Advertisement

Regulatory RNA pp 165-220 | Cite as

Areas of Research on Regulatory RNA and Functional RNA Motifs

  • Thomas Dandekar
  • Kishor Sharma
Part of the Biotechnology Intelligence Unit book series (BIOIU)

Abstract

The following subchapters present several areas where we consider the detection of new regulatory RNA and, concomitantly with this, new regulatory RNA motifs, to make impressive progress. Using the techniques and approaches discussed in the previous chapters the action and interactions of regulatory elements are revealed to be at the heart of the RNA function investigated. Of course, the selection of research areas is always a subjective selection and we apologize for other focus points we did not mention due to limitations of space and time.

Keywords

Hepatitis Delta Virus Splice Leader Small Nuclear RNAs XIST Gene Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neugebauer KM, Roth MB. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev 1997; 11: 1148–1159.PubMedCrossRefGoogle Scholar
  2. 2.
    Kelley RL, Kuroda MI. Equality for X chromosomes. Science 1995; 270, 1607–1610.PubMedCrossRefGoogle Scholar
  3. 3.
    Lykke-Andersen K. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. J Mol Biol 1994; 243: 846–855.PubMedCrossRefGoogle Scholar
  4. 4.
    Belfort M. Prokaryotic introns and inteins: a panoply of form and function. J Bacteriol 1995; 177: 3897–3903.PubMedGoogle Scholar
  5. 5.
    Konarska MM, Grabowski PJ, Padgett RA, Sharo PA. Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 1985; 313: 552–557.PubMedCrossRefGoogle Scholar
  6. 6.
    Moore MJ, Sharp PA. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 1993; 365: 364–368.PubMedCrossRefGoogle Scholar
  7. 7.
    Ruskin B, Krainer AR, Maniatis T, Green MR. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 1984; 38: 317–331.PubMedCrossRefGoogle Scholar
  8. 8.
    Moore MJ, Query CC, and Sharp PA. Splicing of precursors to mRNA by the spliceosome. In: The RNA World. Gesteland RF, Atkins JF, eds. Plainview, NY: Cold Spring Harbor Lab Press 1993: 303–357.Google Scholar
  9. 9.
    Madhani HD, Guthrie C. Dynamic RNA-RNA interactions in the spliceosome. Ann Rev Genet 1994; 28: 1–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Newman A. Small nuclear RNAs and pre-mRNA splicing. Curr Op Cell Biol 1994; 6: 360–367.PubMedCrossRefGoogle Scholar
  11. 11.
    Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA. Are snRNPs involved in splicing? Nature 1980; 283: 220–224.PubMedCrossRefGoogle Scholar
  12. 12.
    Rogers J, Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci USA 1980; 77: 1877–1879.PubMedCrossRefGoogle Scholar
  13. 13.
    Reich CI, VanHoy RW, Porter GL, Wise JA. Mutations at the 3’ splice site can be supressed by compensatory base changes in U1 snRNA in fission yeast. Cell 1992; 69: 1159–1169.PubMedCrossRefGoogle Scholar
  14. 14.
    Steitz JA. Splicing takes a holliday. Science 1992; 257: 888–889.PubMedCrossRefGoogle Scholar
  15. 15.
    Black DL, Chabot B, Steitz, JA. U2 as well as U1 small nuclear ribonucleoproteins are involved in pre-messenger RNA splicing. Cell 1985; 42: 737–750.PubMedCrossRefGoogle Scholar
  16. 16.
    Parker R, Siliciano PG, Guthrie C. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 1987; 49229–39.Google Scholar
  17. 17.
    Ares M, Igel AH. Lethal and temperature-sensitive mutations and their suppressors identify an essential structural element in U2 small nuclear RNA. Genes Dev 1990; 4: 2132–2145.PubMedCrossRefGoogle Scholar
  18. 18.
    Zavanelli MI, Ares M. Efficient association of U2 snRNPs with premRNA requires an essential U2 RNA structural element. Genes Dev 1991; 5: 2521–2533.PubMedCrossRefGoogle Scholar
  19. 19.
    Berglund JA, Chua K, Abovich N, Reed R, Rosbash. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 1997; 89: 781–787.PubMedCrossRefGoogle Scholar
  20. 20.
    Brow DA, Guthrie C. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 1988; 334: 213–218.PubMedCrossRefGoogle Scholar
  21. 21.
