OR-Modelle sozio-demographischer Prozesse

Conference paper
Part of the Proceedings in Operations Research book series (ORP, volume 1973)


Population mathematics is concerned with formal demographic model building. Herein some optimization theory has been included recently. Some models in population dynamics provide an useful approach to manpower planning. The purpose of the following paper is to present flow models of hierarchical structures and to discuss ideas on demographic optimization, e.g. the sequential decision process of a couple living in sexual union and using contraception. A typical question of the first issue is the following: In what degree promotion within graded organisations depends on the growth of these organisations?


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARTHUR,W.B., and G. McNICOLL (1971): Optimal population policy: a report on work in progress. Paper presented at the Fourth Conference on the Mathematics of Population, The East- West Center, Honolulu, Hawaii, July 28- August 1, 1971.Google Scholar
  2. ARTHUR,W.B. (1972): Population policy under an arbitrary welfare criterion: theory and issues. Working paper of the East- West Population Institute, Honolulu.Google Scholar
  3. BALINSKY,W., and A.REISMAN (1972): Some manpower planning models based on levels of educational attainment. Management Science 18, B, 691 - 705.CrossRefGoogle Scholar
  4. BARTHOLOMEW,D.J. (1970): Stochastische Modelle für soziale Vorgänge. Oldenbourg, München.Google Scholar
  5. BARTHOLOMEW,D.J. (1971): The statistical approach to manpower planning. The Statistician 20, 3–26.CrossRefGoogle Scholar
  6. BECKMANN,M.J. (1973): Alternative strategies for promotion and optimal salary scales in hierarchical organizations. Unveröffentlichtes Vortragsmanuskript.Google Scholar
  7. COALE,A.J. (1972): The growth and structure of human populations. A mathematical investigation. Princeton University Press, Princeton.Google Scholar
  8. FEICHTINGER,G. (1971a): Stochastische Modelle demographischer Prozesse. Lecture Notes in Operations Research and Mathematical Systems, Vol. 44 (M.Beckmann and H.P.Künzi, eds.), Springer, Berlin.Google Scholar
  9. FEICHTINGER,G. (1971b): Ein Optimierungsproblem in der Familienplanung. Vortrag, gehalten auf der 10. Jahrestagung der DGU in Bochum.Google Scholar
  10. FEICHTINGER,G. (1972): Neue Entwicklungen der formalen Demographie II. Mitteilungsblatt der österreichischen Gesellschaft für Statistik und Informatik. November 1972, No. 6., 53 - 64.Google Scholar
  11. FEICHTINGER,G. (1973): Bevölkerungsstatsstik. De Gruyter Lehrbuch. De Gruyter, Berlin.Google Scholar
  12. FERSCHL,F. (1970): Markovketten. Lecture Notes in Operations Research and Mathematical Systems (M.Beckmann and H.P.Künzi, eds.) Vol. 35, Springer, Berlin.Google Scholar
  13. FORBES,A.F. (1969): Promotion and recruitment policies for the cfntrol of quasi- stationary hierarchical systems. Paper for the NATO Conference on Mathematical Models for the Management of Manpower Systems at Oporto, Portugal, September, 1969.Google Scholar
  14. GANI,J. (1963): Formulae for projecting enrolments and degrees awarded in universities. J.R. Statist. Soc. A, 126, 400–409.CrossRefGoogle Scholar
  15. HEER,D.M., and D.O.SMITH (1969): Mortality level, desired family size and population increase: further variation on a basic model. Demography 6, 141 - 149.CrossRefGoogle Scholar
  16. JAQUETTE,D.L. (1972): A discrete time population control model. Mathematical Biosciences 15, 231 - 252.CrossRefGoogle Scholar
  17. KABAK,I.W. (1972): On scheduling the delivery of babies. Operations Research 20, 19–23.CrossRefGoogle Scholar
  18. KEIDING,N. (1973): Lecture Notes on the Stochastic Population Model. Institute of Mathematical Statistics, University of Copenhagen.Google Scholar
  19. KEYPITZ,N. (1968): Introduction to the Mathematics of Population. Addison- Wesley, Reading, Massachusetts.Google Scholar
  20. KEYPITZ,N. (1972a): What mathematical demography tells that we would not know without it. Working paper of the East- West Population Institute. Honolulu.Google Scholar
  21. KEYPITZ,N. (1972b): Population waves. In: Population Dynamics (T.N.E. Greville, ed.) 1 - 38, Academic Press, New York.Google Scholar
  22. LAWRENCE,C.E.,A.I.MUNDIGO, and C.S.REVELLE (1972): A mathematical model for resource allocation in population programs. Demography 9, 465 - 483.CrossRefGoogle Scholar
  23. LOPEZ,A. (1961): Problems in stable population theory. Office of Population Research, Princeton University, Princeton.Google Scholar
  24. LURY,D.A., ed. (1971): Statistics and manpower planning in the firm. The Statistican 20, No. 1, March 1971.Google Scholar
  25. MANN,S.H. (1972): On the optimal size for exploited natural animal populations. Operations Research 21, 672 - 676.CrossRefGoogle Scholar
  26. MARSHALL,K.T. (1973): A comparison of two personnel prediction models. Operations Research 21, 810 - 822.CrossRefGoogle Scholar
  27. McPARLAND,D.D. (1972): A dynamic theory of the growth and structure of organizations. Bisher unveröffentlichtes Manuskript.Google Scholar
  28. McNICOLL,G.(1971): On aggregative economic models and population policy. Working paper of the East- West Population Institute, Honolulu.Google Scholar
  29. O’HARA,D.J. (1972): Mortality risks, sequential decisions on births, and population growth. Demography 9, 485 - 498.CrossRefGoogle Scholar
  30. O’HARA,D.J. (1973): Persönliche Mitteilung.Google Scholar
  31. POLLARD,J.H. (1967): Hierarchical population models with Poisson recruitment, J. Appl. Prob. 209 - 213.Google Scholar
  32. POLLARD,J.H. (1968): A note on the age structures of learned societies. J.R. Statist. Soc. A, 131, 569 - 578.CrossRefGoogle Scholar
  33. POLLARD,J.H. (1973): Mathematical Models for the Growth of Human Populations. Cambridge at the University Press.Google Scholar
  34. REINKE,W.A. (1970): The role of Operations Research in population planning. Operations Research 18, 1099 - 1111.CrossRefGoogle Scholar
  35. RYDER,N.B. (1964): Notes on the concept of a population. The American Journal of Sociology, Vol. 68, 447 - 463.CrossRefGoogle Scholar
  36. SCHULTZ,T.P. (1971): The effectiveness of population policies: alternative methods of statistical inference. Draft prepared for presentation to the Fourth Conference on the Mathematics of Population, Honolulu, Hawaii, July 28- August 1, 1971.Google Scholar
  37. THONSTAD,T. (1969): Education and Manpower. Theoretical Models and Empirical Applications. Oliver and Boyd. Edinburgh.Google Scholar
  38. WAUGH,W.A.O’N. (1971): Career prospects in stochastic social models with time - varying rates. Paper presented at the Fourth Conference on the Mathematics of Population, The East- West Center, Honolulu, Hawaii, July 28- August 1, 1971.Google Scholar
  39. WILSON, N.A.B; ed. (1969):. Manpower research. Proceedings of a conference held under the aegis of the NATO. Scientific Affairs Committee in London from 14 th - 18 th August, 1967, The English Universities Press, London.Google Scholar

Copyright information

© Physica-Verlag, Rudolf Liebing KG, Würzburg 1974

Authors and Affiliations

  1. 1.WienÖsterreich

Personalised recommendations