Actions at Autonomic Ganglia

  • Eleanor Zaimis
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 15)


For the maintenance of smooth function at the periphery, the co-ordination which takes place at the various levels of the central nervous system as well as the processes that go on in the autonomic ganglia appear to be of the utmost importance. Because of this, the relation of pre- and postganglionic fibers is very critical, and the ganglionic synapse is provided with elaborate mechanisms for the regulation of its activity.


Ganglion Cell Sympathetic Ganglion Superior Cervical Ganglion Nictitate Membrane Perfusion Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, A. A., and G. Causey: Electron microscopic study of the superior cervical ganglion. J. Anat. (Lond.) 92, 399–407 (1958).Google Scholar
  2. Billingsley, P. R., and S. W. Ranson: On the number of nerve cells in the ganglion cervicale superius and of nerve fibers in the cephalis end of the truncus sympathicus of the cat and on the numerical relations of preganglionic and postganglionic neurones. J. comp. Neurol. 29, 359–384 (1918).Google Scholar
  3. Birks, R. I., and F. C. Macintosh: Acetylcholine metabolism at nerve-endings. Brit. med. Bull. 13, 157–161 (1957).Google Scholar
  4. Bishop, G. H., and P. Heinbecker: A functional analysis of the cervical sympathetic nerve supply to the eye. Amer. J. Physiol. 100, 519–532 (1932).Google Scholar
  5. Bowman, W. C.: Blood flow in relation to the effects of adrenaline on skeletal muscle. Ph. D. Thesis Univ. London 1955.Google Scholar
  6. Brink, F., D. W. Bronk and M. G. Larrabee: Chemical excitation of nerve. Ann. N. Y. Acad. Sci. 47, 457–485 (1946).Google Scholar
  7. Bronk, D. W.: Synaptic mechanisms in sympathetic ganglia. J. Neurophysiol. 2, 380–401 (1939).Google Scholar
  8. D. W. Bronk, S. S. Tower, D. Y. Solandt and M. G. Larrabee: The transmission of trains of impulses through a sympathetic ganglion and in its postganglionic nerves. Amer. J. Physiol. 122, 1–15 (1938).Google Scholar
  9. Brooks, V. B., R. E. Ransmeier and R. W. Gerard: Action of anticholinesterases, drugs and intermediates on respiration and electrical activity of the isolated frog brain. Amer. J. Physiol. 157, 299–316 (1949).PubMedGoogle Scholar
  10. Brown, G. L.: Conduction in the cervical sympathetic. J. Physiol. (Lond.) 81, 228–242 (1934).Google Scholar
  11. Brown, G. L.: The effect of temperature on the release of acetylcholine from sympathetic ganglia. J. Physiol. (puorj) 124, 26P (1954).Google Scholar
  12. G. L., Brown, and W. Feldberg: The action of potassium on the superior cervical ganglion of the cat. J. Physiol. (Lond.) 86, 290–305 (1936).Google Scholar
  13. G. L., Brown, and W. Feldberg: The acetylcholine metabolism of a sympathetic ganglion. J. Physiol. (Lond.) 88, 265–283 (1936/37).Google Scholar
  14. Brown, M. C., and P. B. C. Matthews: The effect on a muscle twitch of the back-response of its motor nerve fibres. J. Physiol. (Lond.) 150, 332–346 (1960).Google Scholar
  15. Bullock, T. H., D. Nachmansohn and M. A. Rothenberg: Effects of inhibitors of choline esterase on nerve action potential. J. Neurophysiol. 9, 9–22 (1946).PubMedGoogle Scholar
  16. Burgen, A. S. V., C. A. Keele and D. Slome: Pharmacological actions of tetraethylpyro-phosphate and hexaethyltetraphosphate. J. Pharmacol. exp. Ther. 96, 396–409 (1949).PubMedGoogle Scholar