    Hashimoto C, Steitz JA. U4 and U6 RNAs coexist in a single small nuclear ribonucleoprotein particle. Nuc Acid Res 1984; 12: 3283–3293.CrossRefGoogle Scholar
  22. 22.
    Rinke J, Appel B, Digweed M, Luhrmann R. Localization of a basepaired interaction between small nuclear RNAs U4 and U6 in intact U4/U6 ribonucleoprotein particles by psoralen cross-linking. J Mol Biol 1985; 185: 721–731.PubMedCrossRefGoogle Scholar
  23. 23.
    Lamond AI, Konarska MM, Grabowski PJ, Sharp P. Spliceosome assembly involves the binding and release of U4 small nuclear ribonucleoprotein. Proc Natl Acad Sci 1988; 85: 411–415.PubMedCrossRefGoogle Scholar
  24. 24.
    Yean SL, Lin RJ. U4 small nuclear RNA disassociates from a yeast spliceosome and does not participate in the subsequent splicing reaction. Mol Cell Biol 1991; 11: 5571–5577.PubMedGoogle Scholar
  25. 25.
    Nilsen TW. RNA-RNA interactions in the spliceosome: Unravelling the ties that bind. Cell 1994; 78: 1–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Wassarmann DA, Steitz JA. Interactions of small nuclear RNAs with precursor messenger RNA during in vitro splicing. Science 1992; 257: 1918–1925.CrossRefGoogle Scholar
  27. 27.
    Konforti BB, Koziolkiewcz MF, Konarska MM. Disruption of base pairing the 5’ splice site and the 5’ end of U1 snRNA is required for spliceosome assembly. Cell 1993; 75: 863–873.PubMedCrossRefGoogle Scholar
  28. 28.
    Fabrizio P, Abelson J. Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 199o; 250: 404–409.Google Scholar
  29. 29.
    Madhani HD, Guthrie C. A novel basepairing interactiuon between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 1992; 71: 803–817.PubMedCrossRefGoogle Scholar
  30. 3o.
    McPheeters DS, Abelson J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell 1992; 71: 819–831.PubMedCrossRefGoogle Scholar
  31. 31.
    Newmann A, Norman C. U5 snRNAs interacts with exon sequences at 5’ and 3’ splice sites. Cell 1992; 68: 743–754.CrossRefGoogle Scholar
  32. 32.
    Sontheimer EJ, Steitz JA. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 1993; 262: 1989–1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Hall SL, Padgett RA. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J Mol Biol 1994; 239:357-.Google Scholar
  34. 34.
    Mount SM. AT-AC introns: An ATtACk on dogma. Science 1996; 271: 1690–1692.PubMedCrossRefGoogle Scholar
  35. 35.
    Kreivi J-P, Lamond AI. RNA splicing: Unexpected spliceosome diversity. Curr Biol 1996; 6: 802–805.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu Q, Krainer AR. Ui-mediated exon definition interactions between AT-AC and GT-AG introns. Science 1996; 274: 1005–1008.PubMedCrossRefGoogle Scholar
  37. 37.
    Hall SL, Padgett RA. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 1996; 271: 1716–1718.PubMedCrossRefGoogle Scholar
  38. 38.
    Tarn W-Y, Steitz JA. A novel spliceosome containing U11, U12 and U5 snRNPs excises a monor class (AT-AC) intron in vitro. Cell 1996; 84: 801–811.PubMedCrossRefGoogle Scholar
  39. 39.
    Madhani HD, Bordonné R, Guthrie C. Mutliple roles for U6 snRNA in the splicing pathway. Genes Dev 1990; 4: 2264–2277.PubMedCrossRefGoogle Scholar
  40. 40.
    Nilsen TW. A parallel spliceosome. Science 1996; 273: 1813.PubMedCrossRefGoogle Scholar
  41. 41.
    Yu Y-T, Steitz JA. Site-specific crosslinking of mammalian Un and U6atac to the 5’ splice site of an AT-AC intron. Proc Natl Acad Sci USA 1997; 94: 6030–6035.PubMedCrossRefGoogle Scholar
  42. 42.
    Dandekar T, Sibbald PR. Trans-splicing of pre-mRNA is predicted to occur in a wide range of organisms including vertebrates. Nucl Acids Res 1990; 18: 4719–4726.PubMedCrossRefGoogle Scholar
  43. 43.
