Direct and indirect effects of ionizing radiations

  • W. M. Dale
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 2 / 1)


The discovery of x-rays by Roentgen in 1895 at once provided the medical profession with a powerful tool for the diagnosis of internal disorders of the human body, a tool which was enthusiastically taken up long before anything was known of the properties of the radiation, other than the fact that they could penetrate matter and project a shadow image on a luminescent screen or a light-sensitive emulsion.


Nitric Oxide Radiation Effect Primary Ionization Target Size Indirect Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, P., R.M. Black, and A. Charlesby: Radiation induced changes in the structure of polyisobutylene. Proc. roy. Soc. A 232, 31–48 (1955).CrossRefGoogle Scholar
  2. R.M. Black, and A. Charlesby: Energy transfer in macromolecules exposed to ionizing radiations. Nature (Lond.) 173, 578–579 (1954).CrossRefGoogle Scholar
  3. R.M. Black, and A. Charlesby: Cross linking of polymers by y-rays in dilute aqueous solution. A.E.R.E. MjR 1664, Harwell 1955.Google Scholar
  4. Alper, T.: Über die Cl-Strahlen und die Beziehung zwischen Reichweite und Geschwindigkeit für langsame Elektronen. Z. Physik 76 172–189 (1932).CrossRefGoogle Scholar
  5. Alper, T.: The modification of damage caused by primary ionization of biological targets. Radiat. Res. 5, 573–586 (1956).PubMedCrossRefGoogle Scholar
  6. Alper, T.: A mechanism for the oxygen effect suggested by some recent experiments. “Organic peroxides in radiobiology”, p. 134–138. London: Pergamon Press 1958.Google Scholar
  7. Alper, T. and P. Howard-Flanders: Role of oxygen in modifying the radiosensitivity of E. coli B. Nature (Lond.) 178, 978–979 (1956).CrossRefGoogle Scholar
  8. Anderson, E. H.: The effect of oxygen on mutation induction by x-rays. Proc. nat. Acad. Sci. (Wash.) 37, 340–349 (1951).CrossRefGoogle Scholar
  9. Anderson, R. S., and H. Turkowitz: The experimental modification of the sensitivity of yeast to roentgen rays. Amer. J. Roentgenol. 46, 537–542 (1941).Google Scholar
  10. Baker, W. K., and E. Sgourakis: The effect of oxygen concentration on the rate of x-ray induced mutations in Drosophila. Proc. nat. Acad. Sci. (Wash.) 36, 176–184 (1950).CrossRefGoogle Scholar
  11. Blau, M., U. K. Altenburger: Über einige Wirkungen von Strahlen II. Z. Physik 12, 315–329 (1922).CrossRefGoogle Scholar
  12. Braams, R.: Changes in the radiation sensitivity of some enzymes and the possibility of protection against the direct action of ionizing particles. Radiat. Res. 12, 113–119 (1960).PubMedCrossRefGoogle Scholar
  13. Braams, R. F. Hutchinson, and D. Ray: Changes in the sensitivity of enzymes in the dry state to radiation. Nature (Lond.) 182, 1506 (1958).CrossRefGoogle Scholar
  14. Butler, J. A. V.: Ionizing radiation and cell metabolism, p.59. London: J. A. Churchill, Ltd. 1956.Google Scholar
  15. Caldecott, R. S.: The effects of x-rays, 2 MeV electrons, thermal neutrons and fast neutrons on dormant seeds of barley. Ann. N. Y. Acad. Sci. 59, 514–535 (1955a).PubMedCrossRefGoogle Scholar
  16. Caldecott, R. S.: Effects of hydration on x-ray sensitivity in Hordeum. Radiat. Res. 3, 316–330 (1955b).PubMedCrossRefGoogle Scholar
