Identification of Acetylcholine and Related Esters of Biological Origin

  • V. P. Whittaker
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 15)


Although acetylcholine (ACh) has been shown beyond reasonable doubt to be the transmitter substance at certain cholinergic nerve endings, there are several facts which warn us against attributing a too exclusive role to this compound. First, by analogy with other transmitters (e.g., the catecholamines) the transmitter role is likely to be subserved by a group of related substances rather than by a single compound. Second, ACh occurs in non-nervous tissue and is so widely distributed in nature as to suggest a non-nervous function for it. Third, several other carboxylic esters of choline possessing related or contrasting pharmacological properties are known to occur in nature. Though so far their presence in nervous tissue has not been unequivocally demonstrated, this tissue can undoubtedly synthesize homologues of ACh in vitro (Gardiner and Whittaker 1954, Frontali 1958, Berry and Whittaker 1959) and is well equipped, by its possession of two forms of cholinesterase (ChE), to destroy them rapidly. The possibility that ACh may not be the only transmitter substance at cholinergic nerve endings or that its function may be interfered with under pathological conditions by the appearance of similar compounds must be borne in mind when considering the mode of action of anti-cholinesterase (anti-ChE) agents and justifies the inclusion of a chapter on the identification of ACh and related esters in a monograph on this subject.


Paper Chromatography Retention Volume Royal Jelly Carboxylic Ester Urocanic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abderhalden, E., H. Paffrath U. H. Sickel: Beitrag zur Frage der Inkret-(Hormon-) Wirkung des Cholins auf die motorischen Funktionen des Verdauungskanales. II. Mitt. Pflügers Arch. ges. Physiol. 207, 241–253 (1925).CrossRefGoogle Scholar
  2. Ackermann, D., u. H. Mauer: Über einen empfindlichen Nachweis des Acetylcholins mit Hilfe von Dipikrylamin. Hoppe-Seylers Z. physiol. Chem. 279, 114–116 (1943).Google Scholar
  3. Ahmed, A., and N. R. W. Taylor: The assay of acetylcholine on the superfused frog rectus muscle. J. Pharm. (Lond.) 9, 536–540 (1957).CrossRefGoogle Scholar
  4. Alm, A., and K.-B. Augustinsson: The presence of acetylcholine in milk. Acta physiol. scand. 39, 203–208 (1957).PubMedCrossRefGoogle Scholar
  5. Aprison, M. H., and P. Nathan: Determination of acetylcholine in small samples of fresh brain tissue. Arch. Biochem. Biophys. 66, 388–395 (1957).PubMedCrossRefGoogle Scholar
  6. Aucustnnsson, K.-B.: Hippurylcholine. Acta chem. scand. 9, 793–796 (1955).CrossRefGoogle Scholar
  7. Aucustnnsson, K.-B. R. Fänge, A. Johnels and E. Östlund: Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J. Physiol. (Lond.) 131, 257–276 (1955).Google Scholar
  8. Aucustnnsson, K.-B. and M. Grahn: The separation of choline esters by paper chromatography. Acta chem. scand. 7, 906–912 (1953).CrossRefGoogle Scholar
  9. Aucustnnsson, K.-B. and M. Grahn: The occurrence of choline esters in the honey-bee. Acta physiol. scand. 32, 174–190 (1954).CrossRefGoogle Scholar
  10. Bano, L. vow, u. M. Hirschbrunn: Über das Sinapin. Justus Liebigs Ann Chem. 84, 10–32 (1852). BAC@, Z. M. L’acétylcholine et l’adrénaline chez les invertébrés. Biol. Rev. 22, 73–91 (1947).Google Scholar
  11. Bano, L. vow, u. M. Hirschbrunn: Un test marin pour l’acétylcholine. Arch. int. Physiol. 49, 20–24 (1939).Google Scholar
  12. Bano, L. vow, u. M. Hirschbrunn: et F. P. MAZZARecherches sur la physiologie et la pharmacologie du système nerveux autonome. XVIII. Isolement de chloroaurate d’acétylcholine à partir d’un extrait de cellules nerveuses d’Octopus vulgaris. Arch. int. Physiol. 42, 43–46 (1935).Google Scholar
  13. Baeyer, A.: Über das Neurin. Justus Liebigs Ann. Chem. 142, 322–326 (1867).CrossRefGoogle Scholar
