Skip to main content

Actions on Axons, and Evidence for the Role of Acetylcholine in Axonal Conduction

  • Chapter
Cholinesterases and Anticholinesterase Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 15))

Abstract

A characteristic feature of living cells is the unequal distribution of ions between the interior and the outer environment. K-ions are present in high concentrations inside cells, usually 10 to 20 times as high as in the surrounding fluid; the reverse is true for the Na-ion concentration. Conducting cells are endowed with the special ability to use these ionic concentration gradients for generating electric currents. In a fluid medium ions must be the carriers of these currents.

This work was supported in part by the National Science Foundation, Grants No. G-4331 and 12901, by the Division of Research Grants and Fellowships, National Institutes of Health, Grant No. B-400, U.S. Public Health Service, and by a gift from the Muscular Dystrophy Association of America, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Abbott, B. C.: Heat production in nerve and electric organ. J. gen. Physiol. 43, Suppl., 119 to 127 (1960).

    Google Scholar 

  • Abbott, B. C., X. Aubert and A. Fessard: La production de chaleur associée à la décharge du tissue électrique de la Torpille. J. Physiol (Paris) 50, 99–102 (1958a).

    CAS  Google Scholar 

  • Abbott, B. C., A V Hill and J. V. Howarth: The positive and negative heat production associated with a nerve impulse. Proc. Roy. Soc. B. 148, 149–187 (1958b).

    CAS  Google Scholar 

  • Altamirano, M., W. L. Schleyer, C. W. Coates and D. Nachmansohn: Electrical activity in electric tissue. I. The difference between tertiary and quaternary nitrogen compounds in relation to their chemical and electrical activities. Biochim. biophys. Acta 16, 268–282 (1955).

    CAS  Google Scholar 

  • Armett, Cu. J., and J. M. Ritchie: The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by anticholinesterase. J. Physiol. (Lond.) 152, 141–158 (1960).

    CAS  Google Scholar 

  • Augustinsson, K. B., and D. Nachmansohn: Distinction between acetylcholine esterase and other choline ester splitting enzymes. Science 110, 98–99 (1949).

    PubMed  CAS  Google Scholar 

  • Bartels, E., W. D. Dettbarn, H. Higman and P. Rosenberg: Acetylcholine receptor protein and nerve activity. II. Cationic group in local anesthetics and electrical response. Biochem. Biophys. Res. Comm. 2, 316–319 (1960b).

    Google Scholar 

  • Bergami, G., G. Cantonie T. Gualtierotti: Sulla liberazione di sostanze biologicamento attive dalla superficie di taglio di nervi durante l’eccitamento fisiologico o provocato. I. La loro azione sul preparato di muscolo dorsale di sanguisuga. Arch. Ist. biochim. ital. 8, 267–298 (1936).

    CAS  Google Scholar 

  • Bergmann, F., I. B. Wilson and D. Nachmansohn: Acetylcholinesterase. IX. Structural features determining the inhibition by amino acids and related compounds. J. biol. Chem. 186, 693–703 (1950).

    PubMed  CAS  Google Scholar 

  • Berman-Reisberg, R.: Properties and biological significance of choline acetylase. Yale J. Biol. Med. 29, 403–435 (1957).

    Google Scholar 

  • Berman, R., I. B. Wilson and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. biophys. Acta 12, 315–324 (1953).

    CAS  Google Scholar 

  • Bernstein, J.: Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Pflügers Arch. ges. Physiol. 92, 521–562 (1902).

    CAS  Google Scholar 

  • Bernstein, J., and A. Tschermax: Untersuchungen zur Thermodynamik der bioelektrischen Ströme. Pflügers Arch. ges. Physiol. 112, 439–531 (1906).

    Google Scholar 

  • Boell, E. J., and D. Nachmansohn: Localization of choline esterase in nerve fibers. Science 92, 513–514 (1940).

    PubMed  CAS  Google Scholar 

  • Bovet, D.: Some aspects of the relationship between chemical constitution and curare-like activity. Ami N Y. Acad. Sci. 54, 407–437 (1951).

    CAS  Google Scholar 

  • Bucwrhal, F.: The effect of acetylcholine-like substances on sensory receptors. Pharmacol. Rev. 6, 97–98 (1954).