  17. Burn, J. H., and M. J. Rand: Sympathetic postganglionic cholinergic fibers. Brit. J. Pharma-col. 15, 56–66 (1960).Google Scholar
  18. Causey, G.: The Cell of Schwann. Edinburgh and London: E. and S. Livingstone 1960.Google Scholar
  19. G.Causey, and A. A. Barton: Synapse in the superior cervical ganglion and their changes under experimental conditions. Exp. Cell. Res. Suppl. 5, 338–346 (1958).Google Scholar
  20. G.Causey, and H. Hoffman: The ultrastructure of the synaptic area in the superior cervical ganglion. J. Anat. (Lond.) 90, 502–507 (1956).Google Scholar
  21. Chennells, M., J. DEL Castillo, W. F. Floyd, D. Slome and S. Wright: Physiological effects of alkyl polyphosphates. Nature (Lond.) 160, 760–761 (1947).Google Scholar
  22. Chou, T. C., and F. J. de Elio: The anticurare activity of eserine on the superior cervical ganglion of the cat. Brit. J. Pharmacol. 3, 113–115 (1948).PubMedGoogle Scholar
  23. Copte, G., et Z. M. Baca: Dégénérescence, conduction et transmission synaptique dans le sympathique cervical. Arch. int. Physiol. 47, 312–320 (1938).Google Scholar
  24. R.Creese, and J. Northover: Maintenance of isolated diaphragm with normal sodium content. J. Physiol. (Lond.) 155, 343–357 (1961).Google Scholar
  25. R.Creese, J. L. D’silva and J. Northover: Effect of insulin on sodium in muscle. Nature (Loud.) 181, 1278 (1958).Google Scholar
  26. R.Creese, N. W. Scholes and W. J. Whalen: Resting potentials of diaphragm muscle after prolonged anoxia. J. Physiol. (Lond.) 140, 301–317 (1958).Google Scholar
  27. Crescitelli, F., G. B. Koelle and A. Gilman: Transmission of impulses in peripheral nerves treated with di-isopropyl fluorphosphate (DFP). J. Neurophysiol. 9, 241–252 (1946).PubMedGoogle Scholar
  28. Dale, H. H.: The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. exp. Ther. 6, 147–190 (1914).Google Scholar
  29. H. H. Dale, W. Feldberg and M. Vogt: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).Google Scholar
  30. de Burgh Daly, M., and P. G. Wright: The effects of anticholinesterases upon peripheral vascular resistance in the dog. J. Physiol. (Load.) 133, 475–497 (1956).Google Scholar
  31. de Castro, F.: Sympathetic ganglia, normal and pathological. In W. Penfield, Ed., Cytology and Cellular Pathology of the Nervous System, Section VII, vol. I, 317–379. New York: Paul B. Hoeber 1932.Google Scholar
  32. de Castro, F.: Aspects anatomiques de la transmission synaptique ganglionnaire chez les Mammifères. Rapport no. 1. Arch. int. Physiol. 59, 479–513 (1951).Google Scholar
  33. Dirnhuber, P., and H. Cullumbine: The effect of anticholinesterase agents on the rat’s blood pressure. Brit. J. Pharmacol. 10, 12–15 (1955).PubMedGoogle Scholar
  34. Douglas, W. W., D. W. Lywood and R. W. Straub: On the excitant effect of acetylcholine on structures in the preganglionic trunk of the cervical sympathetic: with a note on the anatomical complexities of the region. J. Physiol. (Lond.) 153, 250–264 (1960).Google Scholar
  35. Eccles, J. C.: Synaptic transmission through a sympathetic ganglion. J. Physiol. (Lond.) 81, 8P (1934).Google Scholar
  36. Eccles, J. C.: The action potential of the superior cervical ganglion. J. Physiol. (Lond.) 85, 179–236 (1935a).Google Scholar
  37. Eccles, J. C.: Slow potential waves in the superior cervical ganglion. J. Physiol. (Lond.) 85, 464–500 (1935b).Google Scholar
  38. Eccles, J. C.: The actions of antidromic impulses on ganglion cells. J. Physiol. (Lond.) 88, 1–39 (1936).Google Scholar