    Bruzik JP, Maniatis T. Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature 1992; 360: 692–695.PubMedCrossRefGoogle Scholar
  44. 44.
    Nilsen TW. Trans-splicing: an update. Mol Biochem Parasitol. 1995; 73: 1–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Bohnen L. Trans-splicing of pre-mRNA in plants, animals and protists. FASEB J 1993; 7: 40–46.Google Scholar
  46. 46.
    Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 1991; 65: 135–143.PubMedCrossRefGoogle Scholar
  47. 47.
    Chapdelaine Y, Bohnen L. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 1991; 65: 465–472.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacquier A. Selfsplicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem Sci 1990; 15: 351–354.PubMedCrossRefGoogle Scholar
  49. 49.
    Jacquier A, Jacquesson-Breuleux N. Splice site selection and the role of the lariat in a group II intron. J Mol Biol 1991; 219: 415–428.PubMedCrossRefGoogle Scholar
  50. 50.
    Guthrie C. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 1991; 253: 157–163.PubMedCrossRefGoogle Scholar
  51. 51.
    Sharp PA. Trans splicing: variations on a familiar theme? Cell 1987; 50: 147–148.PubMedCrossRefGoogle Scholar
  52. 52.
    Bruzik JP, Steitz JA. Spliced leader RNA sequences can substitute for the essential 5’ end of U1 RNA during splicing in a mammalian in vitro system. Cell 1990; 62: 889–899.PubMedCrossRefGoogle Scholar
  53. 53.
    Krause M, Hirsch D. A Trans-spliced leader sequence on actin mRNA in C. elegans. Cell 1987; 49: 753–761.PubMedCrossRefGoogle Scholar
  54. 54.
    Ferguson KC, Heid PJ, Rothman JH. The SLi trans-spliced leader RNA performs an essential embryological function in Caenorhabditis elegans that can also be supplied by SL2 RNA. Genes Dev 1996; 10: 1543–1556.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas JD, Conrad RC, Blumenthalt T. The C.elegans trans-spliced leader RNA is bound to Sm and has a trimethylguanosine cap. Cell 1988; 54: 533–539.PubMedCrossRefGoogle Scholar
  56. 56.
    Bektesh S, Van Doren K, Hirsch D. Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. Genes Dev 1988; 2: 1277–1283.PubMedCrossRefGoogle Scholar
  57. 57.
    Conrad R, Thomas J, Spieth J, Blumenthal T. Insertion of part of an intron into the 5’ untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene. Mol Cell Biol 1991; 11: 1921–1926.PubMedGoogle Scholar
  58. 58.
    Kuwabara PE, Okkema PG, Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Cell Biol 1992; 3: 461–473.Google Scholar
  59. 59.
    Bruzik JP, Maniatis T. Enhancer-dependent interaction between 5’ and 3’ splice sites in trans. Proc Natl Acad Sci 1995; 92: 7056–7059.PubMedCrossRefGoogle Scholar
  60. 60.
    Shimizu A. Molecular mechanisms for immunoglobulin Glas switching and IgE production. Nippon Rinsho 1996; 54: 440–445.PubMedGoogle Scholar
  61. 61.
    Shimizu A, Honjo T. Synthesis and regulation of trans-mRNA encoding the immunoglobulin epsilon heavy chain. FASEB J 1993; 7: 149–154.PubMedGoogle Scholar
  62. 62.
    Eul J, Graessmann M, Graesmann A. Trans-splicing and alternativetandem-cis-splicing: two ways by which mammalian cells generate a truncated SV40 T-antigen. Nucleic Acids Res 1996; 24: 1653–1661.PubMedCrossRefGoogle Scholar
  63. 63.
    Stuart K. RNA editing in mitochondrial mRNA of trypanosomatids. Trends Bioch Sci 1991; 16: 68–72.CrossRefGoogle Scholar
  64. 64.
    Stuart K. The RNA editing process in Trypanosoma brucei. Sem Cell Biol 1993; 4: 251–260.CrossRefGoogle Scholar
  65. 65.
    Hajduk SL, Harris M, Pollard V. RNA editing in protozoan mitochondria. FASEB J 1993; 7: 54–63.PubMedGoogle Scholar
  66. 66.
