Advertisement

Equivalence

  • C. C. Mac Duffee
Chapter
  • 358 Downloads
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (MATHE1, volume 5)

Abstract

Equivalent matrices. Let A =PBQ, where each matrix has its elements in a principal ideal ring f. Then A is a multiple of B.4 Theorem 26.1. If A is a multiple of B, the g.c.d. d i of the i-rowed minor determinants of B divides the g. c. d. d i of the i-rowed minor determinants of A.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    PoincarÉ, H.: J. École polytechn. Cah. 47 (1880) pp. 177–245.Google Scholar
  2. 2.
    Shover, Grace, and C. C. MacDuffee: Bull. Amer. Math. Soc, Vol. 37 (1931) pp. 434–438.MathSciNetCrossRefGoogle Scholar
  3. 3.
    MacDuffee, C. C: Math. Ann. Vol. 105 (1931) pp. 663–665.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hensel, K.: J. reine angew. Math. Vol. 114 (1894) pp. 109–115.zbMATHGoogle Scholar
  5. 1.
    Sylvester, J. J.: Philos. Mag. Vol. 1 (1851) pp. 119–140.Google Scholar
  6. 2.
    Smith, H. J. S.: Philos. Trans. Roy. Soc. London Vol. 151 (1861–1862) p. 314.Google Scholar
  7. 1.
    Wedderburn, J. H. M.: J. reine angew. Math. Vol. 167 (1931) pp.129–141.Google Scholar
  8. 1.
    See also Van Der Waerden: J. reine angew. Math. Vol. 167 (1931) pp.129–141.Google Scholar
  9. 3.
    Smith, H. J. S.: Proc. London Math. Soc. Vol. 4 (1873) pp. 236–253.CrossRefGoogle Scholar
  10. 4.
    Frobenius, G.: J. reine angew. Math. Vol. 86 (1879) pp. 146–208.Google Scholar
  11. 5.
    Frobenius, G.: J. reine angew. Math. Vol. 88 (1880) pp. 96–116.Google Scholar
  12. 7.
    Châtelet, A.: C. R, Acad. Sci., Paris Vol. 177 (1923) pp. 729–731.zbMATHGoogle Scholar
  13. 8.
    Du Pasquier, L, G.: Vjschr. naturforsch. Ges. Zürich Vol. 51 (1906) pp. 55 to 129.Google Scholar
  14. 10.
    Laurent, H.: Nouv, Ann. Math. III Vol. 15 (1896) pp. 345–365.Google Scholar
  15. 2.
    Cellitti, G.: Atti Accad. naz. Lincei, Rend. V Vol. 23 II (1914) pp. 208–212.zbMATHGoogle Scholar
  16. 1.
    De Seguier, J. A.: Bull. Soc. Math. France Vol. 36 (1908) pp. 20–40.MathSciNetGoogle Scholar
  17. 1.
    Cf. S. Lattès: Ann. Fac. Sci. Univ. Toulouse Vol. 28 (1914) pp. 1–48.CrossRefGoogle Scholar
  18. 2.
    Segre, C.: Atti. Accad. naz. Lincei, Mem. III Vol. 19 (1884) pp. 127–148.zbMATHGoogle Scholar
  19. 1.
    Pasch, M.: Math. Ann. Vol. 38 (1891) pp. 24–49.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 2.
    Muth, P.: Math. Ann. Vol. 42 (1893) pp. 257–272.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 4.
    Dickson, L. E.: Trans. Amer. Math. SOC, Vol. 29 (1927) pp. 239–253.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 6.
    Kantor, S.: S.-B. Bayer. Akad. Wiss. Vol. 98 (1897) pp. 367–381.Google Scholar
  23. 7.
    Richardson, R, G. I).: Trans. Amer. Math. Soc. Vol. 26 (1924) pp. 451–478.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 1.
    Cayley, A.: Philos. Trans. Roy. Soc. London Vol. 148 (1856) pp. 39–46.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1933

Authors and Affiliations

  • C. C. Mac Duffee

There are no affiliations available

Personalised recommendations