  17. Caldecott, R. S.: Effects of ionizing radiations on seeds of barley. Radiat. Res. 2, 339–350 (1955c).PubMedCrossRefGoogle Scholar
  18. Caldecott, R. S.: Reduction in x-ray sensitivity of seeds by hydration. Nature (Lond.) 176, 306 (1955d).CrossRefGoogle Scholar
  19. Catcheside, D. G., D. E. Lea, and J. N. Thoday: Types of chromosome structural change induced by irradiation of Tradescantia microspores. J. Genet. 47, 113–136 (1946a).PubMedCrossRefGoogle Scholar
  20. Catcheside, D. G., D. E. Lea, and J. N. Thoday: The production of chromosome structural changes in Tradescantia microspores in relation to dosage, intensity and temperature. J. Genet. 47, 137–149 (1946b).PubMedCrossRefGoogle Scholar
  21. Churchill-Davidson, I., C. Sanger, and R. H. Thomlinson: High-pressure oxygen and radiotherapy. Lancet 1955 I, 1091–1095.CrossRefGoogle Scholar
  22. Churchill-Davidson, I., C. Sanger, and R. H. Thomlinson: Oxygenation in Radiotherapy-Symposium. Part II. Clinical application. Brit. J. Radiol. 30, 406–422 (1957).PubMedCrossRefGoogle Scholar
  23. Clark, A. J.: The mode of action of drugs on cells. London: Edward Arnold & Co. 1933.Google Scholar
  24. Conger, A. D.: Discussion in J. cell. comp. Physiol. 45, Suppl. 2, 309–312 (1955).Google Scholar
  25. Crabtree, H. G., and W. Cramer: The action of radium on cancer cells. Part. I. Effects of hydrocyanic acid, iodoacetic acid and sodium fluoride on the metabolism and transplantability of cancer cells. Part II. Some factors determining the susceptibility of cancer cells to radium. Part III. Factors determining the susceptibility of cancer cells to gamma radiation. Eleventh Sci. Rep. of the Imp. Cancer Res. Fund. 1934, p. 75–104.Google Scholar
  26. Crowther, J. A.: The action of x-rays on Colpidium colpoda. Proc. roy. Soc. B. 100, 390–404 (1926). (See also Proc. Cambridge Phil. Soc. 23, 284–287 (1926).CrossRefGoogle Scholar
  27. Dainton, F. S.: Some aspects of radiation chemistry which are relevant to some radiobiological problems. In: Progress in Radiobiology, xix-xii. London: Oliver & Boyd 1956.Google Scholar
  28. Dale, W. M.: The effects of x-rays on enzymes. Biochem. J. 34, 1367–1373 (1940).PubMedGoogle Scholar
  29. Dale, W. M.: The effect of x-rays on the conjugated protein d-amino acid oxidase. Biochem. J. 36, 80–85 (1942).PubMedGoogle Scholar
  30. Dale, W. M.: Effects of x-rays on aqueous solutions of biologically active compounds. Brit. J. Radiol. 16, 171–172 (1943).CrossRefGoogle Scholar
  31. Dale, W. M.: Action of radiation on aqueous solutions; experimental work with enzymes in solution. Brit. J. Radiol., Suppl. I, 46–50 (1947).Google Scholar
  32. Dale, W. M.: Modern trends in radiation biochemistry. Actions chimiques et biologiques des Radiations, p. 207–243, 239. Paris: Masson & Cie. 1955.Google Scholar
  33. Dale, W. M.: Survey of the action of ionizing radiations in aqueous systems, and some considemtions of energy tmnsfer. Symposium on Bioenergetics, Brookhaven, 1959, Radiation Research, Suppl. 2. London: Academic Press 1960.Google Scholar