  14. Banister, R. J., V. P. Whrttaker and S. Wijesundera: The chromatographic identification of propionylcholine in ox spleen. J. Physiol. (Lond.) 115, 55 P (1951).Google Scholar
  15. Banister, R. J., V. P. Whrttaker and S. Wijesundera: The occurrence of homologues of acetylcholine in ox spleen. J. Physiol. (Lond.) 121, 55–71 (1953).Google Scholar
  16. Barlow, R. B.: Introduction to Chemical Pharmacology. London Methuen 1955.Google Scholar
  17. Beilstein, F. K.: Handbuch der Organischen Chemie. Berlin: Springer 1918–1957.Google Scholar
  18. Bell, F. K., and J. C. Carr: The preparation and properties of the perchlorates of some choline esters. J. Amer. pharm. Ass. 36, 272–273 (1947).Google Scholar
  19. Bentley, G. A. and F. H. Shaw: The separation and assay of acetylcholine in tissue extracts. J. Pharmacol. exp. Ther. 106, 193–199 (1952).PubMedGoogle Scholar
  20. Berry, J. F., and V. P. Whittaker: The acyl-group specificity of choline acetylase. Biochem. J. 73, 447–458 (1959).PubMedGoogle Scholar
  21. Bnoola, K. D., J. D. Calle and M. Schachter: The identification of acetylcholine, 5-hydroxytryptamine and other substances in hornet venom (Vespa crabo). J. Physiol. (Lond.) 151, 35–36 P (1960).Google Scholar
  22. Bischoff, C., W. Grab u. J. Kapfhammer: Acetylcholin im Warmblüter. 4. Mitteilung. Hoppe-Seylers Z. physiol. Chem. 207, 57–77 (1932).Google Scholar
  23. Bisset, G. W. J. F. D. Frazer, M. Rotscuild and M. Sciachter: A pharmacologically active choline ester and other substances in the Garden Tiger Moth, Arctia raja (L). Proc. roy. Soc. 152 B, 255–262 (1960).Google Scholar
  24. Boriittaii, H., u. H. Cappenberg: Beiträge zur Kenntnis der wirksamen Bestandteile des Hirtentäschelkrautes (Herba Capsellae bursae pastoris). Arch. Pharm. (Berl.) 259, 33–52 (1921).CrossRefGoogle Scholar
  25. Boyet, D., et F. Bovet-Nitti: Structure et Activité Pharmacodynamique des Médicaments du Système Nerveux Végétatif; Adrénaline, Acétylcholine, Histamine, et leurs Antagonistes. BâleKarger 1948.Google Scholar
  26. Brante, G.: Iodine as a means of development in paper chromatography. Nature (Lond.) 163, 651–652 (1949).CrossRefGoogle Scholar
  27. Bregoff, H. M., E. Roberts and C. C. Delwiche: Paper chromatography of quaternary mmonium bases and related compounds. J. biol. Chem. 205, 565–574 (1953).Google Scholar
  28. Brtttain, R. T., B. G. Chesher, H. O. J. Collier and J. J. Grimshaw: Assay of suxa-methonium and laudexium on the frog rectus abdominis. J. Pharmacol. 14, 158–163 1959 ).Google Scholar
  29. Bülbring, E., E. M. ’,Curie and U. Pardoe: The presence of acetylcholine in Trypanosoma rhodesiense and its absence from Plasmodium gallinaceum. Brit. J. Pharmacol. 4, 290–294 (1949).Google Scholar
  30. Bülbring, E., E. M. ’,Curie and U. Pardoe: J. H. BURN and H. J. SHELLEY Acetylcholine and ciliary movement in the gill plates of Mytilus edulis. Proc. roy. Soc. 141 B, 445–466 (1953).Google Scholar
  31. Burn, H. J., D. J. Finney and L. G. Goodwin: Biological Standardization. 2nd ed. London.xford University Press 1950.Google Scholar
  32. Chang, C. H., and J. H. Gaddum: Choline esters in tissue extracts. J. Physiol. (Lond.) 79, 255–285 (1933).Google Scholar
  33. Chefurka, W., and B. N. Smallman: The occurrence of acetylcholine in the housefly, Musca domestica L. Canad. J. Biochem. 34, 731–742 (1956).PubMedCrossRefGoogle Scholar
  34. Corsten, M.: Bestimmung kleinster Acetylcholinmengen am Lungenpräparat des Frosches. Pflügers Arch. ges. Physiol. 244, 281–291 (1940).Google Scholar
  35. Crossland, J.: The use of liquid air in the extraction of acetylcholine. J. Physiol. (Lond.) 142, 165–172 (1951).Google Scholar
  36. Curtis, D R, J W Phillis and J. C. Watkins: Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961).Google Scholar
  37. Dale, H. H., and H. W. Dudley: The presence of histamine and acetylcholine in the spleen of the ox and the horse. J. Physiol. (Lond.) 68, 97–123 (1929).Google Scholar