    Google Scholar 

  • Bullock, T. H., H. Grundfest, D. Nachmansohn and M. A. Rothenberg: Generality of the role of acetylcholine in nerve and muscle conduction. J. Neurophysiol. 10, 11–21 (1947).

    PubMed  CAS  Google Scholar 

  • Bullock, T., D. Nachmansohn and M. A. Rothenberg: Effects of inhibitors of choline esterase on the nerve action potential. J. Neurophysiol. 9, 9–22 (1946).

    PubMed  CAS  Google Scholar 

  • Burgen, A. S. V.: The mechanism of action of anticholinesterase drugs. Brit. J. Pharmacol. 4, 219–288 (1949).

    PubMed  CAS  Google Scholar 

  • Calabro, Q.: Sulla regolazione neuro-umorale cardiaca. Ri v. biol. 15, 299–320 (1933).

    Google Scholar 

  • Chagas, C.: Studies on the mechanism of curarization. Ann N Y Acad. Sci. 81, 345–357 (1959a).

    PubMed  CAS  Google Scholar 

  • Calabro, Q.: Studies on the mechanism of curare fixation by cells. In: D. Bovet, F. Bovet-NITTI and G. B. Marini-Bettolo, Eds., Curare and Curare-Like Agents, 327–345. Amsterdam: Elsevier 1959 b.

    Google Scholar 

  • Calabro, Q., E. Penna-Franca, K. Nishie and E. J. Garcia: A study of the specificity of the complex formed by galamine triethiodide with a macromolecular constituent of the electric organ. Arch. Biochem. 75, 251–259 (1958).

    Google Scholar 

  • Childs, A. F., D. R. Davies, A. L. Green and J. P. Rutland: The reactivation by oximes and hydroxamic acids of cholinesterase inhibited by organophosphorus compounds. Brit. J. Pharmacol. 10, 462–465 (1955).

    PubMed  CAS  Google Scholar 

  • Clark, A. J.: General pharmacology. In: W. Heubner and J. Schueller, Eds., Handb. Experiment. Pharmacol., I V. Berlin: Springer 1937.

    Google Scholar 

  • Cohen, M.: Concentration of choline acetylase in conducting tissue. Arch. Biochem. 60, 284–296 (1956).

    PubMed  CAS  Google Scholar 

  • Cole, K. S.: Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. physiol. 3, 253–258 (1949).

    CAS  Google Scholar 

  • Cole, K. S.: Ions, potentials and the nerve impulse. In: T. Shedlovsky, Ed., Electrochemistry in Biology and Medicine, 121–140. New York: John Wiley and Sons 1955.

    Google Scholar 

  • Cole, K. S., and H. J. Curtis: Electric impedance of the squid giant axon during activity. J. gen. Physiol 22, 649–670 (1939).

    PubMed  CAS  Google Scholar 

  • Couteaux, R.: La cholinesterase des plaques motrices après section du nerf moteur. Bull. biol. France Belg. 76, 14–57 (1942).

    Google Scholar 

  • Couteaux, R.: Localization of cholinesterases at neuromuscular junctions. Intern. Rev. Cytol. 4, 335–375 (1955).

    Google Scholar 

  • Couteaux, R., and D. Nachmansohn: Changes of cholinesterase at end plates of voluntary muscle following section of sciatic nerve. Proc. Soc. exp. Biol. (N. Y.) 43, 177–181 (1940).

    CAS  Google Scholar 

  • Cowan, S. L.: The initiation of all-or-none responses in muscle by acetylcholine. J. Physiol. (Lond.) 88, 4P (1936).

    Google Scholar 

  • Cuatis, H. J., and K. S. Cole: Membrane resting and action potentials from the squid giant axon. J. cell. comp. Physiol. 19, 135–144 (1942).

    Google Scholar 

  • Dale, H. H.: Transmission of nervous effects by acetylcholine. In: Harvey Lectures, vol. 32, 229–245. Springfield: Charles C. Thomas 1937.

    Google Scholar 

  • Dale, H. H.: The beginnings and the prospects of neurohumoral transmission. Pharmacol. Rev. 6, 7–13 (1954).