  34. Dale, W. M. and J. V. Davies: The deamination of aqueous solutions of I-serine by x-radiation. Nature (Lond.) 166, 1121 (1950).CrossRefGoogle Scholar
  35. Dale, W. M. and W. J. Meredith: Further observations on the protective effect in radiation chemistry. Brit. J. Cancer 3, 31–41 (1949).PubMedCrossRefGoogle Scholar
  36. Dale, W. M. and C. Russell: Nitric oxide as a modifier of radiation effects on Shigella Flexneri. Int. J. Radiat. Biol. 4, 1–13 (1961).CrossRefGoogle Scholar
  37. Dale, W. M. W. J. Meredith, and M. C. K. Tweedie: Mode of action of ionizing mdiations on aqueous solutions. Nature (Lond.) 151, 280–281 (1943).CrossRefGoogle Scholar
  38. D’amato, F., and A. Gustafsson: Studies on the experimental control of the mutation process. Hereditas (Lund) 34, 181–192 (1948).CrossRefGoogle Scholar
  39. Debierne, A.: Recherches sur les gaz produits par les substances radioactives. Decomposition del’eau. Ann. de Phys. 2, No. 9, 97–127 (1914).Google Scholar
  40. Deschner, E. E. and L. H. Gray: Unpublished 1956.Google Scholar
  41. Dessauer, FR.: Über einige Wirkungen von Stmhlen I. Z. Physik 12, 38–47 (1923a).CrossRefGoogle Scholar
  42. Dessauer, FR.: Über einige Wirkungen von Strahlen IV. Z. Physik 20, 288–298 (1923b).CrossRefGoogle Scholar
  43. Dittrich, W., u. H. Stuhlmann: Wachstumshemmung des Ehrlich-Karzinoms der Maus in vivo durch Rontgenbestrahlung unter verschiedenen Sauerstoffpartialdrucken. Naturwissenschaften 41, 122 (1954).CrossRefGoogle Scholar
  44. Dowdy, A. H., L. R. Bennett, and S. M. Chastain: Protective action of anoxic anoxia against total-body roentgen irradiation of mammals. Radiology 55, 879–885 (1950).PubMedGoogle Scholar
  45. Ebert, M., Shirley Hornsey, and Alma Howard: Effect of inert gases on oxygen dependent radiosensitivity. Nature (Lond.) 181, 613–616 (1958).CrossRefGoogle Scholar
  46. Ellrenberg, A., and L. Ellrenberg: The decay of x-ray induced free radicals in plant seeds and starch. Ark. Fysik 14, 133–141 (1958).Google Scholar
  47. Ellrenberg, L.: Factors influencing radiation induced lethality, sterility and mutations in barley. Hereditas (Lund) 41, 123–146 (1955).CrossRefGoogle Scholar
  48. Emery, E. W., B. G. B. Lucas, and K. G. Williams: Technique of irradiation of conscious patients under increased oxygen pressure. Lancet 1, 248–250 (1960).PubMedCrossRefGoogle Scholar
  49. Ephrussi-Taylor, H. S., and R. Latarjet: Inactivation par les rayons X d’un facteur transform ant du pneumocoque. Biochim. biophys. Acta (Amst.) 16, 183–197 (1955).CrossRefGoogle Scholar
  50. Evans, H. J., and G. J. Neary: The meaning of the oxygen effect in the interpretation of chromatid aberrations. Radiat. Res. 9, 111 (1958).Google Scholar
  51. Feinstein, R. N., G. J. Cotter, and M. M. Hampton: Effect on radiation lethality of various agents relevant to the H20 2-catalase hypothesis. Amer. J. Physiol. 177, 156–160 (1954).PubMedGoogle Scholar
  52. Franck, J., and R. Platzman: Physical principles underlying photochemical radiation, chemical and radiobiological reaction, vol. 1, part I, p. 191–253. New York: McGraw-Hill Book Co. Inc. 1954.Google Scholar
  53. Fricke, H.: Reduction of O2 to H2O2 by the irradiation of its aqueous solution with x-rays. J. Chem. Phys. 2, 556–557 (1934).CrossRefGoogle Scholar
