Skip to main content

The Active Site of Acetylcholinesterase and Related Esterases and its Reactivity towards Substrates and Inhibitors

  • Chapter
Cholinesterases and Anticholinesterase Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 15))

Abstract

The purpose of the present chapter is to review the available data on the structure of the active site of acetylcholinesterase (AChE) and on the way this active site reacts with the substrates and inhibitors of the enzyme. In the present review the term “active site” will refer to those regions of the enzyme surface where the substrate is localized and activated during the enzymic action. No attempt is made to include information on the enzyme, its substrates, or inhibitors which does not directly contribute to an understanding of the structure of the active site or its reactivity. For these many alternative aspects outside the scope of the present paper the reader is referred to excellent articles available in the literature including those by Augustinsson (1948 and 1951 c), Holmstedt (1959), Nachmansohn and Wilson (1951), Whittaker (1951), Zeller (1958) and chapters 4, 8, and 9 of the present handbook

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron, H. S., H. O. Michel, B. Witten and J. I. Miller:The stereochemistry of asymmetric phosphorus compounds. II. Stereospecificity in the irreversible inactivation of cholinesterases by enantiomorphs of an organophosphorus inhibitor. J. Amer. chem. Soc. 80, 456 158 (1958).

    Google Scholar 

  • Adams, D. H.: The specificity of the human erythrocyte cholinesterase. Biochim. biophys. Acta 3, 1–14 (1949).

    CAS  Google Scholar 

  • Adams, D. H. and R. H. S. Thomrsox: The selective inhibition of cholinesterases. Biochem. J. 42, 170 175 (1948).

    CAS  PubMed  Google Scholar 

  • Adams, D. H.and V. P. Whittae.Er: The specificity of the human erythrocyte cholinesterase. Biochem. J. 43, X IV (1948).

    Google Scholar 

  • Adams, D. H.and V. P. Whittae.Er: The cholinesterases of human blood. I. The specificity of the plasma enzyme and its relation to the erythrocyte cholinesterase. Biochim. biophys. Acta 3, 358–366 (1949).

    CAS  Google Scholar 

  • Adams, D. H.and V. P. Whittae.Er: The cholinesterases of human blood. II. The forces acting between enzyme and substrate. Biochim. biophys. Acta 4, 543–558 (1950).

    CAS  Google Scholar 

  • Alberty, R. A.: Kinetic effects of the ionization of groups in the enzyme molecule. In: Symposium on structure of enzymes and proteins 1955, Gatlinburg, Tenn. The Wistar Institute of Anatomy and Biology. Philadelphia, 1956. Suppl. 1 to J. cell. comp. Physiol. 47 (1956a).

    Google Scholar 

  • Alberty, R. A.: Enzyme kinetics. In: F. F. NORD, Ed. Advanc. Enzymol. 17, 1–64 (1956b).

    Google Scholar 

  • Aldridge, W. N.:Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. Biochem. J. 46, 451–460 (1950).

    CAS  PubMed  Google Scholar 

  • Aldridge, W. N.: Differentiation of true and pseudo cholinesterase by organophosphorus compounds. Biochem. J. 53, 62–67 (1953a).

    CAS  PubMed  Google Scholar 

  • Aldridge, W. N.: The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 3. The nature of the inhibitory process. Biochem. J. 54, 422–448 (1953b).

    Google Scholar 

  • Aldridge, W. N.: Anticholinesterases Inhibition of cholinesterase by organophosphorus compounds and reversal of this reaction. Mechanism involved. Chem. and Ind., 473–476 (1954).

    Google Scholar 

  • Aldridge, W. N.: Organophosphorus compounds and esterases. Ann Repts. Progr. Chem. 53, 294–305 (1957).

    CAS  Google Scholar 

  • Aldridge, W. N.and A. N. Davison: The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. I. Diethyl p-nitrophenyl phosphate (E 600) and analogues. Biochem. J. 51, 62–70 (1952 a).

    CAS  PubMed  Google Scholar 

  • Aldridge, W. N.and A. N. Davison: Inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. II. Diethyl p-nitrophenyl thionphosphate (E 605) and analogues. Biochem. J. 52, 663–671 (1952 b).

    CAS  PubMed  Google Scholar 

  • Aldridge, W. N.and A. N.Davison: Mechanism of inhibition of cholinesterases by organophosphorus compounds. Biochem. J. 55, 763–765 (1953).

    CAS  Google Scholar 

  • Alles, G. A., and R. C. HAWES: Cholinesterases in the blood of man J biol. Chem. 133, 375–390 (1940).

    CAS  Google Scholar 

  • Amman, R., and H. MEYER: Zur stereochemischen Spezifität der Cholin-bzw. Acetylcholinesterase. Hoppe-Seylers Z. physiol. Chem. 314, 198–204 (1759).

    Google Scholar 

  • Andrews, K. J. M., F. R. Atherton, F. Bergel and A. L. Morrison: The synthesis of neurotropic and musculotropic stimulators and inhibitors. Part V. Derivatives of amino-phenyl phosphates as anticholinesterases. J. chem. Soc. 780–784 (1952).

    Google Scholar 

  • Andrews, K. J. M., F. R. Atherton, F. Bergel and A. L. Morrison: Anticholinesterases, hydroxypyridine and hydroxyquinoline. J. chem. Soc. 1638 (1954).

    Google Scholar 

  • Ashbolt, R. F., and H. N. Rydon: The action of diisopropyl phosphorofluoridate and other anticholinesterases on amino acids. Biochem. J. 66, 237–242 (1957).

    CAS  PubMed  Google Scholar 

  • Augustinsson, K. B.: Specificity of cholin esterase in Helix poinatia. Biochem. J. 40, 343–349 (1946).

    CAS  PubMed  Google Scholar 

  • Augustinsson, K. B.: Cholinesterases. A study in comparative enzymology. Acta physiol. scand. 15, suppl. 52 (1948).

    Google Scholar 

  • Augustinsson, K. B.: Substrate concentration and specificity of choline ester-splitting enzymes. Arch. Biochem. 23, 111–126 (1949).

    CAS  PubMed  Google Scholar 

  • Augustinsson, K. B.: Hydrolysis of noncholine esters by acetylcholinesterase from human erythrocytes. Acta chem. scand. 4, 948–956 (1950a).

    Article  CAS  Google Scholar 

  • Augustinsson, K. B.: Enzymic hydrolysis of triacetin by acetylcholinesterase and its inhibition by various compounds. Acta chem. scand. 4, 1149–1150 (1950b).

    Article  CAS  Google Scholar 

  • Augustinsson, K. B.: Comparison between acetylcholinesterase activity of helix blood and cobra venom. I. Hydrolysis of acetylcholine and its inhibition by various compounds. Acta chem. scand. 5, 699–711 (1951 a).

    Article  CAS  Google Scholar 

  • Augustinsson, K. B.: Comparison between acetylcholinesterase activity of helix blood and cobra venom. II. Hydrolysis of certain choline and noncholine esters. Acta chem. scand. 5, 712–723 (1951 b).

    Article  CAS  Google Scholar 

  • Augustinsson, K. B.: Acetylcholine esterase and cholinesterase. In: J. B. SUMNER and K. MYRBÄCA, Eds., The Enzymes, vol. I, part 1, 443–472. New York: Academic Press Inc. publishers, 1951 c.

    Google Scholar 

  • Aiigiistinsson, K. B.: Biochemical studies with tabun and allied compounds. Ark. Kemi 6, 331–350 (1953a).

    Google Scholar 

  • Aiigiistinsson, K. B.: Mintacol (diethyl p-nitrophenylphosphate). Svensk.farm. T. 57, 261–267 (1953b).

    Google Scholar 

  • Aiigiistinsson, K. B.: Assay methods for cholinesterases. In: D. GLICK, Ed., Meth. biochem. Anal. 5, 1–63 (1957).

    Chapter  Google Scholar 

  • Aiigiistinsson, K. B. and M. Grahn: Protection of cholinesterases by procaine against inactivation by tabun in vitro. Acta physiol. scand. 27, 10 (1952).

    Article  Google Scholar 

  • Aiigiistinsson, K. B. and G. Heimbürger: Enzymatic hydrolysis of organophosphorus compounds. II. Analysis of reaction products in experiments with Tabun and some properties of blood plasma tabunase. Acta chem. scand. 8, 762–767 (1954).

    Article  Google Scholar 

  • Aiigiistinsson, K. B. and T. Isacshen: The enzymatic hydrolysis of the ß-methyl derivatives of acetylcholine and acetylthiocholine. Acta chem. scand. 11, 750–751 (1957).

    Article  Google Scholar 

  • Aiigiistinsson, K. B. and D. Nachmansohn: Distinction between acetylcholine-esterase and other choline-estersplitting enzymes. Science 110, 98–99 (1949 a).

    Google Scholar 

  • Aiigiistinsson, K. B. and D. Nachmansohn: Studies on cholinesterase. VI. Kinetics of the inhibition of acetylcholine esterase. J. biol. Chem. 179, 543–559 (1949b).

    Google Scholar 

  • Austin, L., and W. K. Berry: Two selective inhibitors of cholinesterase. Biochem. J. 54, 695–701 (1953).

    CAS  PubMed  Google Scholar 

  • Bain, J. A.: Mechanism of the inhibition of rat brain cholinesterase by diisopropylfluorophosphate, tetraethyl pyrophosphate and eserine. Proc. Soc. exp. Biol. (N. Y.) 72, 9–13 (1949).