  39. Eccles, J. C.: Synaptic potentials and transmission in sympathetic ganglion. J. Physiol. (Lond.) 101, 465–483 (1943).Google Scholar
  40. Eccles, J. C.: The nature of synaptic transmission in a sympathetic ganglion. J. Physiol. (Loud.) 103, 27–54 (1944).Google Scholar
  41. Eccles, R. M.: Action potentials of isolated mammalian sympathetic ganglia. J. Physiol. (Loud.) 117, 181–195 (1952a).Google Scholar
  42. Eccles, R. M.: Responses of isolated curarized sympathetic ganglia. J. Physiol. (Lond.) 117, 196–217 (1952b).Google Scholar
  43. Eccles, R. M.: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Loud.) 130, 572–584 (1955).Google Scholar
  44. Elliot, T. R.: On the action of adrenalin. J. Physiol. (Loud.) 31, 20P (1904).Google Scholar
  45. Emmelin, N., and F. C. Macintosh: The release of ACh from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.) 131, 477–496 (1956).Google Scholar
  46. Emmelin, N., and A. Muren: Acetylcholine release at parasympathetic synapses. Acta. physiol. scand. 20, 13–32 (1950).PubMedGoogle Scholar
  47. Fatt, P.: Biophysics of junctional transmission. Physiol. Rev. 34, 674–710 (1954).PubMedGoogle Scholar
  48. P.Fatt, and B. Katz: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).Google Scholar
  49. Feldberg, W., and J. H. Gaddum: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934).Google Scholar
  50. W.Feldberg, and C. Hebb: The stimulating action of phosphate compounds on the perfused superior cervical ganglion of the cat. J. Physiol. (Lond.) 107, 210–221 (1948).Google Scholar
  51. W.Feldberg, u. B. Minz: Das Auftreten eines acetylcholinartigen Stoffes im Nebennierenvenenblut bei Reizung der Nervi splanchnici. Pflügers Arch. ges. Physiol. 233, 657–682 (1933).Google Scholar
  52. W.Feldberg, u. B. Minz and H. Tsudzimura: The mechanism of the nervous discharge of adrenaline. J. Physiol. (Loud.) 81, 286–304 (1934).Google Scholar
  53. W.Feldberg, and A. Vartiainen: Further observations on the physiology and pharmacology of a sympathetic ganglion. J. Physiol. (Lond.) 83, 103–128 (1934).Google Scholar
  54. Fischer, M. H., u. H. Löwenbach: Aktionsströme des Ganglion stellatum und des Nervus depressor. Pfliigers Arch. ges. Physiol. 233, 722–731 (1934).Google Scholar
  55. Geus, R. J., R. A. Mclean, J. Pasternak, P. A. Maltis and G. E. Ullyot: Pharmacology of trimethyl-(2-(2,6-xylyloxy)-propyl)-ammonium chloride, monohydrate; SKF No. 6890-A or ß TM 10. Fed. Proc. 18, 394 (1959).Google Scholar
  56. Glich, D.: Choline esterase and the theory of chemical mediation of nerve impulses. J. gen. Physiol. 21, 431–438 (1938).Google Scholar
  57. Grrnsson, K. S., A. K. Tarazi and J. W. Frazer Jr.: A new orally active quaternary ammonium, ganglion blocking drug capable of reducing blood pressure, Su-3088. Circulation 11, 733–741 (1955).Google Scholar
  58. Grob, D., and A. Mcg. Harvey: Observations on the effects of the autonomic blocking agent, bis-trimethylammonium pentane di-bromide (C5) in normal subjects and in patients with peripheral vascular disease and hypertension, and comparison with tetraethylammonium chloride. Johns Hopk. Hosp. Bull. 87, 616–639 (1950).Google Scholar
  59. Harvey, A. M., and F. C. Macintosh: Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 97, 408–416 (1940).Google Scholar
  60. C. O.Hebb, and B. N. Smallman: Intracellular distribution of choline acetylase. J. Physiol. (Lond.) 134, 385–392 (1956).Google Scholar