    PubMed  CAS  Google Scholar 

  • Dale, H. H., W. Feldberg and M. Vogt: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).

    CAS  Google Scholar 

  • Del Castillo, J., and B. Katz: Biophysical aspects of neuro-muscular transmission. In: J. A. V. Butler, Ed., Progress in Biophysics, 6, 121–170. London and New York: Pergamon Press 1956.

    Google Scholar 

  • De Robert’s, E., and H. S. Bennett: Some features of the submicroscopic morphology of synapses in frog and earth worm. J. biophys. biochem. Cytol. 1, 47–58 (1955).

    Google Scholar 

  • Dettbarn, W. D.: Action of lipid soluble quaternary ammonium ions on the resting potential of myelinated nerve fibers of the frog. Biochim. Biophys. Acta 32, 381–386 (1959a).

    PubMed  CAS  Google Scholar 

  • Dettbarn, W. D.: Distinction between sodium and potassium in change in permeability effected by lipid-soluble analogues of acetylcholine. Nature (Lond.) 183, 465–466 (1959b).

    CAS  Google Scholar 

  • Dettbarn, W. D.: New evidence for the role of acetylcholine in conduction. Biochim Biophys. Acta 41, 377–386 (1960a).

    CAS  Google Scholar 

  • Dettbarn, W. D.: Effect of curare on conduction in myelinated, isolated nerve fibres of the frog. Nature (Lond.) 186, 891–892 (1960b).

    CAS  Google Scholar 

  • Dettbarn, W. D.: Acetylcholinesterase activity in Nitella. Nature 194, 1175–6, 1962.

    PubMed  CAS  Google Scholar 

  • Dettbarn, W. D., and F. A. Davis: Effect of acetylcholine on the electrical activity of somatic nerves of the lobster. Science, 132, 716–717, 1962.

    Google Scholar 

  • Dettbarn, W. D., H. Higman, P. Rosenberg and D. Nachmansohn: Rapid and reversible block of electrical activity by powerful marine biotoxins. Science 132, 300–301 (1960).

    PubMed  CAS  Google Scholar 

  • Dettbarn, W. D., I. B. Wilson and D. Nachmansohn: Action of lipid soluble quaternary ammonium ions on conducting membranes. Science 128, 1275–1276 (1958).

    PubMed  CAS  Google Scholar 

  • Eccles, J. C.: An electrical hypothesis of synaptic and neuromuscular transmission. Ann N. Y. Acad. Sci. 47, 429–455 (1946).

    Google Scholar 

  • Eccles, J. C.: The Physiology of Nerve Cells. Baltimore: The Johns Hopkins Press, 1957.

    Google Scholar 

  • Edwards, G. A., H. Ruska and E. De Harvfn: Electron Microscopy of peripheral nerves and neuromuscular junctions in the wasp leg. J. biophys. biochem. Cytol. 4, 107–113 (1958).

    PubMed  CAS  Google Scholar 

  • Emmelin, N., and F. C. Macintosh: The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.) 131, 477–496 (1956).

    CAS  Google Scholar 

  • Ehrenpreis, S.: Interaction of curare and related substances with acetylcholine receptor-like protein. Science 129, 1613–1614 (1959).

    PubMed  CAS  Google Scholar 

  • Ehrenpreis, S.: Isolation and identification of the acetylcholine receptor protein from electric tissue. Biochim. biophys. Acta 44, 561–577 (1960).

    CAS  Google Scholar 

  • Ehrenpreis, S., and M. M. Fishman: The interaction of quaternary ammonium compounds with chondroitin sulfate. Biochim. biophys. Acta 44, 577–585 (1960).

    CAS  Google Scholar 

  • Ehrenpreis, S, and M. G. Kellock: Acetylcholine receptor protein and nerve activity. I. Specific reaction of local anesthetics with the protein. Biochem. Biophys. Res. Comm. 2, 311–315 (1960).

    Google Scholar 

  • Erdmann, W. D., F. SAKAI and F. SCHELER: Erfahrungen bei der spezifischen Behandlung einer E 605-Vergiftung mit Atropin und dem Esterasereactivator PAM. Dtsch. med. Wschr. 83, 1359–1362 (1958).