    Article  CAS  Google Scholar 

  • Baldridge,D. W. J. Mccarville and S. L. Friess: Nature of the acetyl cholinesterase surface. III. Enzymatic response to cis-trans isomers in the cyclohexane series as mapping agents. J. Amer. chem. Soc. 77, 739–741 (1955).

    Google Scholar 

  • Balls, A. K., and F. L. Aldrich: Acetylchymotrypsin. Proc. nat. Acad. Sci. (Wash.) 41, 190–196 (1955).

    Article  CAS  Google Scholar 

  • Balls, A. K., and E. F. Jansen: Stoichiometric inhibition of chymotrypsin. In: F. F. Nord, ed. Advanc. Enzymol. 13, 321–343 (1952).

    Google Scholar 

  • Balls, A. K., and H. N. Wood: Acetylchymotrypsin and its reaction with ethanol. J. biol. Chem. 219, 245–256 (1956).

    CAS  PubMed  Google Scholar 

  • Barlow, R. B., and H. R. Ing: Curarelike action of polymethylene bis-quaternary ammonium salts. Nature (Lond.) 161, 718 (1948).

    Article  CAS  Google Scholar 

  • Barnard, E. A., and W. D. Stein: The roles of imidazole in biological systems. In: F. E. Nord, ed. Advanc. Enzymol. 20, 51–111 (1958).

    Google Scholar 

  • Bayliss, B. J., and A. Todrich: The use of a selective acetylcholinesterase inhibitor in the estimation of pseudocholinesterase activity in rat brain. Biochem. J. 62, 62 (1956).

    CAS  PubMed  Google Scholar 

  • Bender, M. L., and K. C. Kemp:Oxygen-18 studies of the mechanism of the a-chymotrypsin catalyzed hydrolysis of esters. J. Amer. chem. Soc. 79, 111–116 (1957).

    Article  CAS  Google Scholar 

  • Bender, M. L., and B. W. Turnquest: The imidazole-catalyzed hydrolysis of p-nitrophenyl acetate. J. Amer. chem. Soc. 79, 1652–1655 (1957a).

    Article  CAS  Google Scholar 

  • Bender, M. L., and B. W. Turnquest: General basic catalysis of ester hydrolysis and its relationship to enzymatic hydrolysis. J. Amer. chem. Soc. 79, 1656–1662 (1957b).

    Article  CAS  Google Scholar 

  • Bender, M. L., F. Chloupek and C. Neveii: Intramolecular catalysis of hydrolytic reactions.III. Intra-molecular catalysis of carboxylate ion in the hydrolysis of methyl hydrogen phthalate. J. Amer. chem. Soc. 80 5384–5387 (1958 a).

    Article  CAS  Google Scholar 

  • Bender, M. L., Y. L. Chow and F. Chloupek: Intramolecular catalysis of hydrolytic reactions. J. Amer. chem. Soc. 80, 5380–5384 (1958b).

    Article  CAS  Google Scholar 

  • Benoiton, L., H. N. Rydon, R. A. Oosterbaan, M. E. VAN Adrichem and J. A. Cohen: The structures of some acetyl-serine peptides from acetylchymotrypsin. Nature (Lond.) 187, 596–597 (1960).

    Article  CAS  Google Scholar 

  • Berends, F., C. H. Posthiimus, I Van Der Sluys and F. A. Deierkaiif: The chemical basis of the “Ageing Process” of DFP-inhibited pseudocholinesterase. Biochim. biophys. Acta 34, 576–578 (1959).

    CAS  Google Scholar 

  • Bergmann, F.: Fine structure of the active surface of cholinesterases and the mechanism of enzymic ester hydrolysis. Disc. Faraday Soc. 20, 126–134 (1955).

    Article  Google Scholar 

  • Bergmann, F. S. Rimon and R. Segal: Effect of pH on the activity of eel esterase towards different substrates. Biochem. J. 68, 493–499 (1958).

    CAS  PubMed  Google Scholar 

  • Bergmann, F. S. and R. Segal: The relationship of quaternary ammonium salts to the anionic sites of true and pseudo cholinesterase. Biochem. J. 58, 692–698 (1954).

    CAS  PubMed  Google Scholar 

  • Bergmann, F. S. and R. Segal: The characterization of tissue cholinesterase. Biochem. biophys. Acta 16, 513–519 (1955).

    CAS  Google Scholar 

  • Bergmann, F. S. and R. Segal: A. Shimoni and M. Wurzel • The pH-dependence of enzymic ester hydrolysis. Biochem. J. 63, 684 690 (1956).

    Google Scholar 

  • Bergmann, F. S. and A. Shimoni: Quaternary ammonium salts as inhibitors of acetylcholinesterase. Biochim. biophys. Acta 7, 483–484 (1951).

    CAS  Google Scholar 

  • Bergmann, F., and A. Shimoni: Quaternary ammonium salts as inhibitors of acetylcholine esterase. II. The pa dependence of the inhibitory effects of quaternary ammonium salts, and the dissociation constant of the anionic site. Biochim. biophys. Acta 8, 347–348 (1952 a).

    Google Scholar 

  • Bergmann, F., and A. Shimoni: Quaternary ammonium salts as inhibitors of acetylcholinesterase. Biochim. biophys. Acta 8, 520–525 (1952b).

    CAS  Google Scholar 

  • Bergmann, F., and A. Shimoni: Quaternary ammonium salts as inhibitors of acetylcholinesterase. II. pH Dependence of the inhibitory effects, and the dissociation constant of the anionic site. Biochim. biophys. Acta 9, 473–477 (1952 c).

    Google Scholar 

  • Bergmann, F., and A. Shimoni: The enzymic hydrolysis of alkyl fluoroacetates and related compounds. Biochem. J. 55, 50–57 (1953).

    CAS  PubMed  Google Scholar 

  • Bergmann, F. I. B. Wilson and D. Nachmansohn: Acetylcholinesterase. IX. Structural features determining the inhibition by amino acids and related compounds. J. biol. Chem. 186, 693 to 703 (1950a).

    Google Scholar 

  • Bergmann, F. I. B. Wilson and D. Nachmansohn:The inhibitory effect of stilbamidine, curare and related compounds and its relationship to the active groups of acetylcholine esterase action of stilbamidine upon nerve impulse conduction. Biochim. biophys. Acta 6, 217–224 (1950b).

    CAS  Google Scholar 

  • Bergmann, F. I. B. M. Wurzel and E. Shimoni: The enzymic hydrolysis of acid anhydrides. Biochem. J. 55, 888–891 (1953a).

    CAS  PubMed  Google Scholar 

  • Bergmann, F. I. B. M. Wurzel and E. Shimoni:Hydrolysis of anhydrides by esterases. Nature (Loud.) 171, 744 745 (1953b).

    Google Scholar 

  • Bernhard, S. A.: A simple model of molecular specificity in enzyme-substrate systems.I. Theory and applications to the system acetylcholinesterase-substrate. J. Amer. chem. Soc. 77, 1966–1972 (1955a).

    Article  CAS  Google Scholar 

  • Bernhard, S. A.:A simple model of molecular specificity in enzyme-substrate systems. II. The correlation of the Michaelis constant with the inhibition constant. J. Amer. chem. Soc. 77, 1973–1974 (1955 b).

    Google Scholar 

  • Bernhard, S. A.:Symposium on enzyme reaction mechanisms, Gatlinburg, Tenn., 1–4 April 1959. J. cell. comp. Physiol. 54, 188–199 (1959).

    Google Scholar 

  • Bernhard, S. A.:and H. Gutfreund: Ficin-catalyzed reaction: The affinity of ficin for some arginine derivatives. Biochem. J. 63, 61–64 (1956).

    CAS  PubMed  Google Scholar 

  • Berry, W. K.: The turnover number of cholinesterase. Biochem. 149, 615–620 (1951). BLUMENTHAL, E., and J. B. M. HERBERT: The mechanism of the hydrolysis of trimethyl orthophosphate. Trans. Faraday Soc. 41, 611–617 (1945).

    Google Scholar 

  • Bodansky, 0.: Cholinesterase. Ann N Y Acad. Sci. 47, art. 4, 521–547 (1946).

    Article  Google Scholar 

  • Borke, M. L., and E. R. Kntcl: A note on chemical constitution and biological activity ofsome derivatives of thiophosphoric acid. J. Amer. pharm. Ass. 45, 817–818 (1956).

    Article  Google Scholar 

  • Botts, J., and M. Morales: Analytical description of the effects of modifiers and of enzyme multivalency upon the steady state catalyzed reaction rate. Trans. Faraday Soc. 49, 696–707 (1953).

    Article  CAS  Google Scholar 

  • Boursnell, J. C., and E. C. Webb: Reaction of esterases with radioactive diisopropylfluorophosphate. Nature (Loud.) 164, 875 (1949).

    Article  CAS  Google Scholar 

  • Brouwer, D. M.: The role of the imidazole group in the hydrolytic action of chymotrypsin. Thesis 1957, University of Leyden, The Netherlands.

    Google Scholar 

  • Brmce, T. C., and G. L. Schmir: The catalysis of the hydrolysis of p-nitrophenyl acetate by imidazole and its derivatives. Arch. Biochem. 63, 484–486 (1956).

    Article  Google Scholar 

  • Brmce, T. C., and G. L. Schmir: Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetate by imidazole. J. Amer. chem. Soc. 79, 1663–1667 (1957).

    Google Scholar 

  • Brzin, M., and A. O.Gurancic: The mode of action of tubocurarine. Brit. J. Pharmacol. 11, 428–430 (1956).