  38. Dale, H. H., and H. W. Dudley and W. FELDBERG: The chemical transmitter of vagus effects to the stomach. J. Physiol. (Lond.) 81, 320–334 (1934).Google Scholar
  39. David, W. A. L.: The systemic insecticidal action of paraoxon on the eggs of Pieris brassicae (L). J. insect. Physiol. 3, 14–27 (1959).CrossRefGoogle Scholar
  40. Davis, J. E.: Acetylcholine estimation in body fluids by the acetone-sensitized frog rectus muscle test. Amer. J. Physiol. 162, 616–618 (1950).PubMedGoogle Scholar
  41. Dubois, R.: Recherches sur la pourpre et sur quelques autres pigments animaux. Arch. Zool. exp. gén. (5) 2, 471–590 (1909).Google Scholar
  42. Dudley, H. W.: Co-ordination compounds of the chloroplatinates of choline and its esters. J. them. Soc. 763–769 (1931).Google Scholar
  43. Dudley, H. W.: The alleged occurrence of acetylcholine in ox blood. J. Physiol. (Lond.) 79, 249–254 (1933).Google Scholar
  44. Elliott, K. A. C., and E. Florey: Factor I — inhibitory factor from brain. J. Neurochem. 1, 181–191 (1956).Google Scholar
  45. Emmelin, N., and R. Fänge: Comparison between biological effects of neurine and a salivary gland extract of Neptunea antiqua. Acta zool. (Stockh.) 39, 47–52 (1958).CrossRefGoogle Scholar
  46. Emmelin, N., and R. Fänge and W. Feldberg: The mechanism of the sting of the common nettle (Urtica urens). J. Physiol. (Lond.) 106, 440 455 (1947).Google Scholar
  47. Erspamer, V., U. O. Benati: Isolierung des Murexins aus Hypobranchialdrusenextrakten von Murex trunculus und seine Identifizierung als ß-[Imidazolyl-4(5)]-acryl-cholin. Biochem. Z. 324, 66–73 (1953).PubMedGoogle Scholar
  48. Erspamer, V., U. O. Benati e F. Dordoni: Chemical and pharmacological researches on extracts of the hypobranchial gland of Murex trunculus, M. brandaris and Tritonalia erinacea. III Presence in the extracts of a new derivative of choline or of a choline homologue murexine (in Italian). Arch. in Pharmacodyn. 74, 263–285 (1947).Google Scholar
  49. Erspamer, V., U. O. Benati e F. Dordoni and A. Glässer: The pharmacological actions of murexine (urocanylcholine). Brit. J. Pharmacol. 12, 176–184 (1957).PubMedGoogle Scholar
  50. Erspamer, V., U. O. Benati e F. Dordoni The pharmacological actions of some murexine-like substances. Brit. J. Pharmacol. 13, 378–384 (1958).Google Scholar
  51. Ewrxs, A. J.: Acetylcholine, a new active principle of ergot. Biochem. J. 8, 44 49 (1914).Google Scholar
  52. Fänge, R.: Paper chromatography and biological effects of extracts of the salivary gland of Neptunea antiqua (Gastropoda). Acta zool. (Stockh.) 39, 39–46 (1958).CrossRefGoogle Scholar
  53. Fänge, R.: and A. Matisson Studies on the physiology of the radula-muscle of Buccinum undatum. Acta zool. (Stockh.) 39, 53–64 (1958).CrossRefGoogle Scholar
  54. Feigl, F.: Qualitative Analysis by Spot Tests, Inorganic and Organic Applications. 3rd English ed. New YorkElsevier 1947.Google Scholar
  55. Feigl, F.: V. Anger U. O. Frehden Über die Verwendung von Tüpfelreaktionen zum Nachweis von organischen Verbindungen (II). Mikrochemie 15, 12–24 (1934).Google Scholar
  56. Feldberg, W., and J. H. Gaddum: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934).Google Scholar
  57. Feldberg, W., and C. Hebb: The effect of magnesium ions and of creatine phosphate on the synthesis of acetylcholine. J. Physiol. (Lond.) 106, 8–17 (1947).Google Scholar
  58. Fiedler, U., G. Hildebrand u. R. Neu: Weitere Inhaltsstoffe des Weißdorns der Nachweis von Cholin und Acetylcholin. Arzneimittel-Forsch. 3, 436–437 (1953).Google Scholar
  59. Fleisher, J. H., J. P. Corrigan and J. W. Howard: Reciprocal potentiating action of depolarizing drugs on the isolated frog rectus abdominis muscle. Brit. J. Pharmacol. 15, 23–28 (1960).PubMedGoogle Scholar