    Hodges P, Scott J. Apolipoprotein B mRNA editing: a new tier for the control of gene expression. Trends Biochem Sci 1992; 17: 77–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Smith HC. Apolipoprotein B mRNA editing: the sequence to the event. Sem Cell Biol 1993; 4: 267–278.CrossRefGoogle Scholar
  68. 68.
    Gualberto JM, lamattina L, Bonnard G, Weil JH, Grienenberger JM. RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 1989; 341: 660–662.PubMedCrossRefGoogle Scholar
  69. 69.
    Covello PS, Gray MW. RNA sequence and the nature of the CuAbinding site in cytochrome c oxidase. FEBS Lett 1990; 268: 5–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Maier RM, Hoch B, Zeltz P, Kössel H. Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 1992; 4: 609–616.PubMedCrossRefGoogle Scholar
  71. 71.
    Kudla J, Igloi GL, Metzlaff M, Hagemann R, Kössel H. RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon. EMBO J 1992; 11, 1099–1103.PubMedGoogle Scholar
  72. 72.
    Bass B. Physarum-C the difference. Nature 1991; 349: 370–371.PubMedCrossRefGoogle Scholar
  73. 73.
    Mahendran R, Spottswood MR, Miller DL. RNA editing by cytidine insertion in mitochondria of Physarum polycephalum. Nature 1991; 349: 434–438.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller D, Mahendran R, Spottswood M, Costandy H, Wang S, Ling ML, Yang N. Insertional editing in mitochondria of Physarum. sem Cell Biol 1993; 4: 261–266.CrossRefGoogle Scholar
  75. 75.
    Luo G, Chao M, Hsieh SY, Sureau C, Nishikura K, Taylor J. A specific base transition occurs on replicating hepatitis delta virus RNA. J Virol 1990; 64:021–1027.Google Scholar
  76. 76.
    Zheng H, Fu TB, Lazinski D, and Taylor J. Editing on the genomic RNA of human hepatitis delta virus. j Virol 1992; 66: 4693–4697.Google Scholar
  77. 77.
    Casey JL, Bergmann KF, Brown TL, Gerin JL. Structural requirements for editing in hepatitis d virus: evidence for a uridine-to-cytidine editing mechanism. Proc Natl Acad Sci USA 1992; 89: 7149–7153.PubMedCrossRefGoogle Scholar
  78. 78.
    Vanchiere JA, Bellini WJ, Moyer SA. Hypermutation of the phosphoprotein and altered mRNA editing in the hamster neurotrophic strain of measles virus. Virology 1995; 207: 555–561.PubMedCrossRefGoogle Scholar
  79. 79.
    Scott J. Messenger RNA editing and modification. Curr Opin Cell Biol 1989; 1: 1141–1147.PubMedCrossRefGoogle Scholar
  80. 80.
    Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 1987; 50: 831–840.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen S-H, Habib G, Yang C-Y, Gu Z-W, Lee BR, Weng S-A, Silbermann SR, Cai S-J, Deslypere JP, Rosseneu M, Gotto Jr AM, Li W-H, Chan L. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 1987; 238: 363–366.PubMedCrossRefGoogle Scholar
  82. 82.
    Boström K, Garcia Z, Poksay KS, Johnson DF, Lusis AJ, Innerarity TL. Apolipoprotein B mRNA editing. Direct determination of the edited base and occurrence in non-apolipoprotein B-producing cell lines. J Biol Chem 1990; 265: 22446–22452.PubMedGoogle Scholar
  83. 83.
    Baum CL, Teng BB, Davidson NO. Apolipoprotein B messenger RNA editing in the rat liver. Modulation by fasting and refeeding a high carbohydrate diet. J Biol Chem 1990; 265: 19263–19270.PubMedGoogle Scholar
  84. 84.
    Davidson NO, Powell LM, Wallis SC, Scott J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J Biol Chem 1988; 263: 13482–13485.PubMedGoogle Scholar
  85. 85.
    Navaratnam N, Patel D, Shah RR, Greeve JC, Powell LM, Knott TJ, Scott J. An additional editing site is present in apolipoprotein B mRNA. Nucl Acids Res 1991; 19: 1741–1744.PubMedCrossRefGoogle Scholar
  86. 86.
    Brown and Goldstein. Teaching old dogmas new tricks. Nature 1987; 330: 113–114.CrossRefGoogle Scholar
  87. 87.