    CAS  PubMed  Google Scholar 

  • Burger, A. S. V.: The mechanism of action of anticholinesterase drugs. Brit. J. Pharmacol. 4, 219–228 (1949).

    Google Scholar 

  • Burger, A. S. V.and F. Hobbiger: The inhibition of cholinesterases by alkylphosphates and alkyl phenol phosphates. Brit. J. Pharmacol. 6, 592–605 (1951).

    Google Scholar 

  • Chadwick, L. E.: Temperature dependence of cholinesterase activity. Influence Temp. Biol. Systems, Paper Symposium, Storrs, Conn. 1956, 45–59 (Pub. 1957 ).

    Google Scholar 

  • Chance, B.: Biological reactions. Part 1 Reaction kinetics of enzyme-substrate compounds. In: S. L. FRIESS and A. WEISSBERGER, Eds., Techn. Org. Chem. 8, 627–667 (1953).

    Google Scholar 

  • Childs, A. F., D. R. Davies, A. L. Green and J. P. Rutland: The reactivation by oximes and hydroxamic acids of cholinesterase inhibited by organo-phosphorus compounds. Brit. J. Pharmacol. 10, 462–465 (1955).

    CAS  PubMed  Google Scholar 

  • Claire Lawler, H.: A simplified procedure for the partial purification of acetylcholinesterase from electric tissue. J. biol. Chem. 234, 799–801 (1958).

    Google Scholar 

  • Cohen, J. A., F. Kalsbeei and M. G. P. J. Wabringa: Reversibility of the inhibition of true cholinesterase by physostigmine. Biochim. biophys. Acta 2, 549 (1948).

    CAS  Google Scholar 

  • Cohen, J. A., F. Kalsbeek and M. G. E. J. Warringa: The significance of butyrylcholine in the testing of cholinesterase-containing preparations. Acta brev. neerl. Physiol. 17, no 1–4, 32–36 (1949).

    CAS  Google Scholar 

  • Cohen, J. A., R. A. Oosterbaan, H. S. Jansz and F. Berends: The active site of esterases. J. cell. comp. Physiol. 54, 231–244 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. A., R. A. Oosterbaan, and M. G. P. J. Warringa: The turnover number of ali-esterase, pseudo-and true cholinesterase and the combination of these enzymes with diisopropylfluorophosphate. Biochim. biophys. Acta 18, 228–235 (1955a).

    CAS  Google Scholar 

  • Cohen, J. A., R. A. Oosterbaan, and M. G. P. J. Warringa and H. S. Jansz: The chemical structure of the reactive group of esterases. Disc. Faraday Soc. 20, 114–119 (1955b).

    Article  Google Scholar 

  • Cohen, J. A., and M. G. P. J. Warringa: Methods to estimate the turnover number of preparations of ox red cell cholinesterase. Biochim. biophys. Acta 11, 52–58 (1953).

    CAS  Google Scholar 

  • Cohen, J. A., and M. G. P. J. Warringa and B. R. Bovens: Protection of true cholinesterase against diisopropyl fluorophosphonate by butyrylcholine. Biochim. biophys. Acta 6, 469–476 (1951).

    CAS  Google Scholar 

  • Collier, H. B., and P. F. Solvoxux: Acylation reactions in the presence of acetylcholin-esterase of human erythrocytes. Biochim. biophys. Acta 16, 583–588 (1955).

    CAS  Google Scholar 

  • Cunningham, L. W.: Proposed mechanism of action of hydrolysis enzymes. Science 125, 1145–1146 (1957).

    Article  CAS  PubMed  Google Scholar 

  • Davies, D. R., and A. L. Green: The kinetics of reactivation by oximes of cholinesterase inhibited by organophosphorus compounds. Biochem. J. 63, 529–535 (1956).

    CAS  PubMed  Google Scholar 

  • Davies, D. R., and A. L. Green: The mechanism of hydrolysis by cholinesterase and related enzymes. In: F. F. NORD, Ed., Advanc. Enzymol. 20, 283–319 (1958).

    Google Scholar 

  • Davison, A. N.: Return of cholinesterase activity in the rat after inhibition by organo phosphorus compounds. 1 diethyl p-nitrophenyl phosphate (E 600, Paraoxon). Biochem. J. 54, 583–590 (1953).

    CAS  PubMed  Google Scholar 

  • Davison, A. N.: Return of cholinesterase activity in the rat after inhibition by organophosphorus compounds. Biochem. J. 60, 339–346 (1955).

    CAS  PubMed  Google Scholar 

  • Depierre, F., et M. A. Funke: Anticholinestérasiques. II. Dérivés analogues à la prostigmine. Influence de la structure chimique sur l’intensité et la sélectivité de l’action antiacétylcholinestérasique. C. R. Acad. Sci. (Paris) 239, 370–372 (1954).

    CAS  Google Scholar 

  • Diggle, W. M., and J. C. Gage: Cholinesterase inhibition in vitro by 0–0-diethyl 0-p-nitro-phenyl thiophosphate (Parathion, E 605). Biochem. J. 49, 491–494 (1951).

    CAS  PubMed  Google Scholar 

  • Dixon, G.H., W. J. Dreyer and H. Neurath: The reaction of p-nitrophenyl acetate with chymotrypsin. J. Amer. them. Soc. 78, 4810 (1956a).

    Google Scholar 

  • S. Go and H. Neurath: Peptides with C-diisopropylphosphoryl following degradation of 14C-DIP-trypsin with a-chymotrypsin. Biochim. biophys. Acta 19, 193–195 (1956b).

    Google Scholar 

  • D. L. Kaufmann and H. Neurath Amino: acid sequence in the region of diisopropylphosphoryl binding in DIP-trypsin. J. Amer chem. Soc. 80, 1260–1261 (1958a).

    Article  Google Scholar 

  • D. L. Kaufmann and H. Neurath: Amino acid sequence in the region of diisopropylphosphoryl binding in diisopropyl- phosphoryl-trypsin. J. biol. Chem. 233, 1373–1381 (1958b).

    Google Scholar 

  • D. L. Kaufmann and H. Neurath: Acylation of the enzymatic sites of chymotrypsin and trypsin. Fed. Proc. 16, 173 (1957a).

    Google Scholar 

  • D. L. Kaufmann: Acylation of the enzymatic site of zl-chymotrypsin by esters, acid anhydrides and acid chlorides. J. biol. Chem. 225, 1049–1059 (1957b).

    Google Scholar 

  • D. L. Kaufmann: An intermediate in the deacylation of mono-acetyl-chymotrypsin having the properties of acetyl imidazolyl. J. Amer. chem. Soc. 79 4558–4559 (1957 c).

    Article  Google Scholar 

  • D. L. Kaufmann and J. F. Pechere: Proteolytic Enzymes. In: J. M. LUCK, Ed. Ann Rev. Biochem. 27, 489–532 (1958c).

    Google Scholar 

  • Dixon, M.: The effect of pH on the affinities of enzymes for substrates and inhibitors. Biochem. J. 55, 161–171 (1953).

    CAS  PubMed  Google Scholar 

  • Dixon, M.: and E. C. Webb: “Enzymes”, Longman, Green and Co., London, New York, Toronto. London and Colchester: Printed by Spottiswoode, Ballantyne and Co. Ltd. 1958.

    Google Scholar 

  • Edsall, J. T.: Dipolar ions and acid-base equilibria (chapter 4); Some relations between acidity and chemical structure (chapter 5 ). In: E. J. CORN and J. T. EDSALL, Eds., Proteins, Amino Acids and Peptides. New York: Reinhold Publ. corp. 1943.

    Google Scholar 

  • Edwards, L. J.: The hydrolysis of aspirin. A determination of the thermodynamic kinetics by ultra-violet spectrophotometry. Trans. Faraday Soc. 46, 723–735 (1950).

    Article  CAS  Google Scholar 

  • Edwards, L. J.: The hydrolysis of aspirin. Part 2. Trans. Faraday Soc. 48, 696–699 (1952).

    Article  CAS  Google Scholar 

  • Enander, I.: Experiments with methyl-fluorophosphorylcholine inhibited cholinesterases. Acta chem. stand. 12, 780–781 (1958).

    Article  CAS  Google Scholar 

  • Foldes, F., G. Van Hees, D. L. Davis and S. P. Shanor: The structure-action relationship of urethane type cholinesterase inhibitors. J. Pharmacol. 122, 457–464 (1958).

    CAS  Google Scholar 

  • Fraenxel-Conrat, H.: The chemistry of proteins and peptides. In: J. M. LUCK, Ed., Ann. Rev. Biochem. 25, 291–330 (1956).

    Google Scholar 

  • Friedenwald, J. S., and G. D. Maengwyn-Davies: Elementary kinetic theory of enzymatic activity. In: W. D. MCELROY and B. GLASS, Eds., The Mechanism of Enzyme Action, 154–191. Baltimore: The John Hopkins Press 1954.

    Google Scholar 

  • Friess, S. L.: The acetylcholinesterase surface. VIII. Further observations on bifunctional inhibition of the enzyme. J. Amer. chem. Soc. 79, 3269–3273 (1957).

    Article  CAS  Google Scholar 

  • Friess, S. L. and H. D. Baldridge: Nature of the acetylcholinesterase surface. IV. The control of enzymatic inhibition by basicity in the substitued ethylenediamines. J. Amer. chem. Soc. 78, 199–202 (1956a).

    Article  CAS  Google Scholar 

  • Friess, S. L. and H. D. Baldridge: The acetylcholinesterase surface. V. Some new competitive inhibitors of moderate strength. J. Amer. chem. Soc. 78, 966–968 (1956b).