    CAS  Google Scholar 

  • Erlanger, J.: The initiation of impulses in axons. J. Neurophysiol. 2, 370–379 (1939). FATT, P., and B. KATZ: Spontaneous subthreshold activity at motor nerve endings J Physiol. (Lond.) 117, 109–128 (1952).

    Google Scholar 

  • Feldberg, W., A. Fessard and D. Nachmmansohn: The cholinergic nature of the nervous supply to the electrical organ of the Torpedo (Torpedo marmorata). J. Physiol. (Lond.) 97, 3P - 5P (1940).

    Google Scholar 

  • Feng, T. P., and V. C. Ting: Studies on the neuromuscular junction. XI. A note on the local concentration of cholinesterase at motor nerve endings Chin. J. Physiol. 13, 141–144 (1938).

    CAS  Google Scholar 

  • Fttt,Ton, J.F.: Physiology of the Nervous System. New York: Oxford University Press 1938, 1943, 1949.

    Google Scholar 

  • Giacobini, E.: Quantitative determination of cholinesterase in individual sympathetic cells. J. Neurochem. 1, 234–244 (1957).

    PubMed  CAS  Google Scholar 

  • Giacobini, E., and B. Holmstedt: Cholinesterase in muscles: a histochemical and microgasometric study. Acta pharmacol. (Kbh.) 17, 94–105 (1960).

    CAS  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholine esterase. J. biol. Chem. 180, 879–881 (1949).

    PubMed  CAS  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholine esterase. Biochim. biophys. Acta 4, 310–321 (1950).

    CAS  Google Scholar 

  • Higman, H. B., and E. Bartels: The competitive nature of the action of acetylcholine and local anesthetics. Biochim. biophys. Acta 54, 543–554 (1961).

    CAS  Google Scholar 

  • Hill, A. V.: The heat production of muscle. In: D. Nachmansohn, Ed., Molecular Biology. Elementary Processes of Nerve Conduction and Muscle Contraction, 17–24. New York: Academic Press 1960.

    Google Scholar 

  • Hinterbuchner, L. P., and D. Nachmansohn: Electrical activity evoked by a specific chemical reaction. Biochim. biophys. Acta 44, 554–560 (1960).

    CAS  Google Scholar 

  • Hinterbuchner, L. P., and I. B. Wilson: Muscle response to long chain quaternary ammonium ions. I. Biochim. biophys. Acta 31, 323–327 (1959a).

    CAS  Google Scholar 

  • Hinterbuchner, L. P., and I. B. Wilson: Muscle response to long chain quaternary ammonium ions. II. Biochim biophys. Acta 32, 375–380 (1959b).

    CAS  Google Scholar 

  • Hinterbuchner, L. P., and I. B. Wilson: and E. Schoffeniels: Effect of lipid soluble analogues of acetylcholine on muscle. Fed. Proc. 17, 71 (1958).

    Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 338–409 (1951).

    Google Scholar 

  • Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibers. Proc. Roy. Soc. B., 148, 1–37 (1957).

    Google Scholar 

  • Holmstedt, B., and F. Sjoqvist: Distribution of acetylcholinesterase in the ganglion cells of various sympathetic ganglia. Acta physiol. stand. 47, 284–296 (1959).

    CAS  Google Scholar 

  • Katz, B., and R. Miledi: Spontaneous subthreshold activity at denervated amphibian end plates. J. Physiol. (Lond.) 146, 44P - 45P (1959).

    Google Scholar 

  • Kewitz, H.: A specific antidote against lethal alkyl phosphate intoxication. III. Repair of chemical lesion. Arch. Biochem. 66, 263–270 (1957).

    PubMed  CAS  Google Scholar 

  • Kewrrz, H., and D. Nacamaxso: A specific antidote against lethal alkylphosphate intoxication.IV. Effects in brain. Arch. Biochem. 66, 271–283 (1957).

    Google Scholar 

  • Kewrrz, H., and I. B. Wilson: A specific antidote against lethal alkylphosphate intoxication. Arch. Biochem. 60, 261–263 (1956).