  61. C. O.Hebb, and V. P. Whittaker: Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.) 142, 187–196 (1958).Google Scholar
  62. Heymans, C.: Les substances anticholinestérasiques. Expos. ann. Biochim méd. 12, 21–53 (1951).Google Scholar
  63. Hilton, J. G.: The pressor response to neostigmine after ganglionic blockade. J. Pharmacol. exp. Ther. 132, 23–28 (1961).PubMedGoogle Scholar
  64. Hodgkin, A. L., and R. D. Keynes: Movements of labelled calcium in squid giant axons. J. Physiol. (Lond.) 138, 253–281 (1957).Google Scholar
  65. Hokin, M. R., L. E. Hoxin and W. D. Shelp: The effects of acetylcholine on the turnover of phosphatidic acid and phosphoinositide in sympathetic ganglia and in various parts of the central nervous system in vitro. J. gen. Physiol. 44, 217–226 (1960).PubMedGoogle Scholar
  66. Holaday, D. A., K. Kamijo and G. B. Koelle: Facilitation of ganglionic transmission following inhibition of cholinesterase by DFP. J. Pharmacol. exp. Ther. 111,241–254(1954).Google Scholar
  67. Holland, W. C., and G. V. Atditore: Effect of acetylcholine on rate of uptake and equilibrium distribution of physostigmine in human erythrocytes. J. appl. Physiol. 9, 147–152 (1956).PubMedGoogle Scholar
  68. Holmstedt, B.: Synthesis and pharmacology of dimethylamidoethoxy-phosphoryl cyanide (Tabun) together with a description of some allied anticholinesterase compounds containing the N-P bond. Acta physiol. stand. 25, 1–120, Suppl. 90 (1951).Google Scholar
  69. Holmstedt, B.: Pharmacology of organophosphorous cholinesterase inhibitors. Pharmacol. Rev. 11, 567–688 (1959).Google Scholar
  70. Nutter, O. F., and K. Kostial: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.) 124, 234–241 (1954).Google Scholar
  71. Kamijo, K., and G. B. Koelle: The relationship between cholinesterase inhibition and ganglionic transmission J Pharmacol. exp. Ther. 105, 349–356 (1952).PubMedGoogle Scholar
  72. Katz, B.: Microphysiology of the neuro-muscular junction. A physiological `Quantum ofGoogle Scholar
  73. Katz, B.:Action’ at the myoneural junction Johns Hopk. Hosp. Bull. 102, 275–295 (1958).Google Scholar
  74. Kibjakow, A. W.: Über humorale Übertragung der Erregung von einem Neuron auf das andere. Pflügers Arch. ges. Physiol. 232, 432–443 (1933).Google Scholar
  75. Kirschner, L. B.: Effect of cholinesterase inhibitors and atrophie on active sodium transport across frog skin. Nature (Lond.) 172, 348–349 (1953).Google Scholar
  76. Koch, H. J.: Cholinesterase and active transport of sodium chloride through the isolated gills of the crab Eriocheir sinensis (M. Edw.). In J. A. Krrcffing, Ed., Recent Developments in Cell Physiology, 15–31. London: Butterworth (1954).Google Scholar
  77. Koelle, G. B.: The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and a survey of their cellular distribution. J. Pharmacol. exp. Ther. 103, 153–171 (1951).PubMedGoogle Scholar
  78. Koelle, G. B.: The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. exp. Ther. 114, 167–184 (1955).PubMedGoogle Scholar
  79. Koelle, G. B.: Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J. Pharmacol. exp. Ther. 120, 488–503 (1957).PubMedGoogle Scholar
  80. Koelle, G. B.: A proposed dual neurohumoral role of acetylcholine: its functions at the pre-and post-synaptic sites. Nature (Lond.) 190, 208–211 (1961).Google Scholar