    CAS  Google Scholar 

  • Friess, S. L. and H. D. Baldridge: The acetylcholinesterase surface. VI. Further studies with cyclic isomers as inhibitors and substrates. J. Amer. chem. Soc. 78, 2482–2485 (1956c).

    Article  CAS  Google Scholar 

  • Friess, S. L. and W. M. Mccarville: Nature of the acetyl cholinesterase surface. I. Some potent competitive inhibitors of the enzyme. J. Amer. chem. Soc. 76, 1363–1367 (1954a).

    Article  CAS  Google Scholar 

  • Friess, S. L. and W. M. Mccarville: Nature of the acetyl cholinesterase surface. II. The ring effect in enzymatic inhibitors of the substituted ethylenediamine type. J. Amer. chem. Soc. 76, 2260–2261 (1954b).

    Article  CAS  Google Scholar 

  • Friess, S. L. A. A. Patchett and B. Witkop: The acethyl cholinesterase surface. VII. Interference with surface binding as reflected by enzymatic response to turicine, betonicine and related heterocycles. J. Amer. chem. Soc. 79, 459–462 (1957).

    Article  CAS  Google Scholar 

  • Friess, S. L. E. R. Whitcomb, B. T. Hogan and P. A. French: The action of some diamine optical antipodes on acetylcholinesterase inhibition and on conduction in desheathed bullfrog sciatic nerve. Arch. Biochem. 74, 451–457 (1958).

    Article  CAS  PubMed  Google Scholar 

  • Friess, S. L. I. B. Wilson and E. Cabib: The Mg (II) activation of acetylcholinesterase. J. Amer chem. Soc. 76, 5156–5157 (1954).

    Article  CAS  Google Scholar 

  • Fuxuto, T. R.: The chemistry and action of organic phosphorus insecticides. In: R. L. METCALF, Ed., Advances in Pest Control Research, vol. I, 147–192. New York: Inter-science Publishers, inc. 1957.

    Google Scholar 

  • Fuxuto, T. R. and R. Metcalf: Structure and insecticidal activity of some diethyl substituted phenyl phosphates. J. Agr. Food Chem. 4, 930–935 (1956).

    Article  Google Scholar 

  • Fulton, M. P., and G. A. Mogey: Some selective inhibitors of true cholinesterase. Brit. J. Pharmacol. 9, 138–144 (1954).

    CAS  PubMed  Google Scholar 

  • Funke, A., J. Bagot et F. Depierre: Anticholinestérasiques. I. Synthèse de diphénoxyalcanes porteurs d’une ou deux fonctions phénoliques libres. C. R. Acad. Sci. (Paris) 239, 329–331 (1954).

    CAS  Google Scholar 

  • Funke, A., F.Depierre and M. W. Krucker: Exaltation de l’activité anticholinestérasiques des sels d’ammonium quaternaires des phénoxyalcanes par l’introduction de groupements uréthanes. C. R. Acad. Sci. (Paris) 234, 762–764 (1952).

    CAS  Google Scholar 

  • Gage, J. C.: A cholinesterase inhibitor derived from 0,0-diethyl 0-p-nitrophenyl thiophosphate in vivo. Biochem. J. 54, 426–430 (1953).

    CAS  PubMed  Google Scholar 

  • Garrett, E. R.: The kinetics of solvolysis of acyl esters of salicylic acid. J. Amer. chem. Soc. 79, 3401–3408 (1957).

    Article  CAS  Google Scholar 

  • Ghosh, R., and J. F. Newman: A new group of organophosphorus pesticides. Chem. and Ind., 118 (1955).

    Google Scholar 

  • Gladner, J. A., and K. Laxi The activity site of thrombin. J. Amer. chem. Soc. 80, 1263 (1958).

    Article  CAS  Google Scholar 

  • Glick, D.: The specificity of choline esterase. J. biol. Chem. 130, 527 (1939).

    CAS  Google Scholar 

  • Goldstein, A.: Mechanism of enzyme-inhibitor-substrate reactions. Cholinesterase-eserineacetylcholine system. J. gen. Physiol. 27, 529 —580 (1944).

    Google Scholar 

  • Goldstein, A. and R. E. Hamlisch: Properties and behavior of purified human plasma cholinesterase. IV. Enzymatic destruction of the inhibitor prostigmine and physostigmine. Arch. Biochem. 35, 12–22 (1952).

    Article  CAS  PubMed  Google Scholar 

  • Graders, S.: The influence pf pH on the enzymic hydrolysis of acethylcholine. Acta chem. scand. 6, 1223–1231 (1952).

    Article  Google Scholar 

  • Green, A. L., and B. Saville: The reaction of oximes with isopropyl methylphosphonofluoridate (sarin). J. chem. Soc. 1956, 3887–3892.

    Google Scholar 

  • Green, A. L. and H. J. Smith: The reactivation of cholinesterase inhibited with organophosphorus compounds. 1. Reactivation by 2-oxo-aldoximes. Biochem. J. 68, 28–31 (1958 a).

    CAS  PubMed  Google Scholar 

  • Green, A. L. and H. J. Smith: The reactivation of cholinesterase inhibited with organophosphorus compounds. 2. Reactivation by pyridinealdoxime methiodides. Biochem. J. 68, 32–35 (1958 b).

    Google Scholar 

  • Green, N.: Competition among trypsin inhibitors. J. biol. Chem. 205, 535–551 (1953).

    CAS  PubMed  Google Scholar 

  • Grégoire, J., N. lnaozil and J. Grégoire: Activity of cholinesterase. III. Application of the spectrographometric method to the study of the influence of salt concentrations on the affinity of purified cholinesterases for acetylcholine. Bull. Soc. Chim biol. (Paris) 38, 147–163 (1956).

    Google Scholar 

  • Gutfreund, H., and J. M. Sturtevant: Mechanism of chymotrypsin-catalyzed reactions. Proc. nat. Acad. Sci. (Wash.) 42, 719–728 (1956a).

    Article  CAS  Google Scholar 

  • Gutfreund, H., and J. M. Sturtevant: The mechanism of the reaction of chymotrypsin with p-nitrophenyl acetate. Biochem. J. 63, 656–661 (1956b).

    CAS  PubMed  Google Scholar 

  • Haldane, J. B. S.: The Enzymes. London: Longmans Green 1930.

    Google Scholar 

  • Hammett, L. P.: Physical Organic Chemistry. New York: Mc. Graw-Hill Book Company Inc. 1940.

    Google Scholar 

  • Hammond, B. R., and H. GUTFREUND: The mechanism of ficin-catalysed reactions. Biochem. J. 72, 349–357 (1959).

    CAS  PubMed  Google Scholar 

  • Hardego, W.: Zur Kinetik der Cholinesterasen-Hemmung durch Prostigmin. NaunynSchmiedeberg’s Arch. exp. Path. Pharmak. 214, 540–555 (1952).

    Google Scholar 

  • Hardego, W. D. Bechinger and R. Doirmann: Importance of Schaefer’s equation for our interpretation of the kinetics of cholinesterase. Pflügers Arch. ges. Physiol. 263, 33–47 (1956).

    Google Scholar 

  • Hardego, W. D. and H. Schaefer: The kinetics of cholinesterase, with an improvement of the Warburg apparatus. Pflügers Arch. ges. Physiol. 255, 136–153 (1952).

    Google Scholar 

  • Hartley, B. S.: The site of action of inhibitors of oc-chymotrypsin. Biochem. J. 64, 27 p (1956).

    Google Scholar 

  • Hartley, B. S. and B. A. Kilby: Inhibition of chymotrypsin by diethyl p-nitrophenyl phosphate. Nature (Lond.) 166, 784–785 (1950).

    Article  CAS  Google Scholar 

  • Hartley, B. S. and B. A. Kilby: The reaction of p-nitrophenyl esters with chymotrypsin and insulin. Biochem. J. 56, 288–297 (1954).

    CAS  PubMed  Google Scholar 

  • Hartley, B. S. and V. Massey: The active centre of chymotrypsin. I. Labelling with a fluorescent dye. Biochim. biophys. Acta 21, 58–70 (1956).

    CAS  Google Scholar 

  • Hawkins, R. D., and B. Mendel: Studies on cholinesterase. 6. The selective inhibition of true cholinesterase in vivo. Biochem. J. 44, 260–264 (1949).

    CAS  Google Scholar 

  • Heilbronn, E.: Dependence of choline esterase activity at various substrate and inhibitor concentrations. Acta chem. scand. 8, 1368–1372 (1954).

    Article  CAS  Google Scholar 

  • Herzfeld, E., and CH. Stumpf: Untersuchungen über die Cholinesterasehemmwirkung der Polymethylen-bis-(n-methyl-carbaminoyl-m-trimethyl-ammoniumphenole). Arch. int. Pharmacodyn. 107, 33–44 (1956).

    CAS  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholinesterase. J. biol. Chem. 180, 879–881 (1949).

    CAS  PubMed  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholinesterase II. Biochim. biophys. Acta 4, 310–321 (1950).

    CAS  Google Scholar 

  • Heymans, C.: Les substances anticholinestérasiques exposés annuels de Biochimie médicale. 12 série 1951. Paris: Masson et Cie.

    Google Scholar 

  • Hobbiger, F. W.: Inhibition of cholinesterases by irreversible inhibitors in vitro and in vivo. Brit. J. Pharmacol. 6, 21–30 (1951).

