Reactivation of Phosphorylated Acetylcholinesterase

  • F. Hobbiger
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 15)

Abstract

The active centre of acetylcholinesterase (AChE) contains two subsites which are generally called the anionic and esteratic sites. Hydrolysis of acetylcholine (ACh) by AChE involves the following sequence of reactions:

Binding of the ester to the two subsites of the enzyme → hydrolysis of the ester with release of choline into solution and binding of the acetyl group to a basic group of the esteratic site → hydrolysis of the acetylated enzyme.

Keywords

Diethyl Isoquinolinium Carbamyl Acridones Diisopropyl Fluorophosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Asknes, G.: Nucleophilic displacements on phosphorus. Reaction of hydroxyl ion and isonitroso acetone with organofiuorophosphorus compounds. Acta chem. scand. 14, 1515–1525 (1960).CrossRefGoogle Scholar
  2. Bergner, A. D.: Histochemical detection of fatal anticholinesterase poisoning. II. Reactivation of cholinesterase in cadavers of rats. Amer. J. Path. 35, 807–817 (1959).PubMedGoogle Scholar
  3. Casida, J. E., K. B. Augustinsson and G. Jonsson: Stability, toxicity and reaction mechanism with esterases of certain carbamate insecticides. J. econ. Ent. 53, 205–212 (1960).Google Scholar
  4. Cohen, E. M., and H. Wiersinga: Oximes in the treatment of nerve gas poisoning. II. Acta physiol. pharmacol. neerl. 9, 276–302 (1960).Google Scholar
  5. Coleman, I. W., P. E. Little and G. A. Grant: Oxime mixtures and atropine in the protection of mice and rats from Sarin poisoning. Canad. J. Biochem. 38, 1035–1043 (1960).PubMedGoogle Scholar
  6. Oralprophylaxisfor anticholinesterase poisoning. Canad. J. Biochem. 39, 351–363 (1961).Google Scholar
  7. Davison, A. N.: Some observations on the cholinesterases of the central nervous system after the administration of organophosphorus compounds. Brit. J. Pharmacol. 8, 212–216 (1953) .Google Scholar
  8. Dettbarn, W. D.: Action of lipid-soluble quaternary ammonium ions on the resting potential of myelinated nerve fibres of the frog. Biochim. biophys. Acta 32, 381–386 (1959).Google Scholar
  9. Dettbarn, W. D.: New evidence for the role of acetylcholine in conduction. Biochim. biophys. Acta 41, 377–386 (1960).Google Scholar
  10. Doty, P., A. M. Holtzer, J. H. Bradbury and E. R. Blout: Polypeptides. II. The configuration of polymers of y-benzyl-l-glutamate in solution. J. Amer. chem. Soc. 76, 4493–4494 (1954) .Google Scholar
  11. Edery, H., and G. Schatzberg-Porath: Phosphorylphosphatase and oximes. Brit. J. Pharmacol. 17, 276–277 (1961).PubMedGoogle Scholar
  12. Ehrenpreis, S.: Isolation and identification of the acetylcholine receptor protein of electric tissue. Biochim. biophys. Acta 44, 561–577 (1960).Google Scholar
  13. Ehrenpreis, S., and M. M. Fishman: The interaction of quaternary ammonium compounds with chon-droitin sulfate. Biochim. biophys. Acta 44, 577–585 (1960).Google Scholar
  14. Ehrenpreis, S., and M. G. Kellock: The interaction of quaternary ammonium compounds with hyaluronic acid. Biochim. biophys. Acta 45, 525–528 (I960).Google Scholar
  15. Ellin, R. I.: Stability of pyridine-2–aldoxime methiodide. I. Mechanism of breakdown in aqueous alkaline solution. J. Amer. chem. Soc. 80, 6588–6590 (1958).Google Scholar
  16. Ellin, R. I., and D. E. Easterday: Chromatographie separation of the degradation products of pralidoxime iodide (pyridine-2–aldoxime methiodide). J. Pharm. (Lond.) 13, 370–373 (1961).CrossRefGoogle Scholar
  17. Enander, I., A. Sundwall and B. Sörbo: Metabolic studies on N-methylpyridinium- 2–aldoxime. I. The conversion to thiocyanate. Biochem. Pharmacol. 7, 226–231 (1961a).CrossRefPubMedGoogle Scholar