  60. Florey, E.: An inhibitory and an excitatory factor of mammalian central nervous system, and their action on a single sensory neurone. Arch. int. Physiol. 62, 33–53 (1954).Google Scholar
  61. Florey, E.: The action of Factor I on certain invertebrate organs. Canad. J. Biochem. Physiol. 34, 669–681 (1956).PubMedCrossRefGoogle Scholar
  62. Florey, E. and H. Mclennan: The effects of Factor I and of gamma-aminobutyric acid on smooth muscle preparations. J. Physiol. (Lond.) 145, 66–76 (1959).Google Scholar
  63. Foldes, F. F., E. G. Erdös, N. Baart and S. P. Shandor: Interrelationship of murexine, dihydromurexine and human cholinesterases. Proc. Soc. exp. Biol. (N. Y.) 94, 500–503 (1957).CrossRefGoogle Scholar
  64. Fourneau, E., et H. J. Page: Sur les éthers de la choline. Bull. Soc. chim. Fr. (4) 15, 544–553 (1914).Google Scholar
  65. Fowler, K. S., and S. E. Lewis: The extraction of acetylcholine from frozen insect tissue. J. Physiol. (Lond.) 142, 165–172 (1958).Google Scholar
  66. Freudenberg, K., u. H. Biller: Über Oxytocin. Naturwissenschaften 24, 523 (1936).CrossRefGoogle Scholar
  67. Frontali, N.: Acetylcholine synthesis in the housefly head. J. insect. Physiol. 1, 319–326 (1958).CrossRefGoogle Scholar
  68. Gadamer, I.: Über das Sinapin. Ber. dtsch. them. Ges. 30, 2328–2330 (1897).CrossRefGoogle Scholar
  69. Gaddum, J. H., and Z. P. Picarelli: Two kinds of tryptamine receptor. Brit. J. Pharmacol. 12, 323–328 (1957).PubMedGoogle Scholar
  70. Gaddum, J. H., and Z. P. Picarelli and R. P. Stephenson: A microbath. Brit. J. Parmacol. 13, 493–497 (1958).Google Scholar
  71. Gardiner, J. E., and V. P. Whittaker: The identification of propionylcholine as a constituent of ox spleen. Biochem. J. 58, 24–29 (1954).Google Scholar
  72. Goffart, M.: Acétylcholine tissulaire du tube digestif chez le chien. Influence de l’énervation. Arch. int. Physiol. 49, 153–178 (1939).Google Scholar
  73. Goldschmidt, S., u. H. Burkert: Die Hydrolyse des cholinergischen Honigwirkstoffes und anderer Cholinester mittels Cholinesterasen und deren Hemmung im Honig. Hoppe-Seylers Z. physiol. Chem. 301, 78–89 (1955).Google Scholar
  74. Gray, E. G., and V. P. Whittaker: The isolation of nerve-endings from brain an electron microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. (Lond.) 96, 79–88 (1962).Google Scholar
  75. Grelis, M. E., and I. A. A. Tabachnick: The enzymatic hydrolysis of imidazoleacryloylcholine (murexine) and imidazolepropionylcholine (dihydromurexine) by various cholinesterases. Brit. J. Pharmacol. 12, 320–322 (1957).PubMedGoogle Scholar
  76. Gruner, G., u. H. Kewitz: Das Vorkommen von Imidazyl-Essigsäure-Cholinester im Gehirn von Warmblütern. Naturwissenschaften 42, 628–629 (1955).CrossRefGoogle Scholar
  77. Guggenheim, M.: Die biogenen Amine und ihre Bedeutung für die Physiologie und Pathologie des pflanzlichen und tierischen Stoffwechsels. 4te Aufl., Basel Karger 1951.Google Scholar
  78. Harrison, K.: Isolation of acetylcholine from bacteria. Meth. med. Res. 3, 93–94 (1950).Google Scholar
  79. Hebb, C. O., and V. P. Whittaker: Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.) 142, 187–196 (1958).Google Scholar
  80. Heilbronn, E.: Hydrolysis of carboxylic acid esters of thiocholine and its analogues. 1. Acid hydrolysis. Acta them. stand. 12, 1481–1491 (1958).CrossRefGoogle Scholar
  81. Henschler, D.: Zur Identifizierung von Cholinestern in biologischem Material, insbesondere von Acetylcholin in Bienenfuttersäften. Hoppe-Seylers Z. physiol. Chem. 305, 34–41 (1956 a).Google Scholar
  82. Henschler, D.: Zur Frage des Vorkommens von Butyrylcholin im Rindergehirn. Hoppe-Seylers Z. physiol. Chem. 305, 97–104 (1956b).Google Scholar
  83. Henschler, D.: Die Cholinester der Rindermilz. Hoppe-Seylers Z. physiol. Chem. 309, 276–285 (1957).Google Scholar
  84. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hy-droxylamine, and its analytical application. J. biol. Chem. 180, 249–261 (1949).PubMedGoogle Scholar
  85. Hobbiger, F.: Antagonism by y-aminobutyric acid to the actions of 5-hydroxytryptamine and nicotine on isolated organs. J. Physiol. (Loud.) 144, 349–360 (1958).Google Scholar
  86. Holmstedt, B., L. Larsson and A. Sundwall: Synthesis and pharmacology of nicotinyl-choline and three bisquaternary related derivatives. Biochem. Pharmacol. 3, 155–162 (1960).PubMedCrossRefGoogle Scholar
  87. Holmstedt, B., L. Larsson and A. Sundwall and F. Sjöqvist: Pharmalogical properties of y-aminoburyrylcholine a supposed inhibitory neurotransmitter. Biochem. Pharmacol. 3, 297–304 (1960).PubMedCrossRefGoogle Scholar
  88. F. Sjöqvist and V. P. Whrrtaker: Pharmacological properties of ßß-dimethylacryloylcholine and some other ß-substituted acryloylcholines. Brit. J. Pharmacol. 13, 308–314 (1958).Google Scholar
  89. Holtz, P., u. H. J. Schumann: Butyrylcholin in Gehirnextrakten. Naturwissenschaften 41, 306 (1954).CrossRefGoogle Scholar
  90. Honor, A. J., and H. Mclennan: The effects of y-aminobutyric acid and other compounds on structures of the mammalian nervous system which are inhibited by factor I. J. Physiol. (Lond.) 150, 306–318 (1960).Google Scholar
  91. Horenstein, H., u. H. Pählicke: Über eine neue Umlagerungsreaktion und ihre Anwendung zur Darstellung von Estern der Aminoalkohole. Ber. dtsch. chem. Ges. 71, 1644–1657 (1938).Google Scholar
  92. Hughes, B.: The isolated heart of Mya arenaria as a sensitive preparation for the assay of acetylcholine. Brit. J. Pharmacol. 10, 36–38 (1955).PubMedGoogle Scholar
  93. Hunt, R, and R. De M. Taveau: The Effects of a Number of Derivatives of Choline and Analogous Compounds on the Blood Pressure. Bull. U.S. Publ. Hlth. Serv. (Hyg. Lab.), No. 73. Washington Government Printing Office 1911.Google Scholar
  94. Kahane, E., et J. Levy: Biochimie de la Choline et de ses Derives. III. Colamine, Triméthylamine, Bétaïne, Carnitine, Muscarine, Bétaïnaldéhyde, Sinapine. Actualités scientifiques et industrielles, nr. 753. Paris Hermann 1938.Google Scholar
  95. Kapfjammer, J., u. C. Bischoff: Acetylcholin und Cholin aus tierischen Organen. I. Mitteilung. Darstellung aus Rinderblut. Hoppe-Seylers Z. physiol. Chem. 191, 179–182 (1930).Google Scholar
  96. Kennedy, E. P.: The biological synthesis of phospholipids. Canad. J. Biochem. 34, 334–347 (1956).CrossRefGoogle Scholar
  97. Kewrrz, H.: Nachweis von 4-Amino-n-butyrylcholin im Warmblütergehirn. Naunyn-Schmiede. berg’s Arch. exp. Path. Pharmak. 237, 308–318 (1959).Google Scholar
  98. Keyl, M. J.: The distribution and some physiological properties of naturally occurring choline esters. Ph.D. Dissertation, University of Cincinnati, 1957.Google Scholar
  99. Keyl, M. J. I. A. Michaelson and V. P. Whittaker: Physiologically active choline esters in certain marine gastropods and other invertebrates. J. Physiol. (Lond.) 139, 434–454 (1957).Google Scholar
  100. Keyl, M. J. and V. P. Whtttaker: Some pharmacological properties of murexine (urocanoylcholine). Brit. J. Pharmacol. 13, 103–106 (1958).PubMedGoogle Scholar
  101. Kosterlitz, H. W., and J. A. Robinson: The inhibitory action of morphine on the contraction of the longitudinal muscle coat of the isolated guinea-pig ileum. Brit. J. Pharmacol. 13, 296–303 (1958).PubMedGoogle Scholar
  102. Kung, H. P., and W.-Y. Huang: Chemical investigation of Draba nemorosa, L. The isolation of sinapine iodide. J. Amer. chem. Soc. 71, 1836–1837 (1949).CrossRefGoogle Scholar
  103. Kuriaki, K., T. Yakushiji, T. Nord, T. SnrMrzu and SH. Saji: Gamma-aminobutyrylcholine. Nature (Lond.) 181, 1336–1337 (1958).CrossRefGoogle Scholar
  104. Ladd, R. J., and G. D. Thorburn: New test animal for acetylcholine assay. Aust. J. exp. Biol. med. Sci. 33, 207–213 (1955).PubMedCrossRefGoogle Scholar
  105. Levy, J., et B. Tchoiibar: Relations entre la vitesse d’hydrolyse de divers esters de la choline par les cholinestérases et la constitution chimique des substrats. C.R. Acad. Sci. (Paris) 231, 1262–1264 (1950).Google Scholar