    CAS  PubMed  Google Scholar 

  • Hobbiger, F. W.:The mechanism of anticurare action of certain neostigmine analogues. Brit. J. Pharmacol. Hobbiger, F. W.:, 223–236 (1952).

    Google Scholar 

  • Hobbiger, F. W.:The inhibition of cholinesterase by 3-(diethoxyphosphinyloxy)-N-methylquinolinium methylsulphate and its tertiary base. Brit. J. Pharmacol. 9, 159–165 (1954a).

    CAS  PubMed  Google Scholar 

  • Hobbiger, F. W.:Anticholinesterases. A comparison between the in vitro activity and the in vivo action of certain organic phosphates. Chem. and Ind. 1954b, 1574.

    Google Scholar 

  • Hobbiger, F. W.:Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphate group. Brit. J. Pharmacol. 10, 356–362 (1955).

    CAS  PubMed  Google Scholar 

  • Hobbiger, F. W.:Chemical reactivation of phosphorylated human and bovine true cholinesterase. Brit. J. Pharmacol. 11, 295–303 (1956).

    CAS  PubMed  Google Scholar 

  • D. G. Osullivan and P. W. Sadler: New potent reactivators of acetocholinesterase inhibited by tetraethyl pyrophosphate. Nature (Lond.) 182, 1498–1499 (1958).

    Article  Google Scholar 

  • D. G. Osullivan and P. W. Sadler: Protection by oximes of bispyridinium ions against lethal diisopropyl phosphonofluoridate poisoning. Nature (Lond.) 182, 1672–1673 (1958).

    Article  Google Scholar 

  • Holland, W. C., C. E. Dunn and M. E. Greig: Studies on permeability. VII. Effect of several substrates and inhibitors of acetyl cholinesterase on permeability of isolated auricles to Na and K. Amer. J. Physiol. 168, 546–556 (1952).

    CAS  PubMed  Google Scholar 

  • Holland, W. C., and R. L. Klein: Effects of diazonium salts on erythrocyte fragility and cholinesterase activity. Amer. J. Physiol. 187, 501–504 (1956).

    CAS  PubMed  Google Scholar 

  • Holmstedt, B.: Synthesis and pharmacology of dimethylamido-ethoxyphosphoryl cyanide (tabun) together with a description of some allied anticholinesterase compounds containing the N-P bond. Acta physiol. scand. suppl. 90. 25, 11–120 (1951).

    Google Scholar 

  • Holmstedt, B.: A modification of the thiocholine method for the determination of cholinesterase. I. Bio- chemical evaluation of selective inhibitors. Acta physiol. scand. 40, 322–330 (1957).

    Article  CAS  PubMed  Google Scholar 

  • Holmstedt, B.: Pharmacology of organophosphorus cholinesterase inhibitors. Pharmacol. Rev. 11, 567–688 (1959).

    CAS  PubMed  Google Scholar 

  • Hoskin, F. C. G., and G. S. Trick: Stereospecificity in the enzymic hydrolysis of tabun and acetyl-ß-methylcholine chloride. Canad. J. Biochem. Physiol. 33, 940–947 (1955).

    Article  Google Scholar 

  • Huennekens, F. M.: Biological reactions. Part 1. Measurement and General theory. In: S. L.Friess and A. Weissberger, Eds., Techn. Org. Chem. 8, 535–627 (1953).

    Google Scholar 

  • Jacob, J., and A. Funke: Relation between chemical structure and anticholinesterase properties of a group of selective inhibitors of cell acetylcholinesterase of the dog. C. R. Acad. Sci. (Paris) 237, 1809–1811 (1953).

    CAS  Google Scholar 

  • Jandorf, B. J.: Chemical reactions of nerve gases in neutral solution. I. Reactions with hydroxylamine. J. Amer. chem. Soc. 78, 3686–3691 (1956a).

    Article  CAS  Google Scholar 

  • Jandorf, B. J.: Mode of action of pesticides. Mechanism of reaction of di-n-propyl-2, 2-dichlorovinyl phosphate (DDP) with esterases. J. Agr. Food. Chem. 4, 853–858 (1956b).

    Article  CAS  Google Scholar 

  • Jandorf, B. J. E. A. Crowell and A. P. Levin: Role of hydroxamic acids in prevention and reversal of cholinesterase inactivation by DFP and sarin. Fed. Proc. 14, 231 (1955a).

    Google Scholar 

  • Jandorf, B. J. H. O. Michel, N. K. Schaffer, R. Egan and W. H. Summerson: The mechanism of reaction between esterases and phosphorus-containing anti-esterases. Disc. Faraday Soc. 20, 134–142 (1955b).

    Article  Google Scholar 

  • Jansen, E. F., and A. K. Balls:The inhibition of ß and y chymotrypsin and trypsin by diisopropyl fluorophosphate. J. biol. Chem. 194, 721–727 (1952).

    CAS  PubMed  Google Scholar 

  • Jansen, E. F. A. L. Curl and A. K. Balls: Reaction of ce-chymotrypsin with analogues of diisopropyl fluorophosphate. J. biol. Chem. 190, 557–562 (1951).

    CAS  PubMed  Google Scholar 

  • Jansen, E. F. A. L. Curl and A. K. Balls M. D. Fellows Nutting and A. K. Balls: Mode of inhibition of chymotrypsin by diisopropylfluorophosphate. I. Introduction of phosphorus. J. biol. Chem. 179, 201–204 (1949).

    CAS  Google Scholar 

  • Jansen, E. F. A. L. Curl and A. K. Balls R. Jang and A. K. Balls: Mode of inhibition of chymotrypsin by diisopropylfluorophosphate. II. Introduction of isopropyl and elimination of fluorine as hydrogen fluoride. J. biol. Chem. 185, 209–220 (1950).

    Google Scholar 

  • E. F. A. L. Jansen, R. Jang and A. K. Balls: The inhibition of purified, human plasma cholinesterase with diisopropyl fluorophosphate. J. biol. Chem. 196, 247–253 (1952).

    CAS  PubMed  Google Scholar 

  • Jansz, H. S., D. Brons and M. G. P. J. Warringa: Chemical nature of the DFP-binding site of pseudocholinesterase. Biochim. biophys. Acta 34, 573–575 (1959a).

    CAS  Google Scholar 

  • Jansz, H. S., D. C. H. Posthumus and J. A. Cohen: On the active site of horse liver ali esterase. I. The reaction of the enzyme with diisopropylphosphorofluoridate. Biochim. biophys. Acta 33, 387–395 (1959b).

    CAS  Google Scholar 

  • Jansz, H. S., D. C. H. Posthumus and J. A. Cohen: On the active site of horse liver ali esterase II Amino acid sequence in the DFP binding site of enzyme. Biochim. biophys. Acta 33, 396–403 (1959 c).

    Google Scholar 

  • Kimura, K. K., K. Umra and C. C. Pfeiffer: Diatropine derivatives as proof that d-tubocurarine is a blocking moiety containing twin atropine-acetylcholine prosthetic groups. J. Pharmacol. 95, 149–154 (1949).

    CAS  Google Scholar 

  • Koblick,D. C.: An enzymatic ion exchange model for active sodium transport. J. gen. physiol. 42, 635–645 (1959).

    Google Scholar 

  • Koelle, G. B.: Protection of cholinesterase against irreversible inactivation by diisopropyl fluorophosphate in vitro. J. Pharmacol. 88, 232–237 (1946).

    CAS  Google Scholar 

  • Koelle, G. B. The histochemical differentiation of types of cholinesterases and their localizations in tissues of the cat. J. Pharmacol. 100, 158–179 (1950).

    CAS  Google Scholar 

  • Koelle, G. B. and J. S. Friedenwald: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N. Y.) 70, 617–622 (1949).

    Article  CAS  Google Scholar 

  • Koelle, G. B. and A. Gilman: Anticholinesterase drugs. Pharmacol. Rev. 1, 166–216 (1949).

    Google Scholar 

  • Kolbezen, M. J., R. L. Metcalf and T. R. Fukuto: Insecticidal activity of carbamate cholinesterase inhibitors. J. Agr. Food Chem. 2, 864–870 (1954).

    Article  CAS  Google Scholar 

  • Koshland, D. E., and M. J. Erwin: Enzyme catalysis and enzyme specificity-combination of amino acids at the active site of phosphoglucomutase. J. Amer. chem. Soc. 79, 2657 to 2658 (1957).

    Google Scholar 

  • Koshland,D. E. W. J. Ray and M. J. Erwin: Protein structure and enzyme action. Fed. Proc. 17, 1145 to 1150 (1958).

    Google Scholar 

  • Kraupp, O., CH. Stumpf, E. Herzfeld and B. Pillat: Pharmakologische Eigenschaften einiger langwirksamer Cholinesterase-Hemmkörper aus der Reihe der Polymethylen-bis(carbaminoyl-m-trimethylammoniumphenole). Arch. int. Pharmacodyn. 102, 281–303 (1955).

    CAS  Google Scholar 

  • Laidler, K.: Some kinetic and mechanistic aspects of hydrolytic enzyme action. Disc. Faraday Soc. 20, 83–96 (1955a).

    Article  Google Scholar 

  • Laidler, K. I.: The influence of pH on the rate of enzyme reactions. Trans. Faraday Soc. 51, part 1: 528–539, part 2: 540–550, part 3: 550–561 (1955b).

    Article  Google Scholar 

  • Laidler, K. I.: The influence of pH on the rates of enzyme reactions. Part 3 Analysis of experimental results for various enzyme systems. Trans. Faraday Soc. 51, 550–561 (1955c).