  18. Enander, I., A.: Metabolic studies on N-methylpyridinium-2-ldoxime. II. The conversion to N-methylpyridinium-2-itrile. Biochem. Pharmacol. 7, 232–236 (1961b).CrossRefPubMedGoogle Scholar
  19. Erdmann, W. D.: Klinische Erfahrungen mit dem Antidot Pyridine-2–aldoxime-methyljodid (PAM) bei E 605–Vergiftungen. Ausgewählte Kasuistik. Dtsch. med. Wsehr. 85, 1014–1016 (1960).CrossRefGoogle Scholar
  20. Erdmann, W. D., u. D. Heye: Analyse der erregenden und lähmenden Wirkung von Alkylphosphaten (Parathion, Paraoxon, Systox) am isolierten Kaninchendarm. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 232, 507–521 (1958).Google Scholar
  21. Fleisher, J. H., J. Hansa, P. J. Killos and C. S. Harrison: Effects of lj’-trimethylene bis(4-ormylpyridinium bromide) dioxime (TMB-4) on Cholinesterase activity and neuromuscular block following poisoning with Sarin and DFP. J. Pharmacol. exp. Ther. 130, 461–468 (1960).PubMedGoogle Scholar
  22. Gabourel, J. D.: Anticonvulsant properties of diacetylmonoxime (DAM). Biochem. Pharmacol. 5, 283–286 (1961).CrossRefPubMedGoogle Scholar
  23. Gilbert, G., T. Wagner-Jauregg and G. M. Steinberg: Hydroxamic acids: relationship between structure and ability to reactivate phosphonate-inhibited acetylcholinesterase. Arch. Biochem. 93, 469–75 (1961).CrossRefPubMedGoogle Scholar
  24. Henschler, D.: Antidotische Wirkung von Pyridin-2-ldoximdodecyljodid bei der Trikresyl-phosphatlähmung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 236, 503–509 (1959).Google Scholar
  25. Hinterbuchner, L. P., and D. Nachmansohn: Electrical activity evoked by a specific chemical reaction. Biochim. biophys. Acta 44, 554–560 (1960).Google Scholar
  26. Hobbiger, F.: Anticholinesterases. The in vitro inhibition of cholinesterases by physostigmine, neostigmine and other related (non-phosphorus) compounds. Chem. and Ind. 1954, 415–418.Google Scholar
  27. Jacobziner, H., and H. W. Raybin: Parathion poisoning successfully treated with 2-AM (pralidoxime chloride). New Engl. J. Med. 265, 436–37 (1961).Google Scholar
  28. Järnefelt, J.: Mechanism of sodium transport in cellular membranes. Nature (Lond.) 190, 694–697 (1961).CrossRefGoogle Scholar
  29. Jaques, R., and H. J. Bein: Toxikologie und Pharmakologie eines neuen systemisch wirksamen Insektizids der Phosphorsäureester-Reihe, Phosphamidon (2-hlor-diäthylcarbamoyl- 1 -methylvinyldimethylphosphat). Arch. Toxikol. 18, 316–330 (1960).CrossRefPubMedGoogle Scholar
  30. Karlog, 0.: Reactivators of Cholinesterase. Arch. Pharm. Chemi. 65, 467–475 (1958) (in Swedish with English summary).Google Scholar
  31. Kewitz, H., u. V. Neuhoff: Herstellung eines Trockenpräparates alkylphosphatvergifteter Acetylcholinesterase für Reaktivierungsversuche. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 240, 126–133 (1960).Google Scholar
  32. Latki, O., u. W. D. Erdmann: Hemmung und Reaktivierung von Cholinesterasen nach der Vergiftung mit Paraoxon und DFP in vitro. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 240, 514–522 (1961).Google Scholar
  33. Lecomte, J., and E. Schoffeniels: Action du 2–PAM et des inhibiteurs de l’acetylcholin-esterase sur le choc anaphalactique du lapin. Biochem. Pharmacol. 5, 305–310 (1961).CrossRefPubMedGoogle Scholar
  34. Lehman, R. A., and M. E. Nicholls: Antagonism of phospholine (echothiophate) iodide by certain quaternary oximes. Proc. Soc. exp. Biol. (N. Y.) 104, 550–554 (1960).CrossRefGoogle Scholar
  35. Lehman, R. A., H. M. Fitch, L. P. Bloch, H. A. Jewell and M. E. Nicholls: Antidotes and potentiating agents for phospholine iodide. J. Pharmacol, exp. Ther. 128, 307–317 (1960).Google Scholar