  54. Fricke, H. E. J. Hart, and H. P. Smith: Chemical reactions of organic compounds with x-ray activated water. J. Chem. Phys. 6, 229–240 (1938).CrossRefGoogle Scholar
  55. Fricke, H. E. J. Hart, and S. Morse: The action of x-rays on ferrous sulphate solution. Phil. Mag. 7, 129–141 (1929).Google Scholar
  56. Giles jr., N. H., and H. P. Riley: The effect of oxygen on the frequency of x-ray induced chromosomal rearrangements in Tradescantia microspores. Proc. nat. Acad. Sci. (Wash.) 3, 640–646 (1949).CrossRefGoogle Scholar
  57. Giles jr., N. H., and H. P. Riley: Studies on the mechanism of the oxygen effect on the radiosensitivity of Tradescantia chromosomes. Proc. nat. Acad. Sci. (Wash.) 36, 337–344 (1950).CrossRefGoogle Scholar
  58. Ginoza, W., and A. Norman: Radiosensitive molecular weight of tobacco mosaic virus nucleic acid. Nature (Lond.) 179, 520–521 (1957).CrossRefGoogle Scholar
  59. Glocker, R., U. O. Risse: Über die photochemische Wirkung von Rontgenstrahlen verschiedener Wellenlange. Z. Physik 48, 845–851 (1928).CrossRefGoogle Scholar
  60. Goldfeder, A.: Personal communication 1956.Google Scholar
  61. Gordy, W., W. B. Ard, and H. Shields: Microwave spectroscopy of biological substances. I. Paramagnetic resonance in xirradiated amino acids and proteins. II. Paramagnetic resonance in x-irradiated carboxylic and hydroxyc acids. Proc. nat. Acad. Sci. (Wash.) 41, 983–996, 996–1004 (1955).CrossRefGoogle Scholar
  62. Gordy, W., W. B. Ard, W. V. Smith, and R. F. Trambarulo: Microwave spectroscopy. New York: John Wiley & Sons 1953.Google Scholar
  63. Gray, L. H.: Comparative studies of the biological effects of X rays, neutrons and other ionizing radiations. Brit. med. Bull. 4, 11–18 (1946).PubMedGoogle Scholar
  64. Gray, L. H.: The initiation and development of cellular damage by ionizing radiations. The thirtysecond Silvanus Thompson Memorial Lecture. Brit. J. Radiol. 26, 609–618 (1953).PubMedCrossRefGoogle Scholar
  65. Gray, L. H.: Oxygenation in radiotherapy. Brit. J. Radiol. 30, 403–406 (1957).PubMedCrossRefGoogle Scholar
  66. Gray, L. H.: Cellular radiobiology. Radiat. Res., Suppl. 1, 73–101 (1959).CrossRefGoogle Scholar
  67. Gray, L. H., A. D. Conger, M. Ebert, S. Hornsey, and O. C. A. Scott: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Brit. J. Radiol. 26, 638–648 (1953).PubMedCrossRefGoogle Scholar
  68. Guild, W. R., and F. M. Defilippes: Ionizing radiation and ultrasonic evidence for a minimum unit of transforming principle D.N.A. Biochem. biophys. Acta (Amst.) 26, 241–251 (1957).CrossRefGoogle Scholar
  69. Gustafsson, A.: Mutation experiments in barley. Hereditas (Lund) 27, 225–242 (1941).Google Scholar
  70. Hagen, U., and R. Koch: Discussion remark. In: Progress in Radiobiology, p. 257. London: Oliver & Boyd Ltd. 1956.Google Scholar
  71. Hall, B. V., K. Hamilton, and A. M. Brues: Clarification of differences in radiosensitivity of tumours irradiated in vitro and in vivo on the basis of the effect of oxygen on radiosensitivity. Cancel. Res. 12, 268 (1952).Google Scholar
  72. Hart, E. J., and J. W. Boag: Absorption spectrum of the hydrated electron in water and in aqueous solutions. J. Amer. chem. Soc. 84, 4090–4095 (1962).CrossRefGoogle Scholar