  106. Lewis, S. E.: Acetylcholine in blowflies. Nature (Lond.) 172, 1004–1005 (1953).CrossRefGoogle Scholar
  107. Lin, R. C. Y.: Presence of acetylcholine in the Malayan jack-fruit, Artocarpus intel’ra. Brit. J. Pharmacol. 10, 247–253 (1955).PubMedGoogle Scholar
  108. Lipmann, F., and L. C. Tuttle: Lipase-catalysed condensation of fatty acids with hydroxyl-amine. Biochim. biophys. Acta 4, 301–309 (1950).Google Scholar
  109. Macintosh, F. C., and W. M. L. Perry: Biological estimation of acetylcholine. Meth. med. Res. 3, 78–92 (1950).Google Scholar
  110. Malyoth, G., u. H. W. Stein: Beitrag zur Papierchromatographie der Cholinester und der Zucker. Biochem. Z. 322, 165–167 (1951).Google Scholar
  111. Marquardt, P., u. H. H. Hirsch: Acetylcholin im Säugetierblut. Hoppe-Seylers Z. physiol. Chem. 289, 131–153 (1952).CrossRefGoogle Scholar
  112. Marquardt, P., u. H. H. Hirsch H. Schumacher u. G. Vogg: Die chemische Konstitution des blutdrucksenkenden Faktors in der Kartoffel. Arzneimittel-Forsch. 2, 301–304 (1952).Google Scholar
  113. Marquardt, P., u. H. H. Hirsch, u. G. Vonu: Vorkommen, Eigenschaften und chemische Konstitution des cholinergischen Faktors im Honig, 1. Mitteilung. Arzneimittel-Forsch. 2, 152–155 (1952a).Google Scholar
  114. Marquardt, P., u. H. H. Hirsch Vorkommen, Eigenschaften und chemische Konstitution des cholinergischen Faktors im Honig, 2. Mitteilung. Arzneimittel-Forsch. 2, 205–211 (1952b).Google Scholar
  115. Marquardt, P., u. H. H. Hirsch Über einen empfindlichen Nachweis des Cholins und Acetylcholins mit Hilfe von Tetraphenyl-bor-natrium. Hoppe-Seylers Z. physiol. Chem. 291, 143–147 (1952c).Google Scholar
  116. Mclennan, H.: The identification of one active component from brain extracts containing Factor I. J. Physiol. (Lond.) 146, 358–368 (1959).Google Scholar
  117. Meeter, E.: The heart of Mya arenaria as a test object for acetylcholine. Acta physiol. pharm. néerl. 4, 233–242 (1955).Google Scholar
  118. Mehler, A. H., and H. Tabor: Deamination of histidine to form urocanic acid in liver. J. biol. Chem. 201, 775–784 (1953).PubMedGoogle Scholar
  119. Michaelson, I. A.: The chromatographic separation of choline esters with special reference to urocanylcholine, a constituent of certain marine invertebrates. M.S. Dissertation, University of Cincinnati, 1955.Google Scholar
  120. Minz, B.: Pharmakologische Untersuchungen am Blutegelpräparat, zugleich eine Methode zum biologischen Nachweis von Azetylcholin bei Anwesenheit anderer pharmakologisch wirksamer körpereigener Stoffe. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 168, 292–304 (1932).Google Scholar
  121. Mttchell, R., and B. B. Clark: Determination of quaternary ammonium compounds including acetylcholine, tetraethylammonium and hexamethonium. Proc. Soc. exp. Biol. (N. Y.) 81, 105–109 (1952).CrossRefGoogle Scholar
  122. Morley, J., and M. Schachter: Identification of acetylcholine in the silk gland of the caterpillar of Arctia caja (L.). J. Physiol. (Lond.) 151, 1–2 P (1961).Google Scholar
  123. Murnaohan, M. F.: The morphini7ed-eserinized leech muscle for the assay of acetylcholine. Nature (Lond.) 182, 317 (1958).CrossRefGoogle Scholar
  124. Nothnagel, G.: Über Cholin und verwandte Verbindungen, mit besonderer Berücksichtigung des Muscarins. Arch. Pharm. (Berl.) 232, 261–306 (1894).CrossRefGoogle Scholar
  125. Ocry, A., et Z. M. Bacq: Ester instable de la choline sans cholinesterase dans la pomme de terre et un champignon. Arch. int. Physiol. 47, 92–101 (1938).Google Scholar
  126. Pasini, C., e S. Coda: Murexine and related imidazole derivatives. Note L On some routes of synthesis and on some properties of murexine. Isomurexine (in Italian). Gazz. chim. ital. 87, 1440–1449 (1957a).Google Scholar
  127. Pasini, C., e S. Coda: Murexine and related imidazole derivatives. Note II. Murexine and 4(5)-imidazolylcarboxycholine isomerization and demethylation (in Italian). Gazz. chim. ital. 87, 1450 to 1463 (1957b).Google Scholar