  36. Lindgren, P., and A. Sundwall: Parasympatholytic effects of TMB-4 (1,1-rimethylene-bis(4-ormylpyridinium bromide)-dioxime) and some related oximes in the cat. Acta Pharmacol. (Kbh.) 17, 69–83 (1960).CrossRefGoogle Scholar
  37. Metz, B.: The brain ACh-AChE-ChA system in respiratory control. Neurology 11, 37–45 (1961).CrossRefPubMedGoogle Scholar
  38. Milosevic, M., V. Vojvodic and V. Milosevic: The action of N,N’-trimethylenebis(4–hydroxy-iminomethyl-pyridinium bromide) (TMB-4) on acute lethal anticholinesterase poisoning in mice. Arh. hig. rada 10, 213–216 (1959).Google Scholar
  39. Milosevic, M., M. Terzic and V. Vojvodic: Protection against lethal phosphamidone poisoning by N,N/-trimethylenebis(4–hydroxyiminomethyl-pyridinium bromide) (TMB-4). Arch. int. Pharmacodyn. 132, 180–188 (1961).Google Scholar
  40. Myers, D. K., A. Kempjun., J. W. Tol and M. H. T. de Jonge: Studies on aliesterases. 6. Selective inhibitors of the aliesterases of brain and saprophytic mycobacteria. Biochem. J. 65, 232–241 (1957).Google Scholar
  41. Namba, T., Y. Taniguchi, S. Okazaki, Y. Uematsu, H. Nagamatsu, T. Wakimoto, S. Hama and H. Nishishita: Use of large doses of PAM in severe alkylphosphate poisoning. Naika no Ryoiki 7, 709–713 (1959a) (in Japanese).Google Scholar
  42. Namba, T., Y. Uematsu, Y. Taniguchi, S. Okazaki, H. Nagamatstj and T. Wakimoto: Use of PAM in poisoning due to various alkylphosphates, with special reference to EPN poisoning. Naika no Ryoiki 7, 714–720 (1959b) (in Japanese).Google Scholar
  43. Namba, T., S. Okazaki, Y. Taniguchi, Y. Uematsu, N. Nagamatsu and T. Wakimoto: Inhibition of tissue Cholinesterase by alkylphosphates and its reactivation by oximes. Naika no Ryoiki 7, 680–683 (1959c) (in Japanese).Google Scholar
  44. Namba, T., Y. Uematsu, S. Okazaki, Y. Taniguchi, H. Nagamatsu and T. Wakimoto: Effectiveness of oximes against poisoning by alkylphosphates. Naika no Ryoiki 7, 684–690 (1959d) (in Japanese).Google Scholar
  45. Neubert, D., J. Schaefer u. H. Kewitz: Reaktivierung der Acetylcholinesterase durch körpereigene Stoffe. Naturwissenschaften 12, 290 (1958).CrossRefGoogle Scholar
  46. Neuhoff, V., u. H. Kewitz: Reinigung eines endogenen Reaktivators der alkylphosphorylier-ten Cholinesterase. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 241, 548–549 (1961a).Google Scholar
  47. Neuhoff, L. V., and H. Kewitz: Reactivation of alkylphosphorylated Cholinesterase by a constituent of liver. Biochem. Pharmacol. 8, 118 (1961b).CrossRefGoogle Scholar
  48. O’Leary, J. F., A. M. Kunkel and A. H. Jones: Efficacy and limitations of oxime-atropine treatment of organophosphorus anticholinesterase poisoning. J. Pharmacol, exp. Ther. 132, 50–57 (1961).Google Scholar
  49. Poziomek, E. J., D. N. Kramer, B.W. Fromm and W. A. Mosher: Observations on the geometrical isomerism of formyl-l-methylpyridinium iodide oximes; carbinolamine intermediates. J. org. Chem. 26, 423–427 (1961a).CrossRefGoogle Scholar
  50. Poziomek, E. J., D. N. Kramer,W., A. Mosher and H. O. Michel: Configurational analysis of 4-ormyl-l-methyl-pyridinium iodide oximes and its relationship to a molecular complimentarity theory on the reactivation of inhibited acetylcholinesterase. J. Amer. chem. Soc. 83, 3916–3917 (1961b).Google Scholar
  51. Rajapurkar, M. V., and M. H. Panjwani: Action of diacetylmonoxime (DAM) on ciliary activity. Arch. int. Pharmacodyn. 181, 107–115 (1961).Google Scholar
  52. Rosenberg, P.: In vivo reactivation by PAM of brain Cholinesterase inhibited by paraoxon. Biochem. Pharmacol. 3, 212–219 (1960).CrossRefPubMedGoogle Scholar