  73. Henglein, A., and CH. Schneider: Degradation and cross linking of polystyrene in solution by y-radiation. Radiat. Res. 9, 128 (1958).Google Scholar
  74. Henri, V.: Etude de la loi de la vitesse d’hemolyse des hematies de poulet par la serum de chien. C. R. Soc. Biol. (Paris) 58, 37–38 (1905).Google Scholar
  75. Hollaender, A., C. E. Stapleton, and F. L. Martin: X-ray sensitivity of E. coli as modified by oxygen tension. Nature (Lond.) 167, 103–104 (1951).CrossRefGoogle Scholar
  76. Hollcroft, J. W., E. Lorenz, and M. Matthews: Factors modifying the effect x-irradiation on regression of a transplanted lymphosarcoma. J. nat. Cancer Inst. 12, 751–763 (1952).PubMedGoogle Scholar
  77. Holthusen, H.: Beitrage zur Biologie der Strahlenwirkung. Untersuchungen an Askarideneiern. Pflügers Arch. ges. Physiol. 187, 1–24 (1921).CrossRefGoogle Scholar
  78. Holthusen, H.: Der Grundvorgang der biologischen Strahlenwirkung. Strahlentherapie 25, 157–173 (1927).Google Scholar
  79. Holthusen, H., u. C. Zweifel: Einfluß der Quantengrolle auf die biologische Wirkung verschiedener Strahlenqualitaten; das Schadigungsbild von Ascaris megalocephala in Abhangigkeit von der Strahlenqualitat. Strahlentherapie 43, 249–272 (1932).Google Scholar
  80. Hoskinson, P. E., and T. S. Osborne: Radiosensitivity of seeds. II. Effects of soaking, storage and gamma rays. (In press) (1960). To be published in Radiat. Res.Google Scholar
  81. Houtermans, T.: Über den Einflull der Temperatur auf biologische Strahlenwirkungen. Z. Naturforsch. 98, 600–602 (1954).Google Scholar
  82. Howard-Flanders, P.: Effect of nitric oxide on the radiosensitivity of bacteria. Nature (Lond.) 180, 1191–1192 (1957).CrossRefGoogle Scholar
  83. Howard-Flanders, P., and T. Alper: The sensitivity of microorganisms to irradiation under controlled gas conditions. Radiat. Res. 7, 518–540 (1957).PubMedCrossRefGoogle Scholar
  84. Howard-Flanders, P., and D. Moore: The time interval following pulsed irradiation within which the injured bacteria can be modified by dissolved oxygen. Radiat. Res. 9, 422–437 (1958).PubMedCrossRefGoogle Scholar
  85. Howard-Flanders, P., and E. A. Wright: Effect of oxygen on the radiosensitivity of growing bone and a possible danger in the use of oxygen during radiotherapy. Nature (Lond.) 75, 428–429 (1955).CrossRefGoogle Scholar
  86. Hutchinson, F.: The distance that a radical formed by ionizing radiation can diffuse in a yeast cell. Radiat. Res. 7, 473–483 (1957).PubMedCrossRefGoogle Scholar
  87. Hutchinson, F., A. Preston, and B. Vogel: Radiation sensitivity of enzymes in wet and in dry yeast cells. Radiat. Res. 7, 465–472 (1957).PubMedCrossRefGoogle Scholar
  88. Jolly, J.: Actions des rayons X sur les cellules. Modifications de la radiosensibilite par ligature des connexions vasculaires. C. R. Soc. Biol. (Paris) 91, 351–354 (1924).Google Scholar
  89. Kaplan, R. W.: Über die Haufigkeit phanotypisch abweichender Pflanzen in der F1-Generation aus verschieden gequollenem und bestrahltem Pollen von Antirrhinum majus. Z. indukt. Abstamm-. u. Vererb.-L. 77, 568–579 (1939).CrossRefGoogle Scholar
