# Matrices, Arrays and Determinants

• C. C. Mac Duffee
Chapter
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (MATHE1, volume 5)

## Abstract

Linear algebra. A linear algebra e of order n over a field p is composed of two or more numbers α, β, γ, and three operations, addition (+), multiplication (ϗ) and scalar multiplication such that α β, α × β, α a, α are uniquely defined numbers of e, where a is in p. It is further assumed that addition is commutative and associative, and that multiplication is distributive with respect to addition. If a and b are in p it is assumed that
$$a\alpha {\text{} } = {\text{} }\alpha a,{\text{} }a(b\alpha){\text{} } = {\text{} }(ab)\alpha,{\text{} }(a\alpha)(b\beta){\text{} } = {\text{} }(ab){\text{} }(a\beta)$$
$$(a{\text{} } + {\text{} }b)\alpha {\text{} } = {\text{} }a\alpha {\text{} } + {\text{} }b\alpha,{\text{} }a(\alpha {\text{} } + {\text{} }\beta){\text{} } = {\text{} }a\alpha {\text{} } + {\text{} }a\beta$$
.

## Preview

Unable to display preview. Download preview PDF.

## Notes

1. 3.
Poincaré, H.: C. R. Acad. Sci., Paris Vol. 99 (1884) pp. 740–742.Google Scholar
2. Study, E: Enc. math. Wiss. I A Vol. 4 (1904) § 10.Google Scholar
3. 4.
Sylvester: Amer. J. Math. Vol. 6 (1884) pp. 270–286.
4. 5.
Van Der Waerden: Moderne Algebra Vol. I p. 37. Berlin 1930.Google Scholar
5. 2.
Muir, Thomas: Trans. Roy. Soc. S. Africa Vol. 18 III (1929) pp. 219–227.
6. 3.
Sylvester: Philos. Mag. Vol. 37 (1850) pp. 363–370.Google Scholar
7. 4.
Cayley: Trans. London Phil. Soc. Vol. 148 (1858) pp. 17–37.
8. 1.
Sylvester: Amer. J. Math. Vol. 6 (1884) pp. 270–286.
9. 3.
Cayley: J. reine angew. Math. Vol. 32 (1846) pp. 119–123.
10. Laguerre: J. École polytechn. Vol. 25 (1867) PP-215 to 264.Google Scholar
11. 1.
Cayley: Philos. Trans. Roy. Soc. London Vol. 148 (1858) pp. 17–37.
12. 2.
Frobenius: J. reine angew. Math. Vol. 84 (1878) pp. 1–63.
13. Cayley: J. reine angew. Math. Vol. 84 (1878) pp. 1–63.Google Scholar
14. 1.
This treatment is due to K. Hensel: J. reine angew. Math. Vol. 159 (1928) pp. 246–254.
15. Kronecker: Vorlesungen über die Theorie der Determinanten Vol. 1 p. 291 et. seq. Teubner 1903.Google Scholar
16. 1.
Iliovici: Rev. Math. spéc. 37 (1927) pp. 433–436 and 457-458.Google Scholar
17. 2.
Cayley: J. reine angew. Math. Vol. 50 (1855) pp. 282–285.
18. 3.
Cauchy: J. École polytechn. Vol. 10 (1815) pp. 51–112.Google Scholar
19. 4.
Bennett, A. A.: Amer. Math. Monthly Vol. 32 (1925) pp. 182–185.
20. 5.
Rychlik, K.: J. reine angew. Math. Vol. 167 (1932) p. 197.
21. 1.
Frobenius: J. reine angew. Math. Vol. 86 (1879) pp. 1–19.Google Scholar
22. The concept of rank seems to be implicit, however, in a paper by I. Heger: Denkschr. Akad. Wiss. Wien Vol. 14 (1858) pt. 2 pp. 1–121.Google Scholar
23. 2.
Sylvester: Johns Hopkins Univ. Circulars Vol. III (1884) pp. 9–12.Google Scholar