  81. G. B.Koelle, and J. S. Friedenwald: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N. Y.) 70, 617–622 (1949).Google Scholar
  82. G. B.Koelle, and A. Gilman: Anticholinesterase drugs. J. Pharmacol. exp. Ther. 95, 166–216 (1949).Google Scholar
  83. G. B.Koelle, and E. C. Steiner: The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J. Pharmacol: exp. Ther. 118, 420–434 (1956).Google Scholar
  84. Koelle, W. A., and G. B. Koelle: The localization of external or functional acetylcholin-esterase at the synapses of autonomic ganglia. J. Pharmacol. exp. Ther. 126, 1–8 (1959).PubMedGoogle Scholar
  85. Koppanyi, T., and A. G. Karczmar: Contribution to the study of the mechanism of action of cholinesterase inhibitors. J. Pharmacol. exp. Ther. 101, 327–344 (1951).PubMedGoogle Scholar
  86. Kostial, K., and V. B. Vouk: The influence of temperature on the acetylcholine output from a sympathetic ganglion. J. Physiol. (Lond.) 132, 239–241 (1956).Google Scholar
  87. W. A.Krivoy,, E. R. Hart and A. S. Marrazzi: Further analysis of the actions of DFP and curare on the respiratory center. J. Pharmacol. exp. Ther. 103, 351 (1951).Google Scholar
  88. W. A.Krivoy, and J. H. WILLS: Adaptation to constant concentrations of acetylcholine. J. Pharmacol. exp. Ther. 116, 220–226 (1956).Google Scholar
  89. Krnjevi6, K., and R. Miiedi: Some effects produced by adrenaline upon neuromuscular propagation in rats. J. Physiol. (Lond.) 141, 291–304 (1958).Google Scholar
  90. Langley, J. N., and T. Kato: The physiological action of physostigmine and its action on denervated skeletal muscle. J. Physiol. (Lond.) 49, 410–431 (1915).Google Scholar
  91. Larrabee, M. G., and D. W. Bronk: Prolonged facilitation of synaptic excitation in sympathetic ganglia. J. Neurophysiol. 10, 139–154 (1947).PubMedGoogle Scholar
  92. Larrabee, M. G., and D. W. Bronk:Metabolic requirements of sympathetic neurons. Cold Spr. Harb. Sym. quant. Biol. 17, 245–266 (1952).Google Scholar
  93. Lloyd, D. P. C.: The transmission of impulses through the inferior mesenteric ganglia. J. Physiol. (Lend.) 91, 296–313 (1937).Google Scholar
  94. Loewi, O.: Uber humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921).Google Scholar
  95. Long, J. P., H. H. Keasling and J. W. Eckstein: Hypertensive response to intravenous neostigmine. Pharmacologist 2, 88 (1960).Google Scholar
  96. Macintosh, F. C.: L’effect de la section des fibres préganglionnaires sur la teneur en acétylcholine du ganglion sympathique. Arch. int. Physiol. 47, 321–324 (1938).Google Scholar
  97. Macintosh, F. C.: The distribution of acetylcholine in the peripheral and the central nervous system. J. Physiol. (Loud.) 99, 436–442 (1941).Google Scholar
  98. Macintosh, F. C.: Formation, storage, and release of acetylcholine at nerve endings. C.nad. J. Biochem. 37, 343–356 (1959).Google Scholar
  99. Macintosh, F. C. R. I. Birks and P. B. Sastry: Pharmacological inhibition of acetylcholine synthesis. Nature (Loud.) 178, 1181 (1956).Google Scholar
  100. Malcolm, J. L., and W. L. M. Perry: A method for recording intracellular potentials from a sympathetic ganglion. J. Physiol. (Lond.) 128, 29P (1955).Google Scholar
  101. Malmìjac, J.: Pharmacodynamie du ganglion sympathique. Actualités pharmacol. 6, 141–174 (1953).Google Scholar
  102. Marrazzi, A. S., and N. E. Jarvik: The differential effects on synaptic transmission and nerve conduction of DFP and atropine. Fed. Proc. 6, 354 (1947).PubMedGoogle Scholar