    Article  CAS  Google Scholar 

  • Larsson, L.: A spectrophotometric study in the infra-red of the hydrolysis of dimethyl amidoethoxyphosphoryl cyanide (tabun). Acta chem. scand. 6, 1470–1476 (1952).

    Article  CAS  Google Scholar 

  • Levin, A. P., and B. J. Jandorf: Inactivation of cholinesterase by compounds related to neostigmine. J. Pharmacol. 113, 206–211 (1955).

    CAS  Google Scholar 

  • Loewenstein, R. W., and D. Molins: Cholinesterase in a receptor. Science 128, 1284 (1958). MACKWORTH, J. F., and E. C. Webb: Inhibition of serum cholinesterase by alkyl fluophosphates. Biochem. J. 42, 91–95 (1948).

    Google Scholar 

  • Marini, M. A., and G. P. Hess: Reactivity and interrelationship of intermediates in the hydrolysis of p-nitrophenyl acetate catalysed by chymotrypsin. Nature (Lond.) 184, 113 to 114 (1959).

    Google Scholar 

  • Martin, C. J., J. Golubow and A. E. Axelrod: A rapid and sensitive spectrophotometric method for the assay of chymotrypsin. J. biol. Chem. 234, 204–298 (1959).

    Google Scholar 

  • Massey, V., W. F. Harrington and B. S. Hartley: Certain physical properties of chymotrypsin and chymotrypsinogen using the depolarization of fluorescence technique. Disc. Faraday Soc. 20, 24–32 (1955).

    Article  Google Scholar 

  • Massey, V., W. F. Harrington and B. S. Hartley: The active centre of chymotrypsin; Reaction with dinitrofluorobenzene. Biochim. biophys. Acta 21, 361–367 (1956).

    CAS  Google Scholar 

  • Masterson, D. S., and S. L. Friess: The acetylcholinesterase surface. IX. Dependence of competitive inhibition by diaminocyclohexane derivatives on substrate level. J. Amer. chem. Soc. 80, 5687–5689 (1958).

    Article  CAS  Google Scholar 

  • Mazur, A., and O. Bodansky: The mechanism of in vitro and in vivo inhibition of cholin-esterase activity by diisopropylfluorophosphate. J. biol. Chem. 163, 261–276 (1946).

    CAS  PubMed  Google Scholar 

  • Mcnaugiton, R. A., and E. A. Zeller: On the specificity and differentiation of cholin-esterases. Proc. Soc. exp. Biol. (N. Y.) 70, 165–167 (1949).

    Article  Google Scholar 

  • Meer, C. Van Der: Effect of calcium chloride on choline esterase. Nature (Lond.) 171, 78–79 (1953).

    Article  Google Scholar 

  • Mendel, B., and H. Rudney: Effect of salts on true cholinesterase. Science 102, 616–617 (1945).

    Article  CAS  Google Scholar 

  • Michel, H. O.: Reaction of diisopropylfluorophosphate (DFP) with red blood cell cholinesterase. Fed. Proc. 11, 259 (1952).

    Google Scholar 

  • Michel, H. O.: Kinetics of the reactions of cholinesterase chymotrypsin and trypsin with organophosphorus inactivators. Fed. Proc. 14, 255 (1955).

    Google Scholar 

  • Michel, H. O.: Development of resistance of alkyl-phosphorylated cholinesterase to reactivation by oximes. Fed. Proc. 17, 275 (1958).

    Google Scholar 

  • Michel, H. O. and S. Krop: The reaction of cholinesterase with diisopropylfluorophosphate. J. biol. Chem. 190, 119–125 (1951).

    CAS  Google Scholar 

  • Mitchell, P., and J. Moyle: Group-translocation: A consequence of enzyme-catalyzed group-transfer. Nature (Lond.) 182, 372–373 (1958).

    Article  CAS  Google Scholar 

  • Morales, F.: If an enzyme-substrate modifier system exhibits non-competitive interaction, then, in general, its Michaelis constant is an equilibrium constant. J. Amer. chem. Soc. 77, 4169–4170 (1955).

    Article  CAS  Google Scholar 

  • Morawetz, H., and I. ORESKES: Intramolecular bifunctional catalysis of ester hydrolysis. J. Amer. chem. Soc. 80, 2591–2592 (1958).

    Article  CAS  Google Scholar 

  • Mounter, L. A.: The specificity of cobra venom cholinesterase. Biochem. J. 50, 122–128 54, 551–559 (1953).

    Google Scholar 

  • Mounter, L. A.H. C. Alexander, K. D. Tuck and L. T. H Dien: The pH dependence and dissociation constants of esterases and proteases treated with diisopropylfluorophosphate. J. biol. Chem. 226, 867–872 (1957a).

    CAS  Google Scholar 

  • Mounter, L. A. H. C. Alexander, K. D. Tuck and L. T. H. Dien: The reactivity of esterases and proteases in the presence of organo-phosphorus compounds. J. biol. Chem. 226, 873–879 (1957b).

    CAS  Google Scholar 

  • Mounter, L. A. and V. P. Whittaker: The esterases of horse blood. 2. The specificity of horse erythrocyte cholinesterase. Biochem. J. 47, 525–530 (1950).

    CAS  PubMed  Google Scholar 

  • Mounter, L. A. and V. P. Whittaker: The hydrolysis of esters of phenol by cholinesterases and other esterases. Biochem. J. (1951).

    Google Scholar 

  • Murray, D. R. P.: Inhibition of esterases by excess substrate. Biochem. J. 24, 1890–1898 (1930).

    CAS  PubMed  Google Scholar 

  • Myers, D. K.: Effect of electrolytes on cholinesterase inhibition. Arch. Biochem. 27, 341–347 (1950).

    CAS  PubMed  Google Scholar 

  • Myers, D. K.: Differentiation of three types of competitive cholinesterase inhibitors. Arch. Biochem. 31, 29–40 (1951).

    Article  CAS  PubMed  Google Scholar 

  • Myers, D. K.: Studies on cholinesterase. 7. Determination of the molar concentration of pseudo-cholinesterase in serum. Biochem. J. 51, 303–311 (1952a).

    CAS  PubMed  Google Scholar 

  • Myers, D. K.: Studies on cholinesterase. 8. Determination of reaction velocity constants with a reversible inhibitor of pseudo-cholinesterase. Biochem. J. 52, 46–53 (1952b).

    CAS  PubMed  Google Scholar 

  • Myers, D. K.: Effect of salt on the hydrolysis of acetylcholine by cholinesterases. Arch. Biochem. 37, 469–487 (1952 c).

    Google Scholar 

  • Handb. d. exp. Pharmakol. Erg. W. Bd. XV 24

    Google Scholar 

  • Myers, D. K.: Cholinesterase. IX. Species variation in the specificity pattern of the pseudocholinesterases. Biochem. J. 55, 67–79 (1953).

    CAS  PubMed  Google Scholar 

  • Myers, D. K.:Studies on selective esterase inhibitors. Thesis, Amsterdam 1954.

    Google Scholar 

  • Cholinesterase. X. Return of cholinesterase activity in the rat after inhibition by carbamoyl fluorides. Biochem. J. 62, 556–563 (1956).

    Google Scholar 

  • Myers, D. K.and A. K.mp: Inhibition of esterases by the fluorides of organic acids. Nature (Lond.) 173, 33–34 (1954).

    Article  CAS  Google Scholar 

  • Myers, D. K. and B. Mendel: Investigation on the use of eserine for the differentiation of mammalian esterases. Proc. Soc. exp. Biol. (N. Y.) 71, 357–360 (1949).

    CAS  Google Scholar 

  • Nacnmansohn, D.: Action of ions on choline esterase. Nature (Lond.) 145, 513–514 (1940).

    Article  Google Scholar 

  • Nacnmansohn, D. and M. A. Rothenberg: Specificity of cholinesterase in nervous tissue. Science 100, 454 to 455 (1944).

    Google Scholar 

  • Nacnmansohn, D. and M. A. Rothenberg: Cholinesterase. I. The specificity of the enzyme in nerve tissue. J. biol. Chem. 158, 653–666 (1945).

    Google Scholar 

  • Nacnmansohn, D. and M. A. Rothenberg and E. A. Feld: The in vitro reversibility of cholinesterase inhibition by diisopropylfluophosphate (DFP). Arch. Biochem. 14, 197–211 (1947).

    Google Scholar 

  • Nacnmansohn, D. and M. A. Rothenberg and E. A. Feld: Studies on cholinesterase. V. Kinetics of the enzyme inhibition. J. biol. Chem. 174, 247–256 (1948).

    Google Scholar 

  • Nacnmansohn, D. and I. B. Wilson: The enzymic hydrolysis and synthesis of acetylcholine. In: F. F. NORD, Ed., Advanc. Enzymol. 12, 259–339 (1951).

    Google Scholar 

  • Neurath, H., G. H. Dixon and J. F. Pechère: Certain aspects of the structure and active sites of oc-chymotrypsin and trypsin. In: Symposium on Proteins, IVth Intern. Congress of Biochemistry, Vienna. London: Pergamon Press Ltd. 1958.

    Google Scholar 

  • Oosterbaan, R. A., and M. E. Van Adrichem: Isolation of acetyl peptides from acetylchymotrypsin. Biochim. biophys. Acta 27, 423–425 (1958).

    CAS  Google Scholar 

  • Oosterbaan, R. A. H. S. Jansz and J. A. Cohen: The chemical structure of the reactive group of esterases. Biochim biophys. Acta 20, 402–403 (1956).