    Google Scholar 

  • Kewrrz, H., and I. B. Wilson: and D. Nachmansohn: A specific antidote against lethal alkyl phosphate intoxication. II. Antidotal properties. Arch. Biochem. 64, 456–465 (1956).

    Google Scholar 

  • Keynes, R. D., and P. R. Lewis: The leakage of radioactive potassium from stimulated nerve. J. Physiol. (Lond.) 113, 99–114 (1951a).

    CAS  Google Scholar 

  • Keynes, R. D., and P. R. Lewis: The sodium and potassium content of cephalopod nerve fibers. J. Physiol. (Lond.) 114, 151–182 (1951 b).

    CAS  Google Scholar 

  • Klotz, I. M., F. M. Walker and R. B. Pivan: The binding by organic ions by proteins. J. Amer. chem. Soc. 68, 1486–1490 (1946).

    CAS  Google Scholar 

  • Koelle, G. B.: The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases, and a survey of their cellular distributions. J. Pharmacol. exp. Ther. 103, 153–171 (1951).

    PubMed  CAS  Google Scholar 

  • Koelle, G. B.: The histochemical identification of acetylcholinesterase in cholinergic, adrenergic, and sensory neurons. J. Pharmacol. exp. Ther. 114, 167–184 (1955).

    PubMed  CAS  Google Scholar 

  • Koelle, G. B.: Histochemical demonstration of reversible cholinesterase action at selective cellular sites in vivo. J. Pharmacol. exp. Ther. 120, 488–503 (1957).

    PubMed  CAS  Google Scholar 

  • Koelle, G. B., and J. S. Friedenwald: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N. Y.) 70, 617–622 (1949).

    CAS  Google Scholar 

  • Koelle, W. A., and G. B. Koelle: Correlation of cytological localization and function of nervonal acetylcholinesterase; external or functional AChE. Fed. Proc. 17, 384 (1958).

    Google Scholar 

  • LANGLEY, T. N.: On the contraction of muscle, chiefly in relation to the presence of receptive substances. Par. I. J. Physiol. (Lond.) 36, 347–389 (1907).

    CAS  Google Scholar 

  • Lawler, H. C.: A simplified procedure for the partial purification of cetylcholinesterase from electric tissue. J. biol. Chem. 234, 799–801 (1959).

    PubMed  CAS  Google Scholar 

  • Lawler, H. C.: Turnovertime of acetylcholinesterase. J. biol. Chem. 236, 2296–2301 (1961).

    PubMed  CAS  Google Scholar 

  • Loewenstein, W. R., and D. Molins: Cholinesterase in a receptor. Science 128, 1284 (1958).

    PubMed  CAS  Google Scholar 

  • Longo, V. G., D. Nachmansohn and D. Bovet: Aspects électroencéphalographiques de l’antagonisme entre le iodométhylate de 2-pyridine aldoxime (PAM) et le méthylfluorophosphate d’isopropyle (Sarin). Arch. int. Pharmacodyn. 123, 282–290 (1960).

    CAS  Google Scholar 

  • Lorente De , R.: Liberation of acetylcholine by the superior cervical sympathetic ganglion and the nodosum ganglion of the vagus. Amer. J. Physiol. 121, 331–349 (1938).

    Google Scholar 

  • Marnay, A., and D. Nacmmansohn: Sur la répartition de la cholinestérase dans le muscle couturier de la grenouille. C. R. Soc. Biol. (Paris) 125, 41–43 (1937).

    CAS  Google Scholar 

  • Marnay, A., and D. Nacmmansohn: Cholinesterase in voluntary muscle. J. Physiol. (Lond.) 92, 37–47 (1938).

    CAS  Google Scholar 

  • Masland, R. L., and R. S. Wigton: Nerve activity accompanying fasciculation produced by Prostigmine. J. Neurophysiol. 3, 269–275 (1940).

    CAS  Google Scholar 

  • Mcintyre, A. R.: Neuromuscular transmission and normal and denervated muscle-sensitivity to curare and acetylcholine. In: D. Bovet, F. Bovet-Nitti, and G B Marini-Bettolo, Eds., Curare and Curare-Like Agents, 211–218, Amsterdam: Elsevier 1959.