  90. Kaplan, R. W.: Experimentelle und theoretische Untersuchungen über Mechanismus der Keimschadigung durch Rontgenstrahlen beim Pollen von Antirrhinum majus. Biol. Zbl. 60, 298–318 (1940).Google Scholar
  91. Kaplan, R. W.: Über die Haufigkeit von Faktormutationen durch Rontgenbestrahlung des Pollens von Antirrhinum majus in verschiedenen Quellungszustanden. Naturwissenschaften 33, 348–349 (1946).CrossRefGoogle Scholar
  92. Kaplan, R. W.: Chromosomen-und Faktormutationsraten in Gerstenkornern bei verschiedenartigen Quellungsbehandlungen oder Kalte wahrend oder nach der Rontgenbestrahlung sowie bei Dosisfraktionierung. Z. indukt. Abstamm.-u. Vererb.-L. 83, 347–382 (1951).CrossRefGoogle Scholar
  93. Keene, J. P.: Optical absorptions in irradiated water. Nature (Lond.) 197, 47–48 (1963).CrossRefGoogle Scholar
  94. Kihlman, B. A.: Studies on the effect of oxygen on chromosome breakage induced by 8-ethoxycaffeine. Exp. Cell Res. 8, 404–407 (1955).PubMedCrossRefGoogle Scholar
  95. Kihlman, B. A. The effect of oxygen, nitric oxide and respiratory inhibitors on the production of chromosome aberrations by x-rays. Exp. Cell Res. 14, 639–642 (1958).PubMedCrossRefGoogle Scholar
  96. Kohn, H. I., and S. E. Gunter: Effect of menadiol diphosphate (Synkavite) on the sensitivity of E. coli and S. cerevisiae to xrays. Radiat. Res. 2, 351–353 (1955).PubMedCrossRefGoogle Scholar
  97. Konzak, C. F.: Radiation sensitivity on dormant and germinating barley seeds. Science 122, 197 (1955).PubMedCrossRefGoogle Scholar
  98. Krenz, F. H:: Private communication 1949.Google Scholar
  99. Latarjet, R., and E. Ephrati: Influence protectrice de certaines substances contre l’inactivation d’un bacteriophage par les rayons. C.R. and Soc. Biol. (Paris) 142, 497–499 (1948).Google Scholar
  100. Lea, D. E.: Radiation methods for determining number of genes in Drosophila. J. Genet. 39, 181–188 (1940).CrossRefGoogle Scholar
  101. Lea, D. E.: Action of radiation on living cells. Cambridge: Cambridge University Press 1946.Google Scholar
  102. Mitchell, J. S.: Studies in radiotherapeutics. Oxford: Blackwell Ltd. 1960.Google Scholar
  103. Mitchell, J. S., and Simon-Reuss, I. Experiments on the mechanism of action of tetrasodium 2-methyl-1:4 — naphthohydroquinone diphosphate as a mitotic inhibitor and radiosensitiser, using the technique of tissue culture: Experimental methods and quantitative results. Brit. J. Cancer 6, 305–316 (1952).PubMedCrossRefGoogle Scholar
  104. Mottram, J. C.: On the skin reactions to radium exposure and their avoidance in therapy: An experimental investigation. Brit. J. Radiol. 29, 174–180 (1924).Google Scholar
  105. Muller, H. J.: Some present problems in the genetic effects of radiation. J. cell. comp. Physiol. 35, Suppl. 1, 9–70 (1950).CrossRefGoogle Scholar
  106. Muller, H. J.: The manner of production of mutations by radiation. In: Radiation Biology, vol. 1, part 1, p.475–626. New York: McGrawHill Co. Inc. 1954.Google Scholar
  107. Norman, A., and W. Ginoza: Molecular interactions in irradiated solids. Radiat. Res. 9, 77–83 (1958).PubMedCrossRefGoogle Scholar
  108. Packard, C.: The biological effects of short radiations. Quart. Rev. Biol. 6, 253–280 (1931).CrossRefGoogle Scholar