    Shah RR, Knott TJ, Legros JE, Navaratnam N, Greeve JC, Scott J. Sequence requirements for the editing of apolipoprotein B mRNA. J Biol Chem 1991; 266: 6301–16304.Google Scholar
  88. 88.
    Yamanaka S, Poksay KS, Arnold KS, Innerarity TL. A novel repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 1997; 11: 321–333.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim U, Nishikura K. Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor. Sem Cell Biol 1993; 4: 285–293.CrossRefGoogle Scholar
  90. 90.
    Bass BL. An I for editing. Curr Biol 1995; 5598–600.Google Scholar
  91. 91.
    Basillo C, Wahba AJ, Lengyel P, Speyer JF, Ochoa S. Synthetic poly-nucleotides and amino acid code. Proc Natl Acad Sci USA 1962; 48: 613–616.CrossRefGoogle Scholar
  92. 92.
    Herb A, Higuchi M, Sprengel R, Seeburg PH. Q/R site editing in kainate receptor G1uR5 and G1uR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 93: 1875–1880.Google Scholar
  93. 93.
    Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH. RNA editing of AMPA receptor subunit G1uR-B: a basepaired intron-exon structure determines position and efficiency. Cell 1993; 75: 1361–1370.PubMedCrossRefGoogle Scholar
  94. 94.
    Egebjerg J, Kakekov V, Heinemann SF. Intron sequence directs RNA editing of the glutamate receptor subunit G1uR2 coding sequence. Proc Natl Acad Sci USA 1994; 91: 10270–10274.PubMedCrossRefGoogle Scholar
  95. 95.
    Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JRP, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg P. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 1994; 266: 1709–1713.PubMedCrossRefGoogle Scholar
  96. 96.
    Schmid B, Read LK, Stuart K, Goringer HU. Experimental verification of the secondary structures of guide RNA-pre-mRNA chimeric molecules in Trypanosoma brucei. Eur J Biochem 1996; 240: 721–731.PubMedCrossRefGoogle Scholar
  97. 97.
    Benne R. RNA editing: is there a message? Trends Genet 1990; 6: 177–181.PubMedCrossRefGoogle Scholar
  98. 98.
    Simpson L, Shaw J. RNA editing and the mitochondrial cryptogenes of kinetoplastid protozoa. Cell 1989; 57: 355–366.PubMedCrossRefGoogle Scholar
  99. 99.
    Bhat GJ, Koslowsky DJ, Feagin JE, Smiley BL, Stuart K. An extensively edited mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. Cell 1990; 61: 885 894.Google Scholar
  100. 100.
    Koslowsky DJ, Bhat GJ, Perollaz AL, Feagin JE, Stuart K. The MURF3 gene of T. brucei contains multiple domains of extensive editing and is homologous to a subunit of NADH dehydrogenase. Cell 1990; 62: 901–911.PubMedCrossRefGoogle Scholar
  101. 101.
    Blum B, Sturm NR, Simpson AM, Simpson L. Chimeric gRNA-mRNA molecules with oligo(U) tails covalently linked at sites of RNA editing suggest that U addition occurs by transesterification. Cell 1991; 65: 543–550.PubMedCrossRefGoogle Scholar
  102. 102.
    Sturm NR, and Simpson L. Kinetoplastid DNA minicircles encode guide RNAs for the editing of cytochrome oxidase subunit III mRNA. Cell 1990; 61: 879–884.PubMedCrossRefGoogle Scholar
  103. 103.
    Feagin JE, Stuart JM. Developmental aspects of uridine addition within mitochondrial transcripts of Trypanosoma brucei. Mol Cell Biol 1988; 8: 259–1265.Google Scholar
  104. 104.
    Feagin JE, Jasmer DP, Stuart K. Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell 1987; 49: 337–345.PubMedCrossRefGoogle Scholar
  105. 105.
    Miller D, Mahendran R, Spottswood M, Costandy H, Wang S, Ling ML, Yang N. Insertional editing in mitochondria of Physarum. Sem Cell Biol 1993; 4: 261–266.CrossRefGoogle Scholar
  106. 106.
    Gray MW, Covello PS. RNA editing in plant mitochondria and chloroplasts. FASEB J 1993; 7: 64–71.PubMedGoogle Scholar
  107. 107.
    Schuster W, Hiesel R, Brennicke A. RNA editing in plant mitochondria. sem Cell Biol 1993; 4279–284.Google Scholar
  108. 108.
    Hoch B, Maier RM, Appel K, Igloi GL, and Kössel H. Editing of a chloroplast mRNA by creation of an initation codon. Nature 1991; 353:178–180.Google Scholar
  109. 109.
    Kudla J, Igloi GL, Metzlaff M, Hagemann R, Kössel H. RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon. EMBO J 1992; 11: 1099–1103.PubMedGoogle Scholar
  110. 110.
    Covello PS, Gray MW. RNA sequence and the nature of the CuAbinding site in cytochrome c oxidase. FEBS Lett 1990; 268: 5–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Gray MW, Hanic-Joyce PJ, Covello PS. Transcription, processing and editing in plant mitochondria. Annu Rev Plant Phys Mol Biol 1992; 43: 145–175.CrossRefGoogle Scholar
  112. 112.
    Wissinger B, Schuster W, Brennicke A. Trans splicing in Oenothera mitochondria: nadi mRNAs are edited in exon and trans-splicing group II intron sequences. Cell 1991; 65: 473–482.PubMedCrossRefGoogle Scholar
  113. 113.
    Knoop V, Schuster W, Wissinger B, Brennicke A. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J 1991; 10: 3483–3493.PubMedGoogle Scholar
  114. 114.
    Binder S, Marchfelder A, Brennicke A, Wissinger B. RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria. J Biol Chem 1992; 267: 7615–7623.PubMedGoogle Scholar
  115. 115.
    Nugent JM, Palmer JD. RNA-mediated transfer of the gene coxll from the mitochondrion to the nucleus during flowering plant evolution. Cell 1991; 66: 473–481.PubMedCrossRefGoogle Scholar
  116. 116.
    Covello PS, Gray MW. Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J 1992; 11: 3815–3820.PubMedGoogle Scholar
  117. 117.
    Schuster W, Brennicke A. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J 1987; 6: 2857–2863.PubMedGoogle Scholar
  118. 118.
    Rizzetto M, Canese MG, Gerin JL, London WT, Sly DL, Purcell RH. Transmission of the hepatitis B virus-associated delta antigen to chimpanzees. J Infect Dis 198o; 141: 590–602.Google Scholar
  119. 119.
    Rizzetto M, Hoyer B, Canese MG, Shih JWK, Purcell RH, Gerin JL. d Agent: Association of d antigen with hepatitis B surface antigen and RNA in serum of d-infected chimpanzees. Proc Natl Acad Sci USA 1980; 77: 6124–6128.PubMedCrossRefGoogle Scholar
  120. 120.
    Bonino F, Heermann KH, Rizzetto M, Gerlich WH. Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope. J Virol 1986; 58: 945–950.PubMedGoogle Scholar
  121. 121.
    Bergmann KF, Gerin JL. Antigens of hepatitis delta virus in the liver and serum of humans and animals. J Infect Dis 1986; 154: 702–706.PubMedCrossRefGoogle Scholar
  122. 122.
    Glenn JS, White JM. trans-dominant inhibition of human hepatitis delta virus genome replication. J Virol 1991; 65: 2357–2361.PubMedGoogle Scholar
  123. 123.
    Chao M, Hsieh SY, Taylor J. Role of two forms of the hepatitis delta virus antigen: evidence for a mechanism of self-limiting genome replication. J Virol 1990; 64: 5066–5069.PubMedGoogle Scholar
  124. 124.
    Chang FL, Chen PJ, Tu SJ, Wang CJ, Chen DS. The large form of hepatitis d antigen is crucial for assembly of hepatitis d virus. Proc Natl Acad Sci USA 1991; 88: 8490–8494.PubMedCrossRefGoogle Scholar
  125. 125.
    Kuo MY, Chao M, Taylor J. Initiation of replication of the human hepatitis delta virus genome from cloned DNA: role of delta antigen. J Virol 1989; 63: 1945–1950.PubMedGoogle Scholar
  126. 126.
    Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH. RNA editing of AMPA receptor subunit GluR-B: a basepaired intron-exon structure determines position and efficiency. Cell 1993; 75: 361–1370.CrossRefGoogle Scholar
  127. 127.
    Kim U, Nishikura K. Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor. Sem Cell Biol 1993; 4: 285–293.CrossRefGoogle Scholar
  128. 128.
