radiation chemistry of 2-mercaptoethylguanidine and bis(2-guanidoethyl)-disulphide in aqueous buffered solutions. Radiat. Res. 13, 857–870 (1960).Google Scholar
  334. Shapiro, B., and L. Eldjarn: The effects of ionizing radiations on aqueous solutions of cysteamine and cystamine. Radiat. Res. 3, 255–266 (1955).PubMedGoogle Scholar
  335. Sharpless, N. E., A. E. Blair, and C. R. Maxwell: The effect of X-rays on aqueous solutions of alanine. Radiat. Res. 2, 135–144 (1955).PubMedGoogle Scholar
  336. Sheppard, C. W., and V. L. Burton: The effects of radioactivity on fatty acids. J. Amer. chem. Soc. 68, 1636–1639 (1946).Google Scholar
  337. Sheppard, C. W., and W. L. Withehead: Formation of hydrocarbons by alpha-particle bombardment of fatty acids. Bull. Amer. Ass. Petrol. Geol. 30, 32–51 (1946).Google Scholar
  338. Shields, H., and W. Gordy: Electron spin rasonance studies of radiation damage to amino acids. J. phys. Chem. 62, 789–798 (1958).Google Scholar
  339. Skoog, F.: The effect of X-irradiation on auxin and plant growth. J. cell. comp. Physiol. 7, 227–270 (1935).Google Scholar
  340. Smaller, B., and M. S. Matheson: Paramagnetic species produced by irradiation of organic compounds. J. chem. Phys. 28, 1169–1178 (1958).Google Scholar
  341. Sparrow, A. H., and F. M. Rosenfeld: X-ray induced depolymerisation of thymonucleohistone and sodium thymonucleate. Science 104, 245–246 (1946).Google Scholar
  342. Stahel, E.: Eine Mikroionisationskammer für Rontgen-und Radiumstrahlen. Strahlentherapie 31, 582–595 (1929).Google Scholar
  343. Steacie, E. W. R.: The relation of radiation chemistry to photochemistry. J. phys. coli. Chem. 52, 441–446 (1948).Google Scholar
  344. Stein, G.: Some aspects of the radiation chemistry of organic solutes. Disc. Faraday Soc. 12, 227–234 (1952).Google Scholar
  345. Stein, G., and J. Weiss: Deamination of aminoacids by X-rays. Nature (Lond.) 162, 184 (1948).Google Scholar
  346. Stein, G., and J. Weiss: The action of X-rays on benzene and benzoic acid. J. chem. Soc. 1949, 3245–3254 (1949).Google Scholar
  347. Stenstrom, W., and A. Lohmann: Effect of Roentgen radiation on solutions of tyrosine, phenol and tryptophan. Radiology 17, 432–434 (1931).Google Scholar
  348. Stevenson, D. P.: On the average energies of molecular ions. Radiat. Res. 10, 610–621 (1959).PubMedGoogle Scholar
  349. Swallow, A. J.: The action of y-radiation on aqueous solutions of cysteine. J. chem. Soc. 1952, 1334–1339 (1952).Google Scholar
  350. Swallow, A. J.: The reducing action of X-rays. Radiat. Res. 1, 570 (1954).Google Scholar
  351. Swallow, A. J.: Reduction of riboflavin to a stable free radical using X-rays. Nature (Lond.) 176, 793–794 (1955).Google Scholar
  352. Sworski, T. J.: Some effects of cobalt gamma radiation on aqueous benzene solutions. Radiat. Res. 1, 231 (1954).Google Scholar
  353. Sworski, T. J.: Mechanism for the reduction of ceric ion by tailous ion induced by cobalt-60 gamma radiation. Radiat. Res. 4, 483–492 (1956).Google Scholar
  354. Sworski, T. J.: Mechanism for the reduction of ceric ion by formic acid induced by co balt-60 gamma radiation. Radiat. Res. 6, 645–652 (1957).Google Scholar
  355. Sworski, T. J., and M. Burton: A study of effect of impingment particle velocity in radiolysis of aromatic hydrocarbons. J. Amer. chem. Soc. 73, 1998–2001, 3890–3892 (1951).Google Scholar
  356. Taplin, G. V.: New techniques for the precision measurement of gamma rays and fast neutrons with chemical dosimeters. Radioisotopes in sci. Res. 2, 401–418 (1958).Google Scholar
  357. Tapplin, G. V., and C. H. Douglas: Colorimetric dosimeter for penetrating radiation. Nucleonics 6 (6), 66–70 (1950).Google Scholar
  358. Tapplin, G. V., and C. H. Douglas: A colorimetric dosimeter for quantitative measurement of penetrating radiation. Radiology 56, 577–591 (1951).Google Scholar
  359. Teply, J., and J. Bednar: Radiation chemistry of aqueous chloroform solutions. Sec. Geneva ConI. 29, 71–79 (1958).Google Scholar
  360. Theard, M., and M. Burton: Radiolysis of liquid methanol and some methanolic salt solution. J. phys. Chem. 67, 59–66 (1963).Google Scholar
  361. Thomas, J. K., and E. J. Hart: Photolysis and radiolysis of aqueous solution at high radiation intensities. J. phys. Chem. 68, 2414–2418 (1964).Google Scholar
  362. Thomson, J. J.: Recombination of gaseous ions, the chemical combination and monomolecular reactions. Phil. Mag. 47, 337–378 (1928).Google Scholar
  363. Tolbert, B. E.: Self-destruction of radioactive compounds. Nucleonics 18 (8), 74–75 (1960).Google Scholar