    Google Scholar 

  • Mcintyre, A. R.,F. M. Downing, A. L. Bennett and A. L. Duxi: Acetylcholine content of tyrode solution perfused through muscles as affected by calcium and procaine hydrochloride. Proc. Soc. exp. Biol. (N. Y.) 74, 180–185 (1950).

    CAS  Google Scholar 

  • Meyer, K. H.: La perméabilité des membranes. V. Sur l’origine des courants bioélectriques. Rely. china. Acta 20, 634–644 (1937).

    CAS  Google Scholar 

  • Meyerhof, O.: Zur Energetik der Zellvorgänge. Göttingen: Vandenhoek und Ruprecht 1913.

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: L’action des nerfs extrinsèques du coeur considérée comme phénomène de subordination. Arch. int. Physiol. 38, 180–222 (1934).

    Google Scholar 

  • Nacbmansohn, D.: Cholinesterase in voluntary muscle. J. Physiol. (Loud.) 95, 29–35 (1939).

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: Chemical mechanisms of nerve activity. In: E. S. G. Barron, Ed., Modern Trends of Physiology and Biochemistry, 229–276. New York: Academic Press 1952.

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: Metabolism and function of the nerve cell. In: Harvey Lectures 1953/1954, 57–99. New York: Academic Press 1955a.

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: Die Rolle des Azetylcholins in den Elementarvorgängen der Nervenleitung. Asher-Spiro: Ergebn. Physiol. 48, 575–683 (1955b).

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: Chemical and Molecular Basis of Nerve Activity. New York: Academic Press 1959.

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson: Chemical factors controlling nerve activity. Science 134, 1962–1968 (1961).

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson, C. W. Cates and R. T. Cox: Electric potential and activity of choline esterase in the electric organ of Electrophorus electricus (Linnaeus). J. gen. Physiol. 25, 75–88 (1941).

    Google Scholar 

  • Monnier, A. M., and M. Dubiiisson, and M. A. Rothenberg: Studies on cholinesterase. II. Enzyme activity and voltage of the action potential in electric tissue. J. biol. Chem. 163, 39–48 (1946).

    Google Scholar 

  • Nachmansohn, D., R. T. Cox, C. W. COATES and A. L. MACHADO: Action potential and enzyme activity in the electric organ of Electrophorus electricus (Linnaeus). II. Phosphocreatine as energy source of the action potential. J. Neurophysiol. 6, 383–396 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., and E. A. Feld: Studies on cholinesterase. IV. On the mechanism of diisopropyl fluoro-phosphate (DFP) action in vivo. J. biol. Chem. 171, 715–724 (1947).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., and E. C. Hoff: Effects of dorai root section on cholinesterase concentration in spinal cord of cats. J. Neurophysiol. 7, 27–36 (1944).

    CAS  Google Scholar 

  • Nachmansohn, D. H. M. Joan and H. Waelsch: Effect of glutamic acid on the formation of acetylcholine. J. biol. Chem. 150, 485–486 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., and E. Lederer: Sur la biochimie de la cholinesterase. Bull. Soc. Chim biol. (Paris) 21, 797–808 (1939).

    CAS  Google Scholar 

  • Nachmansohn, D., and A. L. Machado: The formation of acetylcholine. A new enzyme “choline acetylase”. J. Neurophysiol. 6, 397–404 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D., and B. Meyerhof: Relation between electrical changes during nerve activity and concentration of cholinesterase. J. Neurophysiol. 4, 348–361 (1941).

    CAS  Google Scholar 

  • Nachmansohn, D., and I. B. Wilson: The enzymic hydrolysis and synthesis of acetylcholine. In: F. F. Nord, Ed. Advanc. Enzymol. 12, 259–339 (1951).

    Google Scholar 

  • Nachmansohn, D., and I. B. Wilson: Trends in the biochemistry of nerve activity. In: D. E. Green, Ed. Currents in Biochemical Research, 628–652. New York: Interscience 1956.

    Google Scholar 

  • Namba, T., and K. Hiraki: PAM (Pyridine-2-aldoxime methiodide) therapy for alkylphosphate poisoning. J. Amer. med. Ass. 166, 1834–1839 (1958).