    Rueter SM, Burns CM, Coode SA, Mookherjee P, Emeson RB. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 1995; 267: 1491–1494.PubMedCrossRefGoogle Scholar
  129. 129.
    Dabiri GA, Lai F, Drakas RA, Nishikura K. Editing of the G1uR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J 1996; 15: 34–45.PubMedGoogle Scholar
  130. 130.
    Polson AG, Bass BL, Casey JL. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 1996; 380: 454–456.PubMedCrossRefGoogle Scholar
  131. 131.
    Benne R. The long and short of it. Nature 1996; 380: 391–392.PubMedCrossRefGoogle Scholar
  132. 132.
    Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. A mammalian RNA editing enzyme. Nature 1996; 379: 460–464.PubMedCrossRefGoogle Scholar
  133. 133.
    Polson AG, Bass BL. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 1994; 13: 5701–5711.PubMedGoogle Scholar
  134. 134.
    Bachellerie JP, Michot B, Nicoloso M et al. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends in Bioch Sci 1995; 20: 261–4.CrossRefGoogle Scholar
  135. 135.
    Kiss-Lâszló Z, Henry Y, Bachellereie J-P, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell 1996; 85: 1077–1088.Google Scholar
  136. 136.
    Nicoloso M, Qu LH, Michot B, Bachellerie J-P. Intron-encoded, antisens small nucleolar RNAs:THe characterization of nine novel species points to their direct role as guides for the 2T-0-ribose methylation of rRNAs. J Mol Biol 1996; 260: 178–195.PubMedCrossRefGoogle Scholar
  137. 137.
    Ganot P, Bortolin M-L, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 1997; 89: 799–809.PubMedCrossRefGoogle Scholar
  138. 138.
    Morrisey JP, Tollervey D. Birth of the snoRNPs-the evolution of RNase MRP and the eukaryotic pre-rRNA procesing sytem. Trends Biochem Sci 1995; 20: 78–82.CrossRefGoogle Scholar
  139. 139.
    Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem 1997; 66: 679–716.PubMedCrossRefGoogle Scholar
  140. 140.
    Lohse PA, Szostak JW. Ribozyme-catalyzed amino-acid transfer reactions. Nature 1996; 381: 442–444.PubMedCrossRefGoogle Scholar
  141. 141.
    Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. Progr Nucl Acid Res Mol Bio 1994; 49: 197–239.CrossRefGoogle Scholar
  142. 142.
    Klootwijk J, Planta RJ. Isolation and characterization of yeast ribosomal RNA precursors and preribosomes. Meth Enz 1989; 180: 96–109.CrossRefGoogle Scholar
  143. 143.
    Venema J, Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 1995; 11: 1629–1650.PubMedCrossRefGoogle Scholar
  144. 144.
    Hughes JMX, Ares MJ. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5’ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J 1991; 10: 4231–4239.PubMedGoogle Scholar
  145. 145.
    Udem SA, Warner JR. Ribosomal RNA synthesis in Saccharomyces cerevisiae. J Biol Chem 1972; 248: 1412–1416.Google Scholar
  146. 146.
    Veldman GM, Brand RC, Klootwijk J, Planta RJ. Some characteristics of processing sites in ribosomal precursor RNA of yeast. Nucl Acid Res 1980; 8: 2907–2920.CrossRefGoogle Scholar
  147. 147.
    Henry Y, Wood H, Morrisey JP, Petfalski E, Kearsey S, Tollervey D. The 5’ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 1994; 13: 2452–2463.PubMedGoogle Scholar
  148. 148.
    Li HV, ZagorskiJ, Fournier MJ. Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10: 1145–1152.PubMedGoogle Scholar
  149. 149.
    Morrisey JP, Tollervey D. Yeast snR3o is a small nucleolar RNA required for 18S rRNA synthesis. Mol Cell Biol 1993; 13: 2469–2477.Google Scholar
  150. 150.
    Tollervey D, Lehtonen, Carmo-Fonseca M, Hurt EC. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J 1991; 10: 573–583.PubMedGoogle Scholar
  151. 151.
    Girard JP, Lehtonen H, Caizergues-Ferrer M, Amalric F, Tollervey D, Lapeyre B. GAR]. is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J 1992; 11: 673–682.PubMedGoogle Scholar
  152. 152.