    Google Scholar 

  • Oosterbaan, R. A. P. Kunst, J. VAN Rotterdam and J. A. Cohen: The reaction of chymotrypsin and diisopropylphosphorofluoridate. Isolation and analysis of diisopropylphosphorylpeptides. Biochim. biophys. Acta 27, 549–555 (1958a).

    CAS  Google Scholar 

  • Oosterbaan, R. A. P. Kunst, J. VAN Rotterdam and J. A. Cohen:The reaction of chymotrypsin and diisopropylphosphorofluoridate. The structure of two DP-substitutes peptides from chymotrypsin-DP. Biochim. biophys. Acta 27, 556 to 563 (1958 b).

    Google Scholar 

  • Pfeiffer, C. C.: Nature and spatial relationship of the prosthetic chemical groups required for maximal muscarinic action. Science 107, 94–96 (1948).

    Article  CAS  PubMed  Google Scholar 

  • Porter, G. R., H. N. RYDON and J. A. Schofield • Nature of the reactive serine residue in enzymes inhibited by organophosphorus compounds. Nature (Lond.) 182, 927 (1958).

    Article  CAS  Google Scholar 

  • Pulver, R., and R. Domenjoz: The specificity of esterase inhibitors. Experientia (Basel) 7, 306–307 (1951).

    Article  CAS  Google Scholar 

  • Randall, L. O.: Anticurare action of phenolic quaternary ammonium salts. J. Pharmacol. 100, 83–93 (1950).

    CAS  Google Scholar 

  • Randall, L. O.: Synthetic curarelike agents on their antagonists. Ann. N. Y. Acad. Sci. 54, 460–479 (1951).

    Article  CAS  PubMed  Google Scholar 

  • Randall, L. O.and G. Lehmann- Pharmacological properties of some neostigmine analogs. J. Pharmacol. 99, 16–32 (1950).

    CAS  Google Scholar 

  • Rrxer, W. F., jr.: Excitatory and anti-curare properties of acetylcholine and related quaternary ammonium compounds at the neuromuscular junction. In: L. S. GOODMAN, Ed., Pharmacol. Rev. 5, no. 1, 1–86 (1953).

    Google Scholar 

  • Riley, G., J. H. Turnbull and W. Whson: O. phosphoryl serine derivatives. Chem. and Ind. 1953, 1181.

    Google Scholar 

  • Rothenberg, M. A., and D. Nachmansohn: Cholinesterase. III. Purification of the enzyme from electric tissue by fractional ammonium sulfate precipitation. J. biol. Chem. 168, 223–231 (1947).

    CAS  PubMed  Google Scholar 

  • Rydon, H. N.: A possible mechanism of action of esterases inhibitable by organo-phosphorus compounds. Nature (Lond.) 182, 928–929 (1958).

    Article  CAS  Google Scholar 

  • Saunders, B. C.: Phosphorus and fluorine. The chemistry and toxic action of their organic compounds. Cambridge: University Press 1957.

    Google Scholar 

  • Schaefer, H.: The properties of cholinesterase in normal blood. Pflügers Arch. ges. Physiol. 249, 405–430 (1947).

    CAS  Google Scholar 

  • Schaefer, H., and E. Maier:Critique and procedure for cholinesterase determinations in blood. Biochem. Z. 319, 420–438 (1949).

    CAS  Google Scholar 

  • Schaffer, N. K., R. R. Engle, L. Simet and R. W. Drisko: Phosphopeptides from chymotrypsin and trypsin after inactivation by 32P labeled DFP and sain. Fed. Proc. 15, 347 (1956).

    Google Scholar 

  • Schaffer, N. K., R. P. Lang, L. Simet and R. W. Drisko: Phosphopeptides from acid-hydrolyzed 32P labeled isopropyl methylphosphonofluoridate-inactivated trypsin. J. biol. Chem. 230, 185–192 (1958).

    CAS  PubMed  Google Scholar 

  • Schaffer, N. K. C. S. May and W. H. Summerson: Serine phosphoric acid from diisopropylphosphoryl chymotrypsin. J. biol. Chem. 202, 67–76 (1953).

    CAS  PubMed  Google Scholar 

  • Schaffer, N. K. C. S. May and W. H. Summerson: Serine phosphoric acid from diisopropylphosphoryl derivative of eel cholinesterase. J. biol. Chem. 206, 201–207 (1954).

    CAS  PubMed  Google Scholar 

  • Schaffer, N. K. L. Simet, S. Harshman, R. R. Engle and R. W. Drisko: Phosphopeptides from acid-hydrolyzed 3213 labelled diisopropylphosphoryl chymotrypsin. J. biol. Chem. 225, 197–206 (1957).

    CAS  PubMed  Google Scholar 

  • Schonbaum, G. R., K. Nakamura and M. L. Bender: Direct spectrophotometric evidence for an acyl-enzyme intermediate in the chymotrypsin-catalyzed hydrolysis of 0-nitrophenyl cinnamate. J. Amer. chem. Soc. 81, 4746–4747 (1959).

    Article  CAS  Google Scholar 

  • Schrader, G.: Die Entwicklung neuer Insektizide auf Grundlage von organischen Fluor-undPhosphorverbindungen. Monographie no. 2, 2. Aufl. Weinheim: Verlag Chemie 1952.

    Google Scholar 

  • Serlin, I., and D. J. Fluke: The size and shape of the radiosensitive acetylcholinesterase unit. J. biol. Chem. 223, 727–736 (1956).

    CAS  PubMed  Google Scholar 

  • Shuxuya, R.: Mechanism of action of cholinesterase. I. Differences in pS-activity curves of cholinesterases of human erythrocytes and serum. J. Japan. biochem. Soc. 23, 129–133 (1951 a).

    Google Scholar 

  • Shuxuya, R.: Kinetics of human blood cholinesterase. J. Biochem. (Tokyo) 38, 225–236 (1951 b).

    Google Scholar 

  • Shuxuya, R.: Kinetics of human blood cholinesterase. II. The temperature effect upon cholinesterase activity. J. Biochem. (Tokyo) 40, 135–140 (1953).

    Google Scholar 

  • Shuxuya, R.and M. Shinoda: Kinetics of the human blood cholinesterase. V. The inhibition of acetyl-cholinesterase and cholinesterase by hydrogen ion and tetraethylammonium bromide. J. Biochem. (Tokyo) 43, 315–326 (1956).

    Google Scholar 

  • Smrra, C. M., H. L. Cohen, E. W. Pelikan and K. R. Unna: Mode of action of antagonists to curare. J. Pharmacol. 105, 391–399 (1952).

    Google Scholar 

  • Smith, E. L.: Active site of papain and covalent “high-energy” bonds of proteins. J. biol. Chem. 233, 1392–1397 (1958).

    CAS  PubMed  Google Scholar 

  • Smith, E. L. and M. J. Parker Kinetics of papain action. III. Hydrolysis of benzoyl-l-arginine ethyl ester. J. biol. Chem. 233, 1387–1391 (1958).

    CAS  PubMed  Google Scholar 

  • Snellman, O.: A peptide material from myosin containing sulfhydryl groups. Acta chem. scand. 12, 503–510 (1958).

    Article  CAS  Google Scholar 

  • Sórm, F., and I. Rychlik Enzyme activity of dinitro derivatives of cc-chymotrypsin. Chem. listy 46, 465–468 (1952).

    Google Scholar 

  • Spencer, T., and J. M. Sturtevant: The mechanism of chymotrypsin-catalyzed reactions. III. J. Amer. chem. Soc. 81, 1874–1882 (1959).

    Article  CAS  Google Scholar 

  • Sprinson, D. B., and D. Rittenberg: Nature of the activation process in enzymatic reactions. Nature (Lond.) 167, 484 (1951).

    Article  CAS  Google Scholar 

  • Stein, S. S., and D. E. Koshland: Mechanism of hydrolysis of acetylcholine catalyzed by acetylcholinesterase and by hydroxide ion. Arch. Biochem. 45, 467–468 (1953).

    Article  CAS  PubMed  Google Scholar 

  • Stein, W. D.: N terminal histidine at the active centre of a permeability mechanism. Nature (Lond.) 181, 1662–1663 (1958).

    Article  CAS  Google Scholar 

  • Straus, O. H., and A. Goldstein: Zone behavior of enzymes. Illustrated by the effect of dissociation constant and dilution on the system cholinesterase-physostigmine. J. gen. Physiol. 26, 559–585 (1943).

    Article  CAS  PubMed  Google Scholar 

  • Swidler, R., and G. M. Steinberg: The kinetics of isopropyl methylphosphonofluoridate(Sarin) with benzohydroxamic acid. J. Amer. chem. Soc. 78, 3594–3598 (1956).

    Article  CAS  Google Scholar 

  • Takagi, H.: The relation between the action of various drugs and the activity of specific cholinesterase in the brain. II. Protection of the cholinesterase activity from cholinesteraseinhibitors by anticholinergic drugs. Folia pharmacol. jap. 49, 89–95 (1953).

    Article  CAS  Google Scholar 

  • Tammelin, L. E.: Methyl-fluoro-phosphorylcholines. Acta chem. scand. 11, 859–865 (1957a).

    Article  CAS  Google Scholar 

  • Tammelin, L. E.: Dialkoxy-phosphorylthiocholines. Alkoxymethyl-phosphoryl-thiocholines and analogous choline esters. Acta chem. scand. 11, 1340–1349 (1957 b).

    Google Scholar 

  • Tammelin, L. E.: Isomerisation of w-dimethylamino-ethyldiethyl thionophosphate. Acta chem. scand. 11, 1738–1744 (1957 c).