    CAS  Google Scholar 

  • Riker, W. F. jr., G. Werner, J. Robers and A. KT Perman: The presynaptic element in neuromuscular transmission. Ann N Y Acad. Sci. 81, 328–344 (1959).

    Google Scholar 

  • Robertson, J. D.: The ultrastructure of a reptilian myoneural junction. J. biophys. biochem. Cytol. 2, 381–394 (1956).

    PubMed  CAS  Google Scholar 

  • Robertson, J. D.: The molecular biology of cell membranes. In: D. Nachmansohn, Ed. Molecular Biology. Elementary Processes of Nerve Conduction and Muscle Contraction, 87–151. New York: Academic Press 1960.

    Google Scholar 

  • Rosenberg, P.: In vivo reactivation by PAM of brain cholinesterase inhibited by paraoxon. Biochem. Pharmacol. 3, 212–219 (1960).

    PubMed  CAS  Google Scholar 

  • Rosenberg, P., and S. Ehrenpreis: Reversible block of axonal conduction by curare after treatment with cobra venom and a detergent. Nature (Lond.) 190, 728–729 (1961 a).

    CAS  Google Scholar 

  • Rosenberg, P., and S. Ehrenpreis: Reversible block of axonal conduction by curare after treatment withcobra venom. Biochem. Pharmacol. 8, 192–206 (1961 b).

    CAS  Google Scholar 

  • Rosenberg, P., and T. R. Podleski: Block of axonal conduction by acetylcholine and t-Tubocurarine after treatment with cottonmouth moccasin venom. J. Pharmacol. Exp. Ther. in press.

    Google Scholar 

  • Rosenberg, P., and H. Higman: An improved isolated single electroplax preparation. II. Compounds acting on the conducting membrane. Biochim. biophys. Acta 45, 348–354 (1960).

    CAS  Google Scholar 

  • Rosenberg, P., and H. Higman: and D. Nachmansohn: An improved isolated single electroplax preparation. I. Effect of compounds acting primarily at the synapses. Biochim. biophys. Acta 44, 151–160 (1960).

    CAS  Google Scholar 

  • Rothenberg, M. A.: Studies on the permeability of nerve membranes to ions. Trans. Amer. neurol. Ass., 230 (1949).

    Google Scholar 

  • Rothenberg, M. A.: studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes. Biochim. biophys. Acta 4, 96–114 (1950).

    CAS  Google Scholar 

  • Rothenberg, M. A., and Nachmansohn: Studies on cholinesterase. III. Purification of the enzyme from electric tissue by fractional ammonium sulfate precipitation. J. biol. Chem. 168, 223–231 (1947).

    PubMed  CAS  Google Scholar 

  • Rothenberg, M. A., D. B. Sprinson and D. Nachmansohn: Site of action of acetylcholine. J. Neurophysiol. 11, 111–116 (1948).

    PubMed  CAS  Google Scholar 

  • Sawyer, C. H., and W. H. Hollinshead: Cholinesterase in sympathetic fibers and ganglia. J. Neurophysiol. 8, 137–153 (1945).

    CAS  Google Scholar 

  • Schoffeniels, E.: Electrical activity of isolated single electroplax of electric eel as affected by temperature. Science 127, 1117–1118 (1958).

    PubMed  CAS  Google Scholar 

  • Schoffeniels, E.: Ion movements studied with single isolated electroplax. Ann. N. Y. Acad. Sci. 81, 285–306 (1959a).

    PubMed  CAS  Google Scholar 

  • Schoffeniels, E.: Les bases physiques et chimiques des potentiels bioélectriques chez Electrophorus electricus L. Thèse d’agrégation, Université de Liège, Liège 1959 b.

    Google Scholar 

  • Schoffeniels, E., and D. Nacemansoan: An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds. Biochim. biophys. Acta 26, 1–15 (1957).

    CAS  Google Scholar 

  • Schoffeniels, E., I. B. Wnsox and D. Nachmansohn: Overshoot and block of conduction by lipid soluble acetylcholine analogues. Biochim. biophys. Acta 27, 629–633 (1958).