  103. Maxrmow, A. A., and W. Bloom: A Textbook of Histology, Ed. 5. Philadelphia: W. B. Saunders 1948.Google Scholar
  104. Mcisaac, R. J., and G. B. Koelle: Comparison of the effects of inhibition of external, internal and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. exp. Ther. 126, 9–20 (1959).PubMedGoogle Scholar
  105. Mendel, B., and H. Rtdney: Studies on cholinesterase; cholinesterase and pseudocholinesterase. Biochem. J. 37, 59–63 (1943).PubMedGoogle Scholar
  106. Mendez, R., and A. Ravin: On the action of prostigmine on the circulatory system. J. Pharmacol. exp. Ther. 72, 80–89 (1941).Google Scholar
  107. Mhedi, R.: Properties of regenerating neuromuscular synapses in the frog. J. Physiol. (Lond.) 154, 190–205 (1960).Google Scholar
  108. Mitchell, G. A. G.: Anatomy of the Autonomic Nervous System. Edinburgh and London: E. and S. Livingstone 1953.Google Scholar
  109. Nachmansohn, D.: On the physiological significance of choline esterase. Yale J. Biol. Med. 12, 565–589 (1940).Google Scholar
  110. Nachmansohn, D.: Chemical mechanisms of nerve activity. In Modern Trends in Physiology and Biochemistry. New York: Academic Press 1952.Google Scholar
  111. D.Nachmansohn, and A. L. MACHADO: The formation of acetylcholine. A new enzyme, “choline acetylase.” J. Neurophysiol. 6, 397–403 (1943).Google Scholar
  112. Ogston, A. G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223 (1955).Google Scholar
  113. Palade, G. E.: Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335 (1954).Google Scholar
  114. Palay, S. L.: Electron microscope study of the cytoplasm of neurons. Anat. Rec. 118, 336 (1954).Google Scholar
  115. Pascoe, J. E.: A technique for the introduction of intracellular electrodes. J. Physiol. (tond.) 128, 26P (1955).Google Scholar
  116. Pascoe, J. E.: The effects of acetylcholine and other drugs on the isolated superior cervical ganglion. J. Physiol. (Lond.) 132, 242–255 (1956).Google Scholar
  117. Paton, W. D. M.: Transmission and block in autonomic ganglia. Pharmacol. Rev. 6, 59–67 (1954).PubMedGoogle Scholar
  118. Paton, W. D. M.: Central and synaptic transmission in the nervous system (Pharmacological aspects). Ann Rev. Physiol. 20, 431–470 (1958).Google Scholar
  119. Paton, W. D. M.and W. L. M. Perry: The relationship between depolarization and block in the cat’s superior cervical ganglion. J. Physiol. (Loud.) 119, 43–57 (1953).Google Scholar
  120. Paulet, G.: Nouvelle contribution it l’étude de l’action pharmacologique du tétraéthylpyrophosphate (TEPP). Arch. int. Pharmacodyn. 97, 157–185 (1954).Google Scholar
  121. Perry, W. L. M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454 (1953).Google Scholar
  122. Perry, W. L. M.: Central and synaptic transmission (Pharmacological aspects). Ann. Rev. Physiol. 18, 279–308 (1956).Google Scholar
  123. Perry, W. L. M.: Transmission in autonomic ganglia. Brit. med. Bull. 13, 220–226 (1957).Google Scholar
  124. J. Talesnik: The role of acetylcholine in synaptic transmission at parasympathetic ganglia. J. Physiol. (Lend.) 119, 455–469 (1953).Google Scholar
  125. Reardon, M. J., F. A. Marzoni and J. P. Hendrix: The effect of neostigmine (prostigmine) on the actions of tetraethylammonium (etamon) in dogs and man. Fed. Proc. 6, 364 (1947).PubMedGoogle Scholar
  126. Riker, W. F. Jr.: Excitatory and anti-curare properties of acetylcholine and related quaternary ammonium compounds at the neuromuscular junction. Pharmacol. Rev. 5, 1–86 (1953).PubMedGoogle Scholar