  128. Pasini, C., e S. Coda u. A. Vercellone: Ein nues Reagens für die quantitative Bestimmung des Pikrat-Ions das 4-Octoxy-phenyl-guanidiniumchlorid. Z. anal. Chem. 143, 172–176 (1954).Google Scholar
  129. Pasini, C., e S. Coda u. A. Vercellone: Alkoxyphenylguanidinium salts. Their preparation and employment as precipitants of picric acid (in Italian). Farmaco 10, 823–835 (1955 a).Google Scholar
  130. Pasini, C., e S. Coda u. A. Vercellone: On the cis-trans isomerism of ß-(4(5)-imidazole) acrylic acid (urocanic acid) and on murexine (in Italian). Gazz. chim. ital. 85, 349–363 (1955b).Google Scholar
  131. Pasini, C., e S. Coda u. A. Vercellone u. V. Erspamer: Synthese des Murexins (ß-[Imidazolyl-4(5)]-acrylcholin. Justus Liebigs Ann Chem. 578, 6–10 (1953).CrossRefGoogle Scholar
  132. Quilliam, J P: The mechanism of action of murexine on neuromuscular transmission in the frog. Brit. J. Pharmacol. 12, 388–392 (1957).PubMedGoogle Scholar
  133. Raacke, I. D.: On the reaction of hydroxylamine with esters of amino acids. Biochim. biophys. Acta 27, 416 (1958).Google Scholar
  134. Rotschuh, K. E.: Das herzmuskeleigene Acetylcholin. I. Mitteilung. Freisetzung und Bestimmungsmethodik. Pflügers Arch. ges. Physiol 258, 406 414 (1954).Google Scholar
  135. Schneider, R., and A. R. Timms: Some aspects of the pharmacology of an homologous series of choline esters of fatty acids. Brit. J. Pharmacol. 12, 30–37 (1957).PubMedGoogle Scholar
  136. Schwarze, P.: Über den Bitterstoff der Rapssamen. Naturwissenschaften 36, 88–89 (1949).CrossRefGoogle Scholar
  137. Shaw, F. H.: The estimation of choline and acetylcholine. Biochem. J. 32, 1002–1007 (1938).PubMedGoogle Scholar
  138. Shepherd, D. M., and G. B. West: Effect of trichloracetic acid on adrenaline chromatograms. Nature (Lond.) 169, 797 (1952).CrossRefGoogle Scholar
  139. Sheppard, C. W., W. E. Coax and P. J. Mathias: The estimation of choline esters by ion exchange. Arch. Biochem. Biophys. 47, 475–477 (1953).PubMedCrossRefGoogle Scholar
  140. Si1uonart, A.: On the action of certain derivatives of choline. J. Pharmacol. exp. Ther. 46, 157–193 (1932).Google Scholar
  141. Smith, C. C., and L. Levine: The use of the clam heart as a test object for acetylcholine. Biol. Bull. Woods Hole 75, 365 (1938).Google Scholar
  142. Sörum, H.: The crystal and molecular structure of acetylcholine bromide. Acta them. stand. 13, 345–359 (1959).CrossRefGoogle Scholar
  143. Späth, E.: Die Synthese des sinapins. Mh. Chem. 41, 271–285 (1920).Google Scholar
  144. Stedman, E., and E. Stedman: The mechanism of the biological synthesis of acetylcholine. I. The isolation of acetylcholine produced by brain tissue in vitro. Biochem. J. 31, 817 to 827 (1937).Google Scholar
  145. Stephenson, M., and E. Rowatt: The production of acetylcholine by a strain of Lactobacillus plantarum. J. gen. Microbiol. 1, 279–298 (1947).PubMedCrossRefGoogle Scholar
  146. Stone, W. E.: Acetylcholine in the brain. 1. “Free”, “bound” and total acetylcholine. Arch. Biochem. 59, 181–192 (1955a).PubMedCrossRefGoogle Scholar
  147. Stone, W. E.: Acetylcholine in the brain. II. Chemical measurement of choline esters. Arch. Biochem. 59, 193–198 (1955b).PubMedCrossRefGoogle Scholar
  148. Straughan, D. W.: Assay of acetylcholine on the rat blood pressure. J. Pharm. (Lond.) 10, 783–784 (1958).CrossRefGoogle Scholar
  149. Strecker, A.: Über einige neue Bestandteile der Schweinegalle. Justus Liebigs Ann. Chem. 123, 353–360 (1862).CrossRefGoogle Scholar
  150. Szerb, J. C.: The estimation of acetylcholine, using leech muscle in a microbath. J. Physiol. (Lond.) 158, 8–9 P (1961).Google Scholar
  151. Tabachnick, I. I. A., and F. E. Roth: The potentiation of histamine by imidazoleacrylcholine (murexine) and imidazolepropionylcholine (dihydromurexine). J. Pharmacol. exp. Ther. 121, 191–198 (1957).PubMedGoogle Scholar