    CAS  Google Scholar 

  • Seaman, G. R., and R. K. Houliian: Enzyme systems in Tetrahymena geleii S. II. Acetyl-cholinesterase activity. Its relation to motility of the organism and to coordinated ciliary action in general. J. cell. comp. Physiol. 37, 309–321 (1951).

    CAS  Google Scholar 

  • Skouby, A. P.: Sensitization of pain receptors by cholinergic substances. Acta physiol. scand. 24, 174–191 (1951).

    PubMed  CAS  Google Scholar 

  • Staempfli, R.: Nouvelle méthode pour enrégistrer le potentiel d’action d’un seul étranglement de Ranvier et sa modification par un brusque changement de la concentration du milieu extérieur. J. Physiol. (Paris) 48, 710–714 (1956).

    Google Scholar 

  • Staempfli, R.: Die Wirkung von Nor-Acetylcholin 12 auf die erregbare Membran des Ranvierschen Schnürrings. Hely. physiol pharmacol. Acta 16, C32 — C33 (1958).

    Google Scholar 

  • Stoere, H. C., and E. Morpeth: Choline esterase activity of skeletal muscle in various conditions. Proc. Soc. exp. Biol. (N. Y.) 57, 154–159 (1944).

    Google Scholar 

  • Walsh, R. R., and S. E. Deal: Reversible conduction block produced by lipid insoluble quaternary ammonium ions in acetyltrimethylammonium bromide treated nerves. Amer. J. Physiol. 197, 547–550 (1959).

    PubMed  CAS  Google Scholar 

  • Whittam, R., and M. Guinnebault: The efflux of potassium from electroplax of electric eels. J. gen. Physiol. 43, 1171–1191 (1960).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. biol. Chem. 190, 111–117 (1951).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XII. Further studies of binding forces. J. biol. Chem. 197, 215–225 (1952).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B.: The mechanism of enzyme hydrolyses studied with acetylcholinesterase. In: W. D. Mcelroy and B. Glass, Eds. The Mechanism of Enzyme Action, 642–657. Baltimore: The Johns Hopkins Press 1954.

    Google Scholar 

  • Wilson, I. B.: Promotion of acetylcholinesterase activity by the anionic site. Faraday Soc. Disc. 20, 119–125 (1955).

    Google Scholar 

  • Wilson, I. B.: Molecular complementarity in antidotes for nerve gases. Ann N Y Acad. Sci. 81, 307–316 (1959).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B., and F. Bergmann: Studies on cholinesterase. VII. J. biol. Chem. 185, 479–489 (1950).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B., and F. Bergmann, and D. NACmuAxsoIN: Acetylcholinesterase. X. Mechanism of the catalysis of acylation reaction. J. biol. Chem. 186, 781–790 (1950).

    CAS  Google Scholar 

  • Wilson, I. B., and E. Cabib: Acetylcholinesterase: Enthalpies and entropies of activation. J. Amer. chem. Soc. 78, 202–207 (1956).

    CAS  Google Scholar 

  • Wilson, I. B., and M. Cohen: The essentiality of acetylcholinesterase in conduction. Biochim. biophys. Acta 11, 147–156 (1953).

    CAS  Google Scholar 

  • Wilson, I. B., and M. Cohen: A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. biophys. Acta 18, 168–170 (1955).

    CAS  Google Scholar 

  • Wilson, I. B. S. Ginsburg and C. Quan: Molecular complementariness as basis of reactivation of alkyl-phosphate inhibited enzyme. Arch. Biochem. 77, 286–296 (1958).

    PubMed  CAS  Google Scholar 

  • Wilson, I. B., and C. Quan: Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. 73, 131–143 (1958).

    PubMed  CAS  Google Scholar 

  • Zotterman, Y.: Sensory Receptors. In: D. Nachmansohn, Ed. Transact. of the 4th Con-ference on “Nerve Impulse”. 140–206. New York: Josiah Macy, Jr. Foundation 1953.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nachmansohn, D. (1963). Actions on Axons, and Evidence for the Role of Acetylcholine in Axonal Conduction. In: Koelle, G.B. (eds) Cholinesterases and Anticholinesterase Agents. Handbook of Experimental Pharmacology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-99875-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-99875-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-99877-5

  • Online ISBN: 978-3-642-99875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics