Produktionsablaufplanung, Probleme, Modelle, Methoden (Übersichtsvortrag)

  • B. Fleischmann
Conference paper
Part of the Vorträge der Jahrestagung 1975 DGOR / SVOR book series (ORP, volume 1975)


This paper gives a survey of short-term production scheduling problems, models, and methods. First the characteristics of the various problems are pointed out. Models and methods for multiproduct lot size scheduling are classified and discussed, including stationary and dynamic, single and multi-stage models. Job scheduling models and methods, for which an excellent new book of BAKER [1] is available, are not considered. A final section deals with some aspects of application.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [1]
    BAKER, K.R., Introduction to sequencing and scheduling. New York-Sydney-London-Toronto 1974 Stationäre ModelleGoogle Scholar

Stationäre Modelle

  1. [2]
    BOMBERGER, E.E., A dynamic programming approach to a lot size scheduling problem. Man.Sci. 12 (1966), S. 778–784Google Scholar
  2. [3]
    CROWSTON, W.B., WAGNER, M., WILLIAMS, J.F., Economic lot size determination in multi-stage assembly systems. Man.Sci.19 (1973), S. 517–527Google Scholar
  3. [4]
    MADIGAN, J.G., Scheduling a multi-product single machine. System for an infinite planning period. Man.Sci. 14 (1968), S. 713–719Google Scholar
  4. [5]
    MÜLLER-MERBACH, H., Fertigungssteuerung mit optimalen LosgroBen. VDI-Berichte Nr. 101 (1966), S. 59–67Google Scholar
  5. [6]
    PRESSMAR, D.B., Evolutorische und stationare Modelle mit variablen Zeitintervallen zur simultanen Produktions- und Ablaufplanung. In: Proceedings in OR 3, Würzburg-Wien 1974, S. 462–471Google Scholar
  6. [7]
    PRESSMAR, D.B, Einsatzmöglichkeiten der elektronischen Datenverarbeitung für die simultane Produktionsplanung. In: Informationssysteme im Produktionsbereich. Erscheint im Oldenbourg-VerlagGoogle Scholar
  7. [8]
    PRESSMAR, D.B. Stationäre Planung und LosgroEenanalyse. ZfB 44 (1974), s. 729–748Google Scholar
  8. [9]
    SCHWARZ, L.B., SCHRAGE, L., Optimal and system myopic policies for multi-echelon production/inventory assembly systems. Man.Sci. 21 (1975), S. 1285–1294Google Scholar
  9. [10]
    STACH, M., Optimale Lagerhaltungspolitiken in Mehrprodukt Lagerhaltungssystemen. Dissertation Aachen 1971Google Scholar

Diskrete Modelle

  1. [11]
    ADAM, D., Produktionsplanung bei Sortenfertigung. Wiesbaden 1969Google Scholar
  2. [12]
    DINKELBACH, W., Zum Problem der Produktionsplanung in Einund Mehrproduktunternehmen. Wtirzburg 1964Google Scholar
  3. [13]
    DORSEY, R.C., HODGSON, T.J., RATLIFF, H.D., A network approach to a multi-facility, multi-product production scheduling problem without backordering. Man.Sci. 21 (1975),S. 813–822Google Scholar
  4. [14]
    FLEISCHMANN, B., Dynamische Produktionsplanung bei deterministisch schwankendem Bedarf. Exakte Losung eines Spezialfalls. In: Proceedings in OR 2, Würzburg-Wien 1973, S. 425–434Google Scholar
  5. [15]
    FLEISCHMANN, B., Eine Kombination des Branch-and-Bound-Prinzips und der dynamischen Optimierung an einem Beispiel aus der Produktionsplanung (Abstract). In: International Series in Numerical Mathematics 23, Basel-Stuttgart 1974Google Scholar
  6. [16]
    HAEHLING VON LANZENAUER, C., A production scheduling model by bivalent linear probramming. Man.Sci. 17 (1970),S. 105–111Google Scholar
  7. [17]
    NEUVIANS, G., Dynamische Bestands- und Produktionsplanung bei einstufiger Fertigung. Berlin-New York 1971Google Scholar
  8. [18]
    RAUHUT, B., Optimale Planung eines speziellen Fertigungsprogramms. In: Proceedings in OR 2, Wtirzburg-Wien 1973, S. 435–445Google Scholar