  152. Takahashi, Hidehiko, A. Najashtia and C. Koshino: Effect of y-aminobutyrylcholine upon the electrical activity of the cerebral cortex. Nature (Lond.) 182, 1443–1444 (1958).CrossRefGoogle Scholar
  153. Takahashi, Hidehiko, A. Najashtia and C. Koshino and Hisashi Takahashi: Effects of y-aminobutyric acid (GABA), y-aminobutyrylcholine (GABA-Ch) and their related substances on the cortical activity. Jap. J. Physiol. 9, 257–265 (1959).Google Scholar
  154. Tammelin, L.-E.: Choline esters substrates and inhibitors of cholinesterases. Svensk kern. Tidskr. 70, 157–181 (1958).Google Scholar
  155. Thesleff, S.: The mode of neuromuscular block caused by acetylcholine, nicotine, deca- methonium and succinylcholine. Acta physiol. scand. 34, 218–231 (1955).CrossRefGoogle Scholar
  156. Vincent, D., et A. Jullien: Richesse de la glande it pourpre des Murex en esters de la choline. C. R. Soc. Biol. (Paris) 127, 1506–1509 (1938).Google Scholar
  157. Wait, R. B.: The action of acetylcholine on the isolated heart of Venus mercenaria. Biol. Bull., Woods Hole 85, 79–85 (1943).CrossRefGoogle Scholar
  158. Welsh, J. H., and R. Taub: The action of choline and related compounds on the heart of Venus mercenaria. Biol. Bull., Woods Hole 95, 346–353 (1948).CrossRefGoogle Scholar
  159. West, G. B., and J. F. Riley: Chromatography of tissue histamine. Nature (Lond.) 174, 882–883 (1954).CrossRefGoogle Scholar
  160. Whittaker, V. P.: Specificity, mode of action and distribution of cholinesterases. Physiol. Rev. 31, 312–343 (1951a).PubMedGoogle Scholar
  161. Whittaker, V. P.: Hydrolysis of succinylcholine by cholinesterases simultaneous utilization of paper chromatography and the Warburg technique (in Italian). Experientia (Basel) 7 217–218 (1951 b).Google Scholar
  162. Whittaker, V. P.: Identification of the F component of ox spleen. Biochem. biophys. Acta 22, 590 (1956).Google Scholar
  163. Whittaker, V. P.: ß,ß-Dimethylacrylylcholine, a new naturally occurring, physiologically active ester of choline. Biochem. J. 66, 35 P (1957).Google Scholar
  164. Whittaker, V. P.: Acetylcholine in milk Nature (Lond.) 181, 856–857 (1958).CrossRefGoogle Scholar
  165. Whittaker, V. P.: Acrylylcholine a new naturally occurring pharmacologically active choline ester from Buccinum undatum. Biochem. Pharmacol. 1, 342–346 (1959a).CrossRefGoogle Scholar
  166. Whittaker, V. P.: The identity of natural and synthetic ß,ß-dimethylacrylylcholine. Biochem. J. 71 32–34 (1959 b).Google Scholar
  167. Whittaker, V. P.: The isolation and characterization of acetylcholine-containing particles from brain. Biochem. J. 72 694–706 (1959 c).Google Scholar
  168. Whittaker, V. P. and I. A. Michaelson: Studies on urocanylcholine. Biol. Bull., Woods Hole 107, 304 (1954).Google Scholar
  169. Whittaker, V. P. and S. Wijesundera: The separation of esters of choline by paper chromatography. Biochem. J. 49, xlv (1951).Google Scholar
  170. Whittaker, V. P. and S. Wijesundera: The separation of esters of choline by filter-paper chromatography. Biochem. J. 51, 348–351 (1952a).PubMedGoogle Scholar
  171. Whittaker, V. P. and S. Wijesundera: The hydrolysis of succinyldicholine by cholinesterase. Biochem. J. 52, 475–479 (1952b).PubMedGoogle Scholar
  172. Winterfeld, K.: Über die Inhaltsstoffe der Mistel. Pharm. Ind. 9, 37–41 (1942).Google Scholar
  173. Wood, D. L.: The identification of spleen propionylcholine by infrared microspectroscopy. Biochem. J. 58, 30–31 (1954).PubMedGoogle Scholar
  174. Yosbihara, H.: Comparative studies in isolated molluscan hearts as biological assay material for various drugs. Nippon Yakurigaku Zasshi 53, 393–399 (1957), abstracted in Chem. Abstr. 52, 10406e (1958).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1963

Authors and Affiliations

  • V. P. Whittaker

There are no affiliations available

Personalised recommendations