  127. Riker, W. F. Jr., and Z. Szrenlwski: The pharmacological reactivity of presynaptic nerve terminals in a sympathetic ganglion. J. Pharmacol. exp. Ther. 126, 233–238 (1959).PubMedGoogle Scholar
  128. Robertrs, E. DE, and H. S. Bennett: Submicroscopic vesicular component in the synapse. Fed. Proc. 13, 35 (1954).Google Scholar
  129. Robertson, J. D.: Preliminary observations on the ultrastructure of a frog muscle spindle. Proc. Stockholm Cong. Electron Microscopy, 197–200. Stockholm: Almqvist and Wiksell 1956.Google Scholar
  130. Rosenblueth, A., and F. A. Simeone: The responses of superior cervical ganglion to single and repetitive activation. Amer. J. Physiol. 122, 688–707 (1938a).Google Scholar
  131. Rosenblueth, A., and F. A. Simeone: The action of eserine or prostigmin on the superior cervical ganglion. Amer. J. Physiol. 122, 708–721 (1938b).Google Scholar
  132. Rothenberg, M. A.: Studies on permeability in relation to nerve function. Biochim. biophys. Acta 4, 96–114 (1950).Google Scholar
  133. Salerno, P. R., and J. M. Coox: A pharmacologic comparison of hexaethyl tetraphosphate (HETP) and tetraethyl pyrophosphate (TEPP) with physostigmine, neostigmine and DFP. J. Pharmacol. exp. Ther. 95, 240–255 (1949).PubMedGoogle Scholar
  134. Sawyer, C. H., and W. H. Hollinshead: Cholinesterases in sympathetic fibers and ganglia. J. Neurophysiol. 8, 135–153 (1945).Google Scholar
  135. Schueler, F. W.: A new group of respiratory paralyzants. I. The hemicholiniums. J. Pharmacol. exp. Ther. 115, 127–143 (1955).Google Scholar
  136. Sherrington, C.: Some functional problems attaching to convergence (Ferrier lecture). Proc. roy. Soc. B. 105, 332–362 (1929).Google Scholar
  137. Stewart, G. N., and J. M. Rogoff: The action of drugs upon the output of epinephrin from the adrenals. VII. Physostigmine. J. Pharmacol. exp. Ther. 17, 227–248 (1921).Google Scholar
  138. Toman, J. E. P., J. W. Woodbury and L. A. Woodbury: Mechanism of nerve conduction block produced by anticholinesterases. J. Neurophysiol. 10, 429–441 (1947).PubMedGoogle Scholar
  139. Toscni, G.: A biochemical study of brain microsomes. Exp. Cell. Res. 16, 232–255 (1959).Google Scholar
  140. van der Kloot, W. G.: Cholinesterase and sodium transport by frog muscle. Nature (Lond.) 178, 366–367 (1956).Google Scholar
  141. van der Kloot, W. G.: The effect of enzyme inhibitors on the resting potential and on the ion distribution of the sartorius muscle of the frog. J. gen. Physiol. 41, 879–900 (1958).Google Scholar
  142. Varagió, V.: The action of eserine on the blood pressure of the rat. Brit. J. Pharmacol. 10, 349–353 (1955).Google Scholar
  143. Whitteridge, D.: The transmission of impulses through the ciliary ganglion. J. Physiol. (Lond.) 89, 99–111 (1937).Google Scholar
  144. Wolf, G. A., Jr.: The ratio of preganglionic neurons to postganglionic neurons in the visceral nervous system. Anat. Rec. 79, 80, Suppl. 2 (1941).Google Scholar
  145. Zaimis, E. J.: The action of decamethonium on normal and denervated mammalian muscle. J. Physiol. (Lond.) 112, 176–190 (1951).Google Scholar
  146. Zaimis, E. J.: An effect of neostigmine on the sciatic nerve of the cat. XIX. Internat. physiol. Congr. 910–911 (1953).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1963

Authors and Affiliations

  • Eleanor Zaimis

There are no affiliations available

Personalised recommendations