“Strateg1e”-Modelle und heuristische Modelle für eine Stufe

  1. [19]
    DZIELINSKI, B.P., GOMORY, R.E., Optimal programming of lot sizest inventory and labor allocations. Man.Sci. 11 (1965), S. 874–890Google Scholar
  2. [20]
    GORENSTEIN, S., Planning tire production. Man.Sci. 17 (1970) S. B 72–82Google Scholar
  3. [21]
    KLEINDORFER, R., NEWSON, E.F.P., A lower bounding structure for lot size scheduling problems. Op.Res. 23 (1975), s.S. 299–311CrossRefGoogle Scholar
  4. [22]
    LASDON, L.S., TERJUNG, R.C., An efficient algorithm for multiitem scheduling. Op.Res. 19 (1971), S. 946–69CrossRefGoogle Scholar
  5. [23]
    MANNE, A.S., Programming of economic lot sizes. Man.Sci. 4 (1958), S. 115–135Google Scholar
  6. [24]
    NEWSON, E.F.P., Multi-item lot size scheduling by heuristics Part I + II. Man.Sci. 21 (1975), S. 1186–1203Google Scholar
  7. [25]
    SCHMIDT, W.P., Ein Näherungsverfahren zur Bestimmumg optimaler Fertigungslose unter Berticksichtigung von Kapazitatsund Terminrestriktionen. APF 11 (1970), S. 214–237Google Scholar

Mehrstufige Modelle

  1. [26]
    FLEISCHMANN, B., Mehrstufige Sorten-Fertigung in Produktionsnetzwerken. Habilitationsschrift, Karlsruhe 1975Google Scholar
  2. [27]
    FLEISCHMANN, B, SAUR, H.-D., Ein allgemeines Simulationsmodell für die mehrstufige kontinuierliche Fertigung. In: Proceedings in OR 3, Wlirzburg-Wien 1974, S. 420–429Google Scholar
  3. [28]
    KALYMON, B.A., A decomposition algorithm for arborescence inventory systems. Op.Res. 20 (1972), S. 860–874CrossRefGoogle Scholar
  4. [29]
    KORNBLUTH, J.S.H., LEPAGE, D.E., The scheduling of continuous flow production: a separable programming approach. Ope Res.Quat. 23 (1972), S. 531–548CrossRefGoogle Scholar
  5. [30]
    LOVE, S.F., A facilities in series inventory model with nested schedules. Man.Sci. 18 (1972), S. 327–338Google Scholar
  6. [31]
    NEW, C.C., Matching batch sizes to machine shop capabilities: an example in production scheduling. Op.Res.Quat. 23 (1972), S. 561–572CrossRefGoogle Scholar
  7. [32]
    VEINOTT, A.F.jr.,Minimum concave-cost solution of Leontiefnsubstitution models of multi-facility inventory systems. Op.Res. 17 (1969), S. 262–291CrossRefGoogle Scholar
  8. [33]
    ZANGWILL, W.I., A deterministic multi-product multi-facility production and inventory model. Op.Res. 14 (1966), S. 486–507CrossRefGoogle Scholar
  9. [34]
    ZANGWILL, W.I., A backlogging model and a multi-echelon model of a dynamic economic lot size production system - a network approach. Man.Sci. 15 (1969), S. 506–517Google Scholar


  1. [35]
    TAPIERO, C.S., Production scheduling with significant changeover costs. ZOR 17 (1973), S. 33–44CrossRefGoogle Scholar


  1. [36]
    YUAN, J.S.C., HOREN, J.H., WAGNER, H.M., Optimal multi-product production scheduling and employment smoothing with deterministic demands. Man.Sci. 21 (1975), S. 1250–1262Google Scholar

Copyright information

© Physica-Verlag, Rudolf Liebing KG, Würzburg 1976

Authors and Affiliations

  • B. Fleischmann
    • 1
  1. 1.HamburgDeutschland

Personalised recommendations