The simultaneous problem in the parametric form. Generalizations

  • Tibor Radó
Part of the Ergebnisse der Mathematik und Ihrer Grenƶgebiete book series (volume 2)

Abstract

This problem has been investigated in the following statement. Given, in the xyz-space, a Jordan curve Γ*, consider all the continuous surfaces, of the type of the circular disc (see I.8), bounded by Γ*, and suppose that the greatest lower bound a(Γ*) of their areas is finite. Determine a solution S of problem P 2 (see III.5), such that𝕬(S) = u( Γ *).

Keywords

Sine Cose Aire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Intégrale, longueur, aire. Ann. Mat. pura appl. Vol. 7 (1902) pp. 231–359.Google Scholar
  2. 2.
    The problem of the least area and the problem of Plateau. Math. Z. Vol. 32 (1930) pp. 763–796.MathSciNetCrossRefGoogle Scholar
  3. 1.
    This generalizes a result of Lebesgue: Intégrale, longueur, aire. Ann. Mat. pura appl. Vol. 7 (1902) pp. 231–359.CrossRefGoogle Scholar
  4. 1.
    Solution of the problem of Plateau. Trans. Amer. Math. Soc. Vol. 33 (1931) pp. 320–321.Google Scholar
  5. 2.
    See I.5 and I.6.Google Scholar
  6. †.
    This follows easily from the theorems in T. Radó: Über das Flächenmaß rektifizierbarer Flächen. Math. Ann. Vol. 100 (1928) pp. 445–479 §2.MathSciNetMATHCrossRefGoogle Scholar
  7. 3.
    Solution of the problem of Plateau. Trans. Amer. Math. Soc. Vol. 33 (1931) pp. 318–321. See also the abstract, Existence of a surface etc. Bull. Amer. Math. Soc. Vol. 36 (1930) pp. 796–797.Google Scholar
  8. 1.
    See J. Douglas: Solution of the problem of Plateau. Trans. Amer. Math. Soc. Vol. 33 (1931) p. 265.CrossRefGoogle Scholar
  9. 2.
    J. Douglas: The mapping theorem of Koebe and the problem of Plateau. J. Math. Physics, Massachusetts Inst. Technol. Vol. 10 (1931) pp. 106–130.Google Scholar
  10. 1.
    J. Douglas: The least area property of the minimal surface determined by an arbitrary Jordan contour. Proc. Nat. Acad. Sci. U.S.A. Vol. 17 (1931) pp. 211–216.CrossRefGoogle Scholar
  11. 1.
    See the abstract: J. E. McShane: Parametrization of saddle-surfaces, with application to the problem of Plateau. Bull. Amer. Math. Soc. Vol. 38 (1932) pp. 810–811. The detailed presentation appears in the Trans. Amer. Math. Soc.Google Scholar
  12. 2.
    Sur le problème de Dirichlet. Rend Cire. mat. Palermo Vol. 24 (1907) pp. 371–402.Google Scholar
  13. 1.
    See for instance Pólya-Szegö: Aufgaben und Lehrsätze Vol. 1 p. 63 problem 127.Google Scholar
  14. 1.
    In the sense of I.8.Google Scholar
  15. 2.
    See IV.20.Google Scholar
  16. 1.
    Lebesgue: Sur le problème de Dirichlet. Rend. Cire. mat. Palermo Vol. 24 (1907) pp. 371–402.MATHCrossRefGoogle Scholar
  17. 1.
    Gesammelte Mathematische Abhandlungen Vol. 1 pp. 151–167 and pp. 224 to 269.Google Scholar
  18. 2.
    T. Radó: Contributions to the theory of minimal surfaces. Acta Litt. Sci. Szeged Vol. 6 (1932) pp. 1–20.Google Scholar
  19. 1.
    T. Radó: Contributions to the theory of minimal surfaces. Acta Litt. Sci. Szeged Vol. 6 (1932) pp. 1–20.Google Scholar
  20. 2.
    T. Radó: The problem of the least area and the problem of Plateau. Math. Z. Vol. 32 (1930) pp. 795–796. The theorem has been stated, without proof, byCrossRefGoogle Scholar
  21. 2a.
    S. Bernstein: Sur les équations du Calcul des Variations. Ann. Ecole norm. Vol.29 (1912) pp. 431–485. See in particular pp. 484–485.MATHGoogle Scholar
  22. 3.
    McShane: On a certain inequality of Steiner. Ann. of Math. Vol. 33 (1932) pp. 123–138.CrossRefGoogle Scholar
  23. 1.
    McShane: On a certain inequality of Steiner. Ann. of Math. Vol. 33 (1932) pp. 123–138.Google Scholar
  24. 2.
    The existence theorem of IV.16 is not sufficiently general for the present application, on account of the three-point condition.Google Scholar
  25. 1.
    J. Douglas announced [see J. Douglas: Solution of the problem of Plateau. Trans. Amer. Math. Soc. Vol. 33 (1931) p. 264] that his methods are adequate for the solution of the most general problem (any number of boundary curves, minimal surface of any prescribed topological type).Google Scholar
  26. 2.
    J. Douglas considers the n-dimensional problem (in the sense explained in V.19) and points out that the value of n does not make any difference. We restrict ourselves therefore to the case n = 3.Google Scholar
  27. 3.
    The problem of Plateau for two contours. J. Math. Physics, Massachusetts Inst. Technol. Vol. 10 (1931) pp. 315–359.Google Scholar
  28. 1.
    J. Douglas: One-sided minimal surfaces with a given boundary. Trans. Amer. Math. Soc. Vol. 34 (1932) pp. 731–756.MathSciNetCrossRefGoogle Scholar
  29. 2.
    J. Douglas considers the n-dimensional problem (in the sense explained in V.19) and points out that the value of n does not make any difference. We restrict ourselves therefore to the case n = 3.Google Scholar
  30. 1.
    One-sided minimal surfaces with a given boundary. Trans. Amer. Math. Soc. Vol. 34 (1932) pp. 733, 739, 753.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1933

Authors and Affiliations

  • Tibor Radó

There are no affiliations available

Personalised recommendations