    Google Scholar 

  • Tammelin, L. E.: Choline esters. Substrates and inhibitors of cholinesterases. Svenska Kemi. Tidskr. 70, 157–181 (1958a).

    CAS  Google Scholar 

  • Tammelin, L. E.: Organophosphorylcholines and cholinesterases. Ark. Kemi 12, 287–298 (1958b). TODRICK, A.: The inhibition of cholinesterases by antagonists of acetylcholine and histamine. Brit. J. Pharmacol. 9, 76–83 (1954).

    Google Scholar 

  • Tréfouël, J.: Exaltation de l’activité anticholinestérasique des sels d’ammonium quaternaires des phénoxyalcanes par l’introduction de groupements uréthanes. C. R. Acad. Sci. (Paris) 234, 762–764 (1952). 24

    Google Scholar 

  • Turba, F., and G. Gundlaci: Aminosäure-sequenz in der Umgebung des reaktiven Serin-restes im Chymotrypsin-Molekiil. Biochem. Z. 327, 186–188 (1955).

    CAS  PubMed  Google Scholar 

  • Underhay, E. E.: The hydrolysis of indoxyl esters by esterases of human blood. Biochem. J. 66, 383–390 (1957).

    CAS  PubMed  Google Scholar 

  • Viswanatia, T., and I. E. Liener: The peptic activation of acetyltrypsinogen. Physico-chemical properties of the active derivative. Biochim. biophys. Acta 37, 389 (1960).

    Google Scholar 

  • Waley, S. G.: Some aspects of the kinetics of enzymic reactions. Biochim. biophys. Acta10, 27–34 (1953).

    Google Scholar 

  • Weu, L., S. James and A. R. Biichert: Photo-oxidation of crystalline chymotrypsin in the presence of methylene blue. Arch. Biochem. 46, 266–278 (1953).

    Article  Google Scholar 

  • Wescoe, W. C., W. F. Riker and W. L. Beach: Studies on the interrelationships of certain cholinergie compounds. III. The reactions between 3-acetoxy phenyl-trimethylammonium methylsulfate, 3-hydroxy phenyltrimethylammonium bromide and cholinesterases. J. Pharmacol. 99, 265–276 (1950).

    CAS  Google Scholar 

  • Westheimer, F. H.: Hypothesis for the mechanism of action of chymotrypsin. Proc. nat. Acad. Sci. (Wash.) 43, 969–975 (1957).

    Article  CAS  Google Scholar 

  • Whitaker, J. R., and B. J. Jandorf: Specific reactions of dinitrofluorobenzene with active groups of chymotrypsin. J. biol. Chem. 223, 751–764 (1956).

    CAS  PubMed  Google Scholar 

  • Whittaker, V. P.: The specificity of pigeon-brain cholinesterase. Biochem. J. 44, proc. 46 (1949).

    Google Scholar 

  • Whittaker, V. P.: Specificity, mode of action and distribution of cholinesterases. Physiol. Rev. 31, 312–343 (1951).

    CAS  PubMed  Google Scholar 

  • Whittaker, V. P.: The specificity of pigeon-brain cholinesterase. Biochem. J. 54, 660–664 (1953).

    CAS  PubMed  Google Scholar 

  • Whittaker, V. P.: In Progress in Stereochemistry, p. 317–318. Ed. Klyne. London: Butterworths. «’ILSON, I. B: Mechanism of enzymic hydrolysis. I. Role of the acidic group in the esteratic site of acetylcholinesterase. Biochim. biophys. Acta 7, 466 170 (1951a).

    Google Scholar 

  • Whittaker, V. P.:Mechanism of hydrolysis. II. New evidence for an acylated enzyme as intermediate. Biochim. biophys. Acta 7, 520–525 (1951 b).

    Google Scholar 

  • Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. biol. Chem. 190, 111–117 (1951 c).

    Google Scholar 

  • Whittaker, V. P.: Acetylcholinesterase. The mechanism of enzymic activity. Baskerville them. J. City Coll. N. Y. 3, no. 1, 7–12 (1952a).

    Google Scholar 

  • Whittaker, V. P.:Acetylcholinesterase. XII. Further studies of binding forces. J. biol. Chem. 197, 215–225 (1952 b).

    Google Scholar 

  • Whittaker, V. P.: Acetylcholinesterase. XIII. Reactivation of alkyl phosphate-inhibited enzyme. J. biol. Chem. 199, 113–120 (1952c).

    Google Scholar 

  • Whittaker, V. P.: The mechanism of enzyme hydrolysis studied with acetylcholinesterase. In: W. D. McELRoY and B. GLASS, Eds., The Mechanism of Enzyme Action, 642–657. Baltimore: The John Hopkins Press 1954.

    Google Scholar 

  • Whittaker, V. P.: Promotion of acetylcholinesterase activity by the anionic site. Disc. Faraday Soc. 20, 119–125 (1955a).

    Article  Google Scholar 

  • Whittaker, V. P.: The interaction of tension and neostigmine with acetylcholinesterase. Arch. int. Pharmacodyn. 104, 204–213 (1955b).

    Google Scholar 

  • Whittaker, V. P.: Molecular complementarity and antidotes for alkylphosphate poisoning. Fed. Proc. 18, 752–758 (1959).

    Google Scholar 

  • Whittaker, V. P., and F. Bergmann: Studies on cholinesterase. VII. The active surface of acetylcholine esterase derived from effects of pH on inhibitors. J. biol. Chem. 185, 479–489 (1950a).

    Google Scholar 

  • Whittaker, V. P., and F. Bergmann: Acetylcholinesterase. VIII. Dissociation constants of the active groups. J. biol. Chem. 186, 683–692 (1950b).

    Google Scholar 

  • Whittaker, V. P., and F. Bergmann and D. Nachmansohn: Acetylcholinesterase. X. Mechanism of the catalysis of acylation reactions. J. biol. Chem. 186, 781–790 (1950).

    Google Scholar 

  • Whittaker, V. P., and E. Cabib: Is acetylcholinesterase a metallo enzyme ? J. Amer them. Soc. 76, 5154 to 5156 (1954).

    Google Scholar 

  • Whittaker, V. P., and E. Cabib: Acetylcholinesterase: Enthalpies and entropies of activation. J. Amer. chem. Soc. 78, 202–207 (1956).

    Article  Google Scholar 

  • Whittaker, V. P., and M. Cohen: The essentiality of acetylcholinesterase in conduction. Biochim. biophys. Acta 11, 147–156 (1953).

    Google Scholar 

  • Whittaker, V. P., and S. Ginsburg: A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. biophys. Acta 18, 168–170 (1955a).

    Google Scholar 

  • Whittaker, V. P., and S. Ginsburg: Reactivation of acetyleholinesterase inhibited by alkylphosphates. Arch. Biochem. 54, 569–571 (1955b).

    Article  Google Scholar 

  • Whittaker, V. P., and S. Ginsburg and E. K. Meislich: The reactivation of acetylcholinesterase inhibited by tetraethyl pyrophosphate and diisopropylfluorophosphate. J. Amer. chem. Soc. 77, 4286–4291 (1955).

    Article  Google Scholar 

  • Whittaker, V. P., and S. Ginsburg and C. Quan: Molecular complementariness as basis for reactivation of alkyl phosphate-inhibited enzyme. Arch. Biochem. 77, 286–296 (1958).

    Article  Google Scholar 

  • Wilson, I. B., and E. K. Meislioh: Reactivation of acetylcholinesterase inhibited by alkyl-phosphates. J. Amer. chem. Soc. 75, 4628–4629 (1953).

    Article  CAS  Google Scholar 

  • Wilson, I. B., and C. Quan: Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. 73, 131–143 (1958).

    Article  CAS  PubMed  Google Scholar 

  • Wood, H. N., and A. K. Balls: Enzymatic oxidation of a-chymotrypsin. J. biol. Chem. 213, 297–304 (1955).

    CAS  PubMed  Google Scholar 

  • Zeller, E. A.: Enzymes of snake venoms and their biological significance. In:F. F. Nord, Ed., Advanc. Enzymol. 20, 283–318 (1958).

    Google Scholar 

  • Zeller, E. A., and A. Blsseger: Influence of drugs and chemotherapy on enzyme reactions. III. Cholin-esterases of brain and erythrocytes. Helv. chim. acta 26, 1619–1630 (1943).

    Article  CAS  Google Scholar 

  • Zeller, E. A. F. A. Fleisiler, R. A. Mcnaughton and J. S. Schweppe: New substrates for cholin-esterase. Proc. Soc. exp. Biol. (N. Y.) 71, 526–529 (1949).

    Article  CAS  Google Scholar 

  • Zimmering, P. E., E. W. Westhead jr., and H. Morawetz: Hydrolytic enzyme models. I. Effect of neighboring carboxyl on the reactivity of ester and anilide groups. Biochim biophys. Acta 25, 376–381 (1957).

    CAS  Google Scholar 

  • Župančič, A. O.: The mode of action of acetylcholine. A theory extended to a hypothesis on the mode of action of other biologically active substances. Acta physiol. stand. 29, 63–71 (1953).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, J.A., Oosterbaan, R.A. (1963). The Active Site of Acetylcholinesterase and Related Esterases and its Reactivity towards Substrates and Inhibitors. In: Koelle, G.B. (eds) Cholinesterases and Anticholinesterase Agents. Handbook of Experimental Pharmacology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-99875-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-99875-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-99877-5

  • Online ISBN: 978-3-642-99875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics