Advertisement

Congruence

  • C. C. Mac Duffee
Chapter
  • 361 Downloads
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (MATHE1, volume 5)

Abstract

Matrices with elements in a principal ideal ring. If A = P T BP where each matrix has elements in a principal ideal ring V, and if P is unimodular, then A is congruent with B, written \(A\underline{\underline c} B\) Congruence is an instance of equivalence, and is determinative, reflexive, symmetric, and transitive. (Cf. § 22.)

Keywords

Symmetric Matrice Hermitian Matrix Diagonal Form Real Field Invariant Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Frobenius: J. reine angew. Math. Vol. 84 (1878) pp. 1–63.CrossRefGoogle Scholar
  2. 2.
    Cahen, E.: Théorie des nombres Vol. I p. 282. Paris 1914.Google Scholar
  3. 1.
    Frobenius: J. reine angew. Math. Vol. 86 (1879) pp. 146–208.Google Scholar
  4. 2.
    Frobenius: J. reine angew. Math. Vol. 86 (1879) pp. 146–208.Google Scholar
  5. 3.
    Frobenius: J. reine angew. Math. Vol. 86 (1879) pp. 146–208.Google Scholar
  6. 4.
    Eisenstein, A.: J. reine angew. Math. Vol. 35 (1847) pp.117–136.zbMATHCrossRefGoogle Scholar
  7. 5.
    Vahlen, K, T.: Enzykl. math. Wiss. I Vol. 2C2 (1904) pp. 582–638.Google Scholar
  8. 4.
    Hermite, C.: J. reine angew. Math. Vol. 47 (1854) p. 336.Google Scholar
  9. 5.
    Stouff: Ann. École norm. III Vol. 19 (1902) pp. 89–118.MathSciNetGoogle Scholar
  10. 7.
    Smith, H. J. S.: Proc. London Math. Soc. VII 1876 pp. 208–212.Google Scholar
  11. 1.
    Proof by Frobenius: J. reine angew. Math. Vol. 86 (1879) pp. 146–208.Google Scholar
  12. 2.
    For differential forms by Lagrange: Misc. Taur. Vol. I (1759) p. 18.Google Scholar
  13. For the general field by L. E. Dickson: Trans. Amer. Math. Soc. Vol. 7 (1906) pp. 275–292.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 4.
    Sylvester: Philos. Mag. IV 1852 pp. 138–142.Google Scholar
  15. 5.
    Jacobi: J. reine angew. Math. Vol. 53 (1857) pp. 265–270.zbMATHCrossRefGoogle Scholar
  16. 1.
    Frobenius: S.-B, preuß. Akad. Wiss. 1894 I pp. 241–256 and 407-431.Google Scholar
  17. 1.
    Gundelfinger, S.: J. reine angew. Math. Vol. 91 (1881) pp. 221–237.zbMATHGoogle Scholar
  18. 2.
    Darboux, G.: J. Math, pures appl. II Vol. 19 (1874) pp. 347–396.Google Scholar
  19. Gundelfinger: J. Math, pures appl. II Vol. 19 (1874) pp. 347–396.Google Scholar
  20. 3.
    Minkowski, H.: J. reine angew. Math. Vol. 106 (1890) pp. S–29.Google Scholar
  21. 4.
    Hasse, H.: J. reine angew. Math. Vol. 152 (1923) pp. 205–224.Google Scholar
  22. 5.
    Dickson, L. E.: Trans. Amer. Math. Soc. Vol. 7 (1906) pp. 275–292.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 8.
    Muth, P.: J. reine angew. Math. Vol. 122 (1900) pp. 89–96.zbMATHGoogle Scholar
  24. 1.
    Veblen, O., and P. Franklin: Ann. of Math. II Vol. 23 (1921) pp. 1–15.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 2.
    Brioschi, F.: J. reine angew. Math. Vol. 52 (1856) pp. 133–141.zbMATHCrossRefGoogle Scholar
  26. 1.
    Muth, P.: J. reine angew. Math. Vol. 128 (1905) pp. 302–321.zbMATHGoogle Scholar
  27. 2.
    Dickson, L, E.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 347–360.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 3.
    Dickson, L. E.: Amer. J. Math. Vol. 31 (1909) pp. 103–108.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 4.
    See C. Hermite: C, R, Acad. Sci., Paris Vol. 41 (1855) p. 181.Google Scholar
  30. 1.
    Logsdon, M. I.: Amer. J. Math. Vol. 44 (1922) pp. 254–260.MathSciNetCrossRefGoogle Scholar
  31. 1.
    Laurent, H.: Nouv. Ann. III Vol. 16 (1897) pp.149–168.Google Scholar
  32. 2.
    Buchheim, A.: Mess. Math. Vol. 14 (1885) PP. 143–144.Google Scholar
  33. 3.
    Christoffel, E. B.: J. reine angew. Math. Vol. 63 (1864) pp. 255–272.zbMATHCrossRefGoogle Scholar
  34. Autonne, L.: Bull. Soc. Math. France Vol. 31 (1903) pp. 268–271.MathSciNetzbMATHGoogle Scholar
  35. Baker, H. F.: Proc. London Math. Soc. Vol. 35 (1903) pp. 379–384.zbMATHCrossRefGoogle Scholar
  36. 1.
    Loewy, A.: J. reine angew. Math. Vol. 122 (1900) pp. 53–72.zbMATHGoogle Scholar
  37. 2.
    Bromwich, T. J. I’A.: Proc. London Math. Soc. I Vol. 32 (1900) pp. 321 to 352.Google Scholar
  38. 3.
    Klein, F.: Dissertation. Bonn 1868 — Math. Ann Vol. 23 (1884) pp. 539 to 578.Google Scholar
  39. 4.
    Christoffel, E. B.: J. reine angew. Math. Vol. 63 (1864) pp. 255–272.zbMATHCrossRefGoogle Scholar
  40. 5.
    Sylvester: Philos. Mag. Vol. 6 (1853) pp. 214–216.Google Scholar
  41. 6.
    Autonne, L.: C. R. Acad. Sci., Paris Vol. 156 (1913) pp. 858–860.zbMATHGoogle Scholar
  42. Autonne, L.: Ann. Univ. Lyon II Vol. 38 (1915) PP. 1–77.Google Scholar
  43. 1.
    Cayley: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp. 39–46.CrossRefGoogle Scholar
  44. 2.
    Frobenius: J. reine angew. Math. Vol. 84 (1878) pp. 1–63.CrossRefGoogle Scholar
  45. 3.
    Taber, H.: Math. Ann. Vol. 46 (1895) pp. 561–583.zbMATHCrossRefGoogle Scholar
  46. 4.
    Voss, A: Abh. bayer. Akad. Wiss. II Vol. 17 (1892) pp. 235–356.Google Scholar
  47. 5.
    Voss, A.: Abh. bayer. Akad. Wiss. Vol. 26 (1896) pp. 1–23.Google Scholar
  48. 6.
    Loewy, A.: Math. Ann. Vol. 48 (1897) pp. 97–110.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 7.
    Wedderburn, J. H. M.: Ann. of Math. II Vol. 23 (1921) pp. 122–134.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 1.
    Hermite: J. reine angew. Math. Vol. 47 (1854) pp. 307–368.zbMATHCrossRefGoogle Scholar
  51. 2.
    Poincaré H.: Rend. Circ. mat. Palermo Vol. 18 (1904) pp. 45–110.zbMATHCrossRefGoogle Scholar
  52. 3.
    Brahana, H. R.: Ann. of Math. II Vol. 24 (1923) pp. 265–270.MathSciNetCrossRefGoogle Scholar
  53. 4.
    Jackson, I.: Trans. Amer. Math. Soc. Vol. 10 (1909) pp. 479–484.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1933

Authors and Affiliations

  • C. C. Mac Duffee

There are no affiliations available

Personalised recommendations