Similarity

  • C. C. Mac Duffee
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (MATHE1, volume 5)

Abstract

Similar matrices. Two matrices A and B with elements in a principal ideal ring V are called similar (written A = B) if there exists a unimodular matrix P such that A = P I BP.5 Similarity is an instance of equivalence, and is determinative, reflexive, symmetric and transitive (§ 22). More than this, every unimodular matrix P determines an automorphism of the ring of matrices with elements in V, for if
$$A_1 {\text{} } = {\text{} }P^I B_1 P,{\text{} }A_2 {\text{} } = {\text{} }P^I B_2 P$$
than
$$A_1 {\text{} } + {\text{} }A_2 {\text{} } = {\text{} }P^I (B_1 {\text{} } + {\text{} }B_2)P,{\text{} }A_1 A_2 {\text{} } = {\text{} }P^I (B_1 B_2)P$$
A matrix may be interpreted as a linear homogeneous transformation in vector space. From this point of view similar matrices represent the same transformation referred to different bases. All the theorems of this chapter may be interpreted from this standpoint.

Keywords

Radon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Smith, P. F.: Trans. Amer. Math. Soc. Vol. 6 (1905) pp. 1–16.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Hilton, H.: Ann. of Math. II Vol. 15 (1914) pp. 195–201.MATHCrossRefGoogle Scholar
  3. 3.
    Autonne, L.: Ann. Univ. Lyon II Vol. 38 (1915) pp. 1–77.Google Scholar
  4. 5.
    Frobenius: J. reine angew. Math. Vol. 84 (1878) p. 21.Google Scholar
  5. 1.
    Fuchs, L.: J. reine angew. Math. Vol. 66 (1866) pp. 121–160.MATHCrossRefGoogle Scholar
  6. 3.
    Dickson, L.: Amer. J. Math. Vol. 22 (1900) pp. 121–137.MathSciNetMATHCrossRefGoogle Scholar
  7. 4.
    Dickson, L. E.: Froc. London Math. Soc. Vol. 32 (1900) pp. 165–170.MATHCrossRefGoogle Scholar
  8. 2.
    Netto, E.: Acta math. Vol. 17 (1893) pp. 265–280.MathSciNetMATHCrossRefGoogle Scholar
  9. 3.
    Hilton, H.: Mess, of Math. Vol. 39 (1909) pp. 24–26.Google Scholar
  10. 4.
    Voghera, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. 32–34.MATHGoogle Scholar
  11. 5.
    Frobenius: J. reine angew. Math. Vol. 86 (1879) pp.146–208.Google Scholar
  12. 6.
    Landsberg, G.: J. reine angew. Math. Vol. 116 (1896) pp. 331–349.MATHGoogle Scholar
  13. 7.
    Burnside, W.: Proc. London Math. Soc. Vol. 30 (1898) pp. 180–194.MathSciNetCrossRefGoogle Scholar
  14. 9.
    Lattès, S.: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1–84.CrossRefGoogle Scholar
  15. 10.
    Segre, C.: Atti Accad. naz. Lincei, Mem., III Vol. 19 (1884) pp. 127–148.MATHGoogle Scholar
  16. 1.
    Kowalewski, G.: Ber. Verh. sächs. Akad. Leipzig Vol. 68 (1916) pp. 325 to 335.Google Scholar
  17. 3.
    Bennett, A.A.: Amer. Math. Monthly II Vol. 38 (1931) pp. 377–383.CrossRefGoogle Scholar
  18. 9.
    Ingraham, M. H.: Abstr. Bull. Amer. Math. Soc. Vol. 38 (1932) p. 814.MATHGoogle Scholar
  19. 1.
    Schur, I.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 159–175.MathSciNetMATHGoogle Scholar
  20. 3.
    Weyr, H.: C. R, Acad. Sci., Pans Vol. 100 (1885) pp. 966 969.Google Scholar
  21. Weyr, H.: Mh. Math. Phys. Vol. 1 (1990) pp. 163–236.MathSciNetGoogle Scholar
  22. 1.
    Wedderburn, J. H. M.: Ann. of Math. II Vol. 23 (1921) p. 123.MathSciNetGoogle Scholar
  23. 5.
    Metzler, W, H.: Amer. J. Math. Vol. 14 (1892) pp. 326–377.MathSciNetCrossRefGoogle Scholar
  24. 6.
    Hensel, K.: J. reine angew. Math. Vol. 127 (1904) pp. 116–166.MATHGoogle Scholar
  25. 7.
    Wellstein, J.: J. reine angew. Math. Vol. 163 (1930) pp. 166–182.MATHGoogle Scholar
  26. 8.
    Menge, W. O.: Bull. Amer. Math. Soc. Vol. 38 (1932) pp. 88–94.MathSciNetCrossRefGoogle Scholar
  27. 9.
    Autonne, L.: Nouv. Ann. Math. IV Vol. 12 (1912) pp. 118–127.Google Scholar
  28. 2.
    Sylvester, J. J.: Mess, of Math. Vol. 19 (1890) pp. 1–5.Google Scholar
  29. 3.
    Schur, I.: Math. Ann. Vol. 66 (1909) pp. 488–510.MathSciNetMATHCrossRefGoogle Scholar
  30. 1.
    Toeplitz, O.: Math. Z. Vol. 2 (1918) pp. 187–197.MathSciNetCrossRefGoogle Scholar
  31. 3.
    Autonne: Rend. Circ. mat. Palermo Vol. 16 (1902) pp. 104–128.MATHCrossRefGoogle Scholar
  32. Autonne: Bull. Soc. Math. France Vol. 31 (1903) pp. 140–155.MathSciNetMATHGoogle Scholar
  33. 1.
    Autonne, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 140–155.MathSciNetMATHGoogle Scholar
  34. 2.
    Autonne, L.: Bull. Soc. Math. France Vol. 30 (1902) pp. 121–134.MathSciNetMATHGoogle Scholar
  35. Wintner, A., and F. D. Murnaghan: Proc. Nat. Acad. Sci. U.S.A. Vol. 17 (1931) pp. 676–678.CrossRefGoogle Scholar
  36. 3.
    Murnaghan, F. D., and A. Wintner: Proc. Nat. Acad. Sci. U.S.A. Vol. 17 (1931) pp. 417–420.CrossRefGoogle Scholar
  37. 4.
    Weitzenböck, R.: Akad. Wetensch. Amsterdam, Proc. Vol. 35 (1932) pp. 328–330.MATHGoogle Scholar
  38. 1.
    Autonne, L.: Ann. Univ. Lyon II Vol. 38 (1915) pp. 1–77.Google Scholar
  39. 2.
    Beltrami, E.: Giorn. Mat. Battaglini Vol. 11 (1873) pp. 98–106.Google Scholar
  40. 3.
    Jordan, C.: J. Math, pures appl. II Vol. 19 (1874) pp. 35–54.Google Scholar
  41. 4.
    Sylvester, J. J.: C. R. Acad. Sci., Paris Vol. 108 (1889) pp. 651–653.MATHGoogle Scholar
  42. Sylvester, J. J.: Mess, of Math. Vol. 19 (1890) pp. 42–46.Google Scholar
  43. 5.
    Cosserat, E.: Ann. Fac. Sci. Univ. Toulouse Vol. 3 (1889) M. 1–12.Google Scholar
  44. 6.
    Schläfli: J. reine angew. Math. Vol. 65 (1866) pp. 185–187.MATHCrossRefGoogle Scholar
  45. 7.
    Hilton, H.: Mess, of Math. Vol. 41 (1912) pp. 146–154.Google Scholar
  46. 2.
    Muir, T.: Proc. Roy. Soc. Edinburgh Vol. 47 (1926–1927) pp. 252–282.Google Scholar
  47. 3.
    Loewy, A.: C.R. Acad. Sci., Paris Vol. 123 (1896) pp. 168–171.MATHGoogle Scholar
  48. Autonne, L.: Rend. Circ. mat. Palermo Vol. 16 (1902) pp. 104–128.MATHCrossRefGoogle Scholar
  49. 4.
    Cayley: J. reine angew. Math. Vol. 32 (1846) pp. 119–123.MATHCrossRefGoogle Scholar
  50. 5.
    Metzler, W, H.: Amer. J. Math. Vol. 15 (1892) pp. 274–282.MathSciNetCrossRefGoogle Scholar
  51. Prym, F.: Abh. Ges. Wiss. Göttingen Vol. 38 (1892) pp. 1–42.Google Scholar
  52. Taber, H.: Proc. London Math. Soc. Vol. 24 (1892) pp. 290–306.MathSciNetCrossRefGoogle Scholar
  53. Taber, H.: Proc. Amer. Acad. Arts Sci. Vol. 28 (1892–1893) pp. 212–221.CrossRefGoogle Scholar
  54. Taber, H.: Amer. J. Math. Vol. 16 (1893) pp. 123–130.MathSciNetCrossRefGoogle Scholar
  55. Taber, H.: Nachr. Ges. Wiss. Göttingen Vol. 3 (1900) pp. 298–303.Google Scholar
  56. 7.
    Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320–374.MathSciNetMATHCrossRefGoogle Scholar
  57. 8.
    Goursat, E.: Ann. École norm. III Vol. 6 (1889) pp. 1–102.MathSciNetGoogle Scholar
  58. 10.
    Autonne, L.: C. R. Acad. Sci., Paris Vol. 136 (1903) pp. 1185–1186.MATHGoogle Scholar
  59. Autonne, L.: Ann. Univ. Lyon II Vol. 12 (1903) pp. 1–124.Google Scholar
  60. 11.
    Vitali, G.: Boll. Un. Mat. Ital. Vol. 7 (1928) pp. I–7.Google Scholar
  61. 1.
    Stieltjes, T. J.: Acta math. Vol. 6 (1885) pp. 319–320.MathSciNetMATHCrossRefGoogle Scholar
  62. 2.
    Netto, E.: Acta math. Vol. 9 (1887) pp. 295–300.MathSciNetMATHCrossRefGoogle Scholar
  63. 4.
    Frobenius: J. reine angew. Math. Vol. 84 (1878) p. 48.Google Scholar
  64. 5.
    Toscano, L.: Rend. Roy. Inst. Lombardo IIa Vol. 61 (1928) pp. 187–195.Google Scholar
  65. 6.
    Voss, A.: Math. Ann. Vol. 13 (1878) pp. 320–374.MathSciNetMATHCrossRefGoogle Scholar
  66. 9.
    Stenzel, H.: Math. Z. Vol. 15 (1922) pp. 1–25.MathSciNetCrossRefGoogle Scholar
  67. 11.
    Schmidt, E.: Math. Ann. Vol. 63 (1907) pp. 433–476.MathSciNetMATHCrossRefGoogle Scholar
  68. 13.
    Radon, J.: Abh. math. Semin. Hamburg. Univ. Vol. 1 (1921) pp. 1–14.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1933

Authors and Affiliations

  • C. C. Mac Duffee

There are no affiliations available

Personalised recommendations