Advertisement

Composition of matrices

  • C. C. Mac Duffee
Chapter
  • 360 Downloads
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (MATHE1, volume 5)

Abstract

Direct sum and direct product. The present chapter is concerned with the set of all matrices of finite order with elements in a ring or field. The operations of addition and multiplication can be applied only to matrices of the same order, but other operations will be defined according to which matrices of different orders may be combined. Also invariant matric functions T(A) will be defined, where T(A) is not necessarily of the same order as A, which have the property that T(AB) = T(A)T(B).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Murnaghan, F. D.: Proc. Nat. Acad. Sci. U.S.A. Vol. 18 (1932) pp. 185–189.CrossRefGoogle Scholar
  2. 1.
    Hölder, O.: Math. Ann. Vol. 43 (1893) p. 305.CrossRefGoogle Scholar
  3. 2.
    Stéphanos, C.: J. Math, pures appl. V Vol. 6 (1900) pp. 73–128.Google Scholar
  4. Aitken, A. C.: Proc. Edinburgh Math. Soc. II Vol. 1 (1927) pp. 135–138.CrossRefGoogle Scholar
  5. 3.
    Hensel, K.: Acta math. Vol. 14 (1891) pp. 317–319.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 4.
    Netto, E.: Acta math. Vol. 17 (1893) pp. 199–204.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 5.
    Sterneck, R. D. Von: Mh. Math. Phys. Vol. 6 (1895) pp. 205–207.MathSciNetzbMATHGoogle Scholar
  8. 2.
    Rice, L, H.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 5 (1925) pp. 55–64.Google Scholar
  9. 2.
    Sylvester: J. reine angew. Math. Vol. 88 (1880) pp. 49–67.Google Scholar
  10. 1.
    Deruyts, J.: Bull. Acad. Sci. Belgique III Vol. 32 (1896) p. S2.Google Scholar
  11. 1.
    Hunyady, E.: J. reine angew. Math. Vol. 89 (1880) pp. 47–69.zbMATHGoogle Scholar
  12. 2.
    Igel, B.: Mh. Math. Phys. Vol. 3 (1892) pp. 55–67.MathSciNetzbMATHGoogle Scholar
  13. 3.
    Escherich, G. Von: Mh. Math. Phys. Vol. 3 (1892) pp. 68–80.zbMATHGoogle Scholar
  14. 4.
    Franklin, F.: Amer. J. Math. Vol. 16 (1894) pp. 205–206.MathSciNetCrossRefGoogle Scholar
  15. 1.
    Franke, E.: J. reine angew. Math. Vol. 61 (1863) pp-350 356.Google Scholar
  16. 3.
    Metzler, W. H.: Amer. J. Math. Vol. 16 (1893) pp. 131–150.MathSciNetCrossRefGoogle Scholar
  17. Rados, G.: Math. Ann. Vol. 48 (1897) pp. 417–424.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 4.
    Niccoletti, O.: Atti Accad. Sci. Torino Vol. 37 (1901–1902) pp. 655–659.Google Scholar
  19. 5.
    Burnside, W.: Quart. J. Math. Vol. 33 (1902) pp. 80–84.zbMATHGoogle Scholar
  20. 6.
    Williamson, J.: Bull. Amer. Math. Soc. Vol. 37 (1931) pp. 585–590.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 7.
    Hensel, K.: J. reine angew. Math. Vol. 159 (1928) pp. 246 254.Google Scholar
  22. 1.
    Williamson, J.: Proc. Edinburgh Math. Soc. II Vol. 2 (1929) pp. 240 to 251.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1933

Authors and Affiliations

  • C. C. Mac Duffee

There are no affiliations available

Personalised recommendations