  109. Patt, H. M.: Protective mechanisms in ionizing radiation injury. Physiol. Rev. 33, 35–76 (1953).PubMedGoogle Scholar
  110. Person, S. R., and H. Lewis: The effect of water content on the sensitivity of T 1 bacteriophage to x-radiation. U.S. Atomic Energy Report, UCLA 431 (1958).Google Scholar
  111. Pollard, E. C.: Primary ionization as a test of molecular organisation. Advanc. biol. med. Phys. 3, 153–189 (1953).Google Scholar
  112. Pollard, E. C.: Radiation inactivation of enzymes, nucleic acids and phage particles. Rev. Modern Physics 31, No 2, 273–281 (1959).CrossRefGoogle Scholar
  113. Pollard, E. C., W. R. Guild, F. Hutchinson, and R. B. Setlow: The direct action of ionizing radiation on enzymes and antigens. Progr. Biophys. 5, 72–108 (1955).Google Scholar
  114. Powers, E. L., R. B. Webb, and C. F. Ellret: Storage, transfer and utilization of energy from X-rays in dry bacterial spores. Radiat. Res. Suppl. 2, 94–121 (1960).CrossRefGoogle Scholar
  115. Read, J.: Effect of a combined treatment with 8-ethoxycaffeine and argon on the roots of Vicia faba. Nature (Lond.) 181, 616–617 (1958).CrossRefGoogle Scholar
  116. Read, J.: Radiation biology of Vicia faba in relation to the general problem. Oxford: Blackwell Sci. Publ. 1959.Google Scholar
  117. Revell, S. H.: The accurate estimation of chromatid breakage and relevance to a new interpretation of chromatid aberrations induced by ionizing radiations. Proc. roy. Soc. B. (in press) (1959).Google Scholar
  118. Risse, O.: Einige Bemerkungen zum Mechanismus chemischer Röntgenreaktionen in wäßrigen Lösungen. Strahlentherapie 34, 578–581 (1929).Google Scholar
  119. Rugh, R., and H. Clugston: Hydration and radiosensitivity. Proc. Soc. exp. Biol. (N.Y.) 88, 467–472 (1955).Google Scholar
  120. Schwarz, G.: Über Desensibilisierung gegen Röntgen-und Radiumstrahlen. Münch. med. Wschr. 56, 1217–1218 (1909).Google Scholar
  121. Serebrovskaya, R. I., and N. I. Shapiro: The frequency of mutations induced by x-rays in the auto somes of mature and immature germ cells of Drosophila melanogaster males. Dokl. Acad. Sci. URSS, N.S., 2, 421–428 (1935) [Russian and English text].Google Scholar
  122. Setlow, R., and B. Doyle: The direct action of fast charged particles on hyaluronic acid, hyaluronidase and a combination of the enzyme and substrate. Radiat. Res. 2, 15–25 (1955).PubMedCrossRefGoogle Scholar
  123. Smith, C. L.: The inactivation of desoxyribonuclease by electron bombardment, deuteron bombardment and heat. Arch. Biochem. Biophys. 45, 83–90 (1953).PubMedCrossRefGoogle Scholar
  124. Sparrman, B., L. Ellrenberg, and A. Ellrenberg: Scavenging of free radicals and radiation protection by nitric oxide in plant seeds. Acta. chem. scand. 13, 199–200 (1959).CrossRefGoogle Scholar
  125. Spear, F. G., L. H. Gray, and J. Read: Biological effects of fast neutrons. Nature (Lond.) 142, 1074–1075 (1938).CrossRefGoogle Scholar
  126. Spiers, F. W.: The influence of energy absorption and electron range on dosage in irradiated bone. Brit. J. Radiol. 22, 521–533 (1949).PubMedCrossRefGoogle Scholar
  127. Stadler, L. J.: The rate of induced mutations in relation to dormancy, temperature and dosage. Anat. Rec. 41, 97 (1928).Google Scholar