  53. Rossi, L., and A. Rossi: Therapeutic effect of pyridine-2-ldoxime methiodide (PAM) in experimental Parathion poisoning. Boll. Soc. ital. Biol. sper. 36, 1230–1233 (1960) (in Italian).PubMedGoogle Scholar
  54. Sadler, P. W.: Spectroscopic studies of quaternary aldoximes and ketoximes. J. chem. Soc. 1961, 2162–2165.Google Scholar
  55. Sanderson, D. M.: Treatment of poisoning by anticholinesterase insecticides in the rat. J. Pharm. (Lond.) 13, 435–42 (1961).CrossRefGoogle Scholar
  56. Scaife, J. F.: Protection of human red cell Cholinesterase against inhibition by Tabun and 0,0-iethyl-S-2-iethylaminoethyl phosphorothiolate. Canad. J. Biochem. 38, 301–303 (1960).CrossRefPubMedGoogle Scholar
  57. Schaumann, W.: Beziehungen zwischen den peripheren und zentralen Wirkungen von Cholin-esterase-Hemmern und der Inaktivierimg der Cholinesterase. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 239, 96–113 (1960a).Google Scholar
  58. Schaumann, W.: Maximal inhibition of Cholinesterase in the central nervous system. Brit. J. Pharmacol. 15, 432–435 (1960b).PubMedGoogle Scholar
  59. Schtjchter, A., H. G. Kawel u. J. Schneider: Kombinierte Behandlung einer Vergiftung durch Diäthyl-p-nitrophenylthiophosphat mit Pyridin-aldoxim-(2)-methojodid undAtro-pin. Arzneimittel-Forsch. 10, 39900 (1960).Google Scholar
  60. Stenger, E. G.: Beitrag zur Antidotwirkung des Pyridin-2–aldoxim-N-methyljodid (PAM). Med. exp. 3, 143–149 (1960).Google Scholar
  61. Stern, P., and B. Boskoviö: Contribution to the treatment of poisoning by dmopropyl fluorophosphate. Voj. San. Pregled 17, 792–794 (1960a) (in Serbo-Croat).Google Scholar
  62. Stern, P., and B. Boskoviö: Contribution to the treatment of Tabun poisoning. Voj. San. Pregled 17, 1008–1011 (1960b) (in Serbo-Croat).Google Scholar
  63. Sundwall, A.: Plasma concentration curves of N-methylpyridinium-2–aldoxime methane sulphonate (P2S) after intravenous, intramuscular and oral administration in man. Biochem. Pharmacol. 5, 225–230 (1960).CrossRefGoogle Scholar
  64. Sundwall, A., and C. E. Elwin: Absorption studies on N-methylpyridinium-2–aldoxime methanesul-phonate (P2S) in dog and man. Acta physiol. scand. 50, 146–147 (1960).Google Scholar
  65. Svetlicic, B., and M. Vandekar: Therapeutic effect of pyridine-2–aldoxime methiodide in Parathion poisoned mammals. J. comp. Path. 70, 257–271 (1960).PubMedGoogle Scholar
  66. Swidler, R., R. E. Plapinger and G. M. Steinberg: The kinetics of the reaction of isopropyl methylphosphonofluoridate (Sarin) with substituted benzohydroxamic acids. II. J. Amer. chem. Soc. 81, 3271–3274 (1959).CrossRefGoogle Scholar
  67. Tammelin, L. E., and A. Flormark: Synthesis of an oxime analogue to atropin. Acta chem. scand. 15, 1207–1208 (1961).CrossRefGoogle Scholar
  68. Wills, J. H.: Recent studies of organic phosphate poisoning. Fed. Proc. 18, 1020–1025 (1959).PubMedGoogle Scholar
  69. Wills, J. H, and H. L. Borison: Modification by Sarin and antagonists of medullary respiratory activities. Fed. Proc. 18, 102 (1959).Google Scholar
  70. Wilson, I. B., M. A. Hatch and S. Ginsburg: Carbamylation of acetylcholinesterase. J. biol. Chem. 235, 2312–2315 (1960).PubMedGoogle Scholar
  71. Wilson, I. B., M. A. Harrison and S. Ginsburg: Carbamyl derivatives of acetylcholinesterase. J. biol. Chem. 236, 1498–1500 (1961).PubMedGoogle Scholar
  72. Wislicki, L.: Differences in the effect of oximes on striated muscle and respiratory centre. Arch. int. Pharmacodyn. 129, 1–17 (1960).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1963

Authors and Affiliations

  • F. Hobbiger

There are no affiliations available

Personalised recommendations