24. 2.
Sylvester’s “Law of nullity”. Johns Hopkins Univ. Circulars Vol. 3 (1884) pp. 9–12.Google Scholar
25. 3.
MacDuffee, C. C.: Ann. of Math. II Vol. 27 (1925) pp. 133–139.
26. 2.
Kronecker: J. reine angew. Math. Vol. 72 (1870) pp. 152–175.
27. 3.
Jacobi: J. reine angew. Math. Vol. 2 (1827) pp. 347–357.
28. 4.
The last three proofs are by G. A. Bliss: Ann. of Math. II Vol. 16 (1914) pp. 43–44.
29. 5.
Kronecker: S.-B, preuß. Akad. Wiss. 1882 II pp. 821–844.Google Scholar
30. 1.
Stouffer, E. B.: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp. 63–64.
31. 2.
Schendel, L.: Z. Math. Physik Vol. 32 (1887) pp. 119–120.
32. 3.
White, H. S.: Bull. Amer. Math. Soc. TI Vol. 2 (1896) pp. 136–138.
33. 4.
Mehmke, R.: Math. Ann Vol. 26 (1886) pp. 209–210.
34. 5.
Runge, C.: J. reine angew. Math. Vol. 93 (1882) pp. 319–327.
35. 6.
Muir: Philos. Mag. Vol. 3 (1902) pp. 410–416.Google Scholar
36. 7.
Barton, Helen: Proc. Nat. Acad. Sci. U.S.A. Vol. 12 (1926) pp. 393–396.
37. 8.
Metzler: Trans. Amer. Math. Soc. Vol. 2 (1901) pp. 395–403.
38. 9.
Beaver, R, A.: Amer. Math. Monthly Vol. 39 (1932) pp. 266–276.
39. 1.
MacMahon: Philos. Trans. Roy. Soc. London Vol. 185 (1893) pp. 111–160.
40. 2.
Muir: Philos. Mag. V Vol. 38 (1894) pp. 537–541.
41. 3.
Stouffer: Trans. Amer. Math. Soc. Vol. 26 (1924) pp. 356–368.
42. 4.
Stouffer: Amer. Math. Monthly Vol. 35 (1928) pp. 18–21.
43. 5.
Stouffer: Amer. Math. Monthly Vol. 39 (1932) pp. 165–166.
44. 6.
Flexner, W. W.: Ann. of Math. II Vol. 29 (1927) pp. 373–376.
45. 1.
Gegenbauer, L.: S.-B. Akad. Wiss. Wien (I, 2) Vol. 82 (1880–81) pp. 938 to 942.Google Scholar
46. 2.
Burnside, W.: Mess. Math. II Vol. 23 (1894) pp. 112–114.Google Scholar
47. 5.
Cayley: Trans. Cambr. Philos. Soc. Vol. 8 (1843) pp. 1–16.
48. 7.
Lecat, M.: Ann. Soc. Sci. Bruxelles Vol. 46 (1926) pp. 1–39.Google Scholar
49. 8.
Rice: J. Math. Physics, Massachusetts Inst. Technol. Vol. 9 (1930) pp.47 to 71.Google Scholar
50. 1.
Cramlet, C. M.: Amer. J. Math. Vol. 49 (1927) pp. 89–96.
51. 2.
Barter, J. D.: Univ. California Publ. Math. Vol. 1 (1920) pp. 321–343.Google Scholar
52. 3.
Hitchcock, F. L.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 7 (1927) pp-39–85.
53. Rice, L. H.: J. Math. Physics, Massachusetts Inst. Technol. Vol. 7 1928 pp. 93–96.
54. 5.
Pierce, J. M.: Bull, Amer. Math. Soc. II Vol. 5 (1899) pp. 335–337.
55. 6.
Brill, J.: Proc. London Math. Soc. II Vol. 4 (1906) pp. 124–130.
56. 7.
Study, E.: Acta math. Vol. 42 (1920) pp. 1–61.
57. 8.
Wedderburn, J.H, M.: Proc. London Math. Soc. II Vol. 6 (1908) p. 99.Google Scholar
58. 10.
Richardson, A. R.: Mess. Math. Vol. 55 (1926) pp. 145–152.Google Scholar
59. Richardson, A. R.: Proc. London Math. Soc. II Vol. 28 (1928) pp. 395–420.
60. 11.
Heyting, A.: Math. Ann. Vol. 98 (1927) pp. 465–490.
61. 12.
Ore, O.: Ann. of Math. II Vol. 32 (1931) pp. 463–477.