  128. Stapleton, G. E., and C. W. Evington: Temperature dependence of bacterial inactivation by x-rays. Radiat. Res. 5, 39–45 (1956).PubMedCrossRefGoogle Scholar
  129. Stapleton, G. E., and A. Hollaender: Mechanism of lethal and mutagenic action of ionizing radiations on Aspergillus terreus. II. Use of modifying agents and conditions. J. cell. comp. Physiol. 39, Suppl. 1, 101–113 (1952).Google Scholar
  130. Swanson, C. P.: Relative effects of qualitatively different ionizing radiations on the production of chromatid aberration in air and nitrogen. Genetics 40, 193–203 (1955a).PubMedGoogle Scholar
  131. Swanson, C. P.: The oxygen effect and chromosome breakage. J. cell. comp. Physiol. 45, Suppl. 2, 285–298 (1955b).CrossRefGoogle Scholar
  132. Swanson, C. P.: Effect of oxygen tension on the production of chromosome breakage by ionising radiations: An interpretation. Radiobiology Symposium, p.254. London: Butterworth Sci. Publ. 1955c.Google Scholar
  133. Thoday, J. M., and J. Read: Effect of oxygen on the frequency of chromosome aberrations produced by x-rays. Nature (Lond.) 160, 608 (1947).CrossRefGoogle Scholar
  134. Thoday, J. M., and J. Read: Effect of oxygen on the frequency of chromosome aberrations produced by alpharays. Nature (Lond.) 163, 133–134 (1949).CrossRefGoogle Scholar
  135. Thomlinson, R. H., and L. H. Gray: The histological structure of some human lung cancers and the possible implications for radiotherapy. Brit. J. Cancer 9, 539–549 (1955).PubMedCrossRefGoogle Scholar
  136. Timofçeff-Ressovsky, N. W., and K. G. Zimmer: Das Trefferprinzip in der Biologie. Leipzig: S. Hirzel 1947.Google Scholar
  137. Wieland, H.: Zur Frage nach dem intermediaren Auftreten freier Radikale bei chemischen Reaktionen. Der Zerfall aromatischer Hydrazoverbindungen. Chem. Ber. 48, 1098–1112 (1915).CrossRefGoogle Scholar
  138. Wilson, C. T. R.: Investigations on X-rays and J-rays by the cloud method. Part 1. X-rays. Proc. roy. Soc. A 104, 1–24 (1923)CrossRefGoogle Scholar
  139. Wood, T. H.: Cellular radiobiology. Ann. Rev. nuclear. Sci. 8, 343–386 (1958).CrossRefGoogle Scholar
  140. Wood, T. H., and A. L. Taylor: Dependence of x-ray sensitivity of yeast on phase state and anoxia. Radiat. Res. 6, 611–625 (1957).PubMedCrossRefGoogle Scholar
  141. Zavoisky, E.: Paramagnetic relaxation of liquid solutions for perpendicular fields. J. Phys. USSR 9, 211–216 (1945).Google Scholar
  142. Zimmer, K. G.: Evidence for free radical production in living cells exposed to ionizing radiation. Radiat. Res., Suppl. 1, 519–529 (1959).CrossRefGoogle Scholar
  143. Zimmer, K. G., L. Ellrenberg u. A. Ellrenberg: Nachweis langlebiger magnetischer Zentren in bestrahlten biologischen Medien und deren Bedeutung für die Strahlenbiologie. Strahlentherapie 103, 3–15 (1957).PubMedGoogle Scholar
  144. Zirkle, R. E., and C. A. Tobias: Effects of ploidy and linear energy transfer on radiobiological survival curves. Arch. Biochem. Biophys. 47, 282–306 (1953).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • W. M. Dale
    • 1
  1. 1.Medical Research Council and Department of BiochemistryChristie HospitalManchester 20Germany

Personalised recommendations