  364. Tschichold, P.: Chemische Dosimetrie und Strahlenempfindlichkeit von gechlorten Kohlenwasserstoffen in wii13riger Losung. Diss. phil. nat. Basel 1961.Google Scholar
  365. Vermeil, C.: Effet renforcant ou rednisant par des hydrocarbures de l’oxydation de FeSO4 en solution aqueuses par des rayons ionisants. J. Chim. phys. 52, 587–593 (1955).Google Scholar
  366. Verwey, E. I. W.: Elektronenleitung in nichtmetallischen Stoffen. Philips techno Rdsch. 9, 46–54 (1947).Google Scholar
  367. Wassmer, E.: Quelques observations sur l’emanation du radium. Arch. Sci. phys. nat. 42, 331–332 (1916).Google Scholar
  368. Watson, J. H. L.: Electron microscopy of radiation polymerization products. J. phys. coil. Chem. 52, 470–474 (1948).Google Scholar
  369. Weber, E. N., P. F. Forsyth, and R. H. Schuler: Radical production in the radiolysis of hydrocarbons. Radiat. Res. 3, 68–76 (1955).PubMedGoogle Scholar
  370. Weber, E. N., and R. H. Schuler: The radiation decoloration of dilute dye solutions. J. Amer. chem. Soc. 74, 4415–4418 (1953).Google Scholar
  371. Weeks, B. M., and W. M. Garrison: Radiolysis of aqueous solutions of glycine. Radiat. Res. 9, 291–304 (1958).PubMedGoogle Scholar
  372. Wegmuller, F.: Die Wirkung von Rontgenstrahlen auf einige organische Verbindungen. Diss. phil. II. Bern 1942.Google Scholar
  373. Weiss, J.: Radiochemistry of aqueous solutions. Nature (Lond.) 153, 748–750 (1944).Google Scholar
  374. Weiss, J.: Some aspects of the action of radiations on aqueous solutions. Brit. J. Radiol., Suppl. 1, 56–59 (1947).Google Scholar
  375. Weiss, J.: Chemical dosimetry using ferrous and ceric sulphates. Nucleonics 10 (7), 28–31 (1952a).Google Scholar
  376. Weiss, J.: The decomposition of hydrogen peroxide by ionizing radiations and related problems. Disc. Faraday Soc. 12, 161–169 (1952b).Google Scholar
  377. Whright, J.: The problem of dosimetry in the pile. Disc. Faraday Soc. 12, 60–72 (1952).Google Scholar
  378. Wieland, H.: Zur Frage nach dem intermediaren Auftreten freier Radikale bei chemischen Reaktionen. Chem. Ber. 48, 1098–1112 (1915).Google Scholar
  379. Wieringen, J. S. Van: Paramagnetische Resonanz. Philips techno Rdsch. 19, 341–354 (1958).Google Scholar
  380. Wilcox, W. S.: The gamma radiolysis of butyl bromides. Radiat. Res. 10, 112–117 (1959).PubMedGoogle Scholar
  381. Wiley, R. H., W. Miller, C. H. Jarboe, J. R. Harrell, and D. J. Parish: Gamma radiation induced isomerization of n-propylchloride. Radiat. Res. 13, 479–488 (1960).Google Scholar
  382. Williams, R. R.: The Szillard-Chalmers reaction in the chain reacting pile. J. phys. coll. Chem. 52, 603–611 (1948).Google Scholar
  383. Wilzbach, K. E.: Tritium labelling by exposure of organic compounds to tritium gas. J. Amer. chem. Soc. 79, 1013–1015 (1958).Google Scholar
  384. Wolfrom, M. L., W. W. Binkley, L. J. Mccabe, T. M. Shen Han, and A. M. Michelakis: The effect of ionizing radiations on carbohydrates. Radiat. Res. 10, 37–47 (1959).Google Scholar
  385. Yalow, R. S.: The effects of alpha particle irradiation on 131 I-labelled iodotyrosins. Radiat. Res. 11, 30–37 (1959).PubMedGoogle Scholar
  386. Yalow, R. S., and S. A. Berson: The effect of X-irradiation on 131 I-labelled iodotyrosins in solutions. Radiat. Res. 14, 590–604 (1961).PubMedGoogle Scholar
  387. Zavoisky, E.: Paramagnetische Relaxation flussiger Losungen bei senkrecht stehenden Feldern. Phys. Z. USSR 9, 211–224 (1945).Google Scholar
  388. Zimmer, K. G.: Mechanismus der Wirkung ionisierender Strahlen auf Losungen. Naturwissenschaften 32, 375–376 (1944).Google Scholar
  389. Zimmer, K. G., L. ellrenberg U. A. ellrenberg: Nachweis langlebiger magnetischer Zentren in bestrahlten biologischen Medien und deren Bedeutung für die Strahlenbiologie. Strahlentherapie 103, 282–306 (1953).Google Scholar
  390. Zinn, V. H., H. Lichtenberger, M. Norvick, G. H. Whitman, C. J. B. Zitek, J. G. Feldes, V. C. Hall, and R. O. Haroldson: Operational experiments with the borax power plant. Nucl. Sci. and Eng. 1, 420–437 (1956).Google Scholar
  391. Zsula, J., A. Liuzzi, and J. S. Laughlin: Oxidation of ferrous sulfate by high energy electrons and the influence of the polarization effect. Radiat. Res. 6, 661–665 (1957).PubMedGoogle Scholar
  392. Zubler, E., W. H. Hamil, and R. R. Williams: Ion pair yield in the X-ray decomposition of hydrogene bromide in rare gas atmospheres. J. chem. Phys. 23, 1263–1267 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • W. Minder

There are no affiliations available

Personalised recommendations