    Jansen R, Tollervey D, Hurt EC. A U3 snoRNP protein with homology to splicing factor PRP4 and Gb domains is required for ribosomal RNA processing. EMBO J 1993; 12: 2549–2558.PubMedGoogle Scholar
  153. 153.
    Beltrame M, Henry Y, Tollervey D. Mutational analysis of an essential binding site for the U3 snoRNA in the 5’ external transcribed spacer of yeast pre-rRNA. Nucl Acid Res 1994; 22: 5139–5147.CrossRefGoogle Scholar
  154. 154.
    Beltrame M, Tollervey D. Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J 1995; 14: 4350–4356.PubMedGoogle Scholar
  155. 155.
    Beltrame M, Tollervey D. Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J 1992; 11: 1531–1542.PubMedGoogle Scholar
  156. 156.
    Hughes-JM. Functional basepairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol 1996; 259 (4): 645–654.PubMedCrossRefGoogle Scholar
  157. 157.
    Venema j, Henry Y, Tollervey D. Two distinct recognition signals define the site of endonucleolytic cleavage at the 5’ end of yeast 18S rRNA. EMBO J 1995; 14: 4883–4892.Google Scholar
  158. 158.
    Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Op Biol 1997; 9: 337–342.CrossRefGoogle Scholar
  159. 159.
    Dandekar T, Tollervey D. Identification and functional analysis of a novel yeast small nucleolar RNA. Nucleic Acids Research 1993; 21: 5386–5390.PubMedCrossRefGoogle Scholar
  160. 160.
    Ni J, Tien A, Fournier M. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997; 89: 565–573.PubMedCrossRefGoogle Scholar
  161. 161.
    Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 1996; 86: 823–834.PubMedCrossRefGoogle Scholar
  162. 162.
    Tycowski KT, Smith CM, Shu M-D, Steitz JA. A small nucleolar RNA required for site-specific ribose methylation of rRNA in Xenopus. Proc Natl Acad Sci USA 1996; 93: 14480–14485.PubMedCrossRefGoogle Scholar
  163. 163.
    Cavaillé J, Nicoloso M, Bachellerie J-P. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 1996; 383: 732–735.PubMedCrossRefGoogle Scholar
  164. 164.
    Bachellerie J-P, Cavaillé J. Guiding ribose methylation of rRNA. Trends Bloch Sci 1997; 22: 257–261.CrossRefGoogle Scholar
  165. 165.
    Cavaillé J, Nicoloso M, Bachellerie J-P. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 1996; 383: 732–735.PubMedCrossRefGoogle Scholar
  166. 166.
    Seraphin B. How many intronic RNAs. Trend Biochem Sci 1993; 18: 330–331.PubMedCrossRefGoogle Scholar
  167. 167.
    Maden BEH. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acids Res 1990; 39: 241–303.CrossRefGoogle Scholar
  168. 168.
    Bosquet-Antonelli C, Henry Y, Gélugne JP, Caizergues-Ferrer M, Kiss T. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J 1997; (in press).Google Scholar
  169. 169.
    Parker R, Simmons T, Shuster EO, Siliciano PG, Guthrie C. Genetic analysis of small nuclear RNAs in Saccharomyces cerevisiae: viable sextuple mutant. Mol Cell Biol 1988; 8: 3150–3159.PubMedGoogle Scholar
  170. 170.
    Görlich D and Mattaj IW. Protein kinesis-Nucleocytopiasmic transport. Science 1996; 271: 1513–1518.PubMedCrossRefGoogle Scholar
  171. 171.
    Wickens M, Anderson P, Jackson RJ. Life and death in the cytoplasm: messages from the 3’ end. Curr Op Genetics Del, 1997; 7: 220–232.CrossRefGoogle Scholar
  172. 172.
    Dandekar T, Stripecke R, Gray NK, Goosen B, Constable A, Johansson HE, Hentze MW. Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. EMBO J 1991; 10: 1903–1909.PubMedGoogle Scholar
  173. 173.
    Dandekar T, Hentze MW. Finding the hairpin in the haystack: searching for RNA motifs. Trends in Genetics 1995; 11: 45–50.PubMedCrossRefGoogle Scholar
  174. 174.
    Gray NK, Costas P, Dandekar T, Ackrell BAC, Hentze MW. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc Natl Acad Sci USA 1996; 93: 4925–4930.PubMedCrossRefGoogle Scholar
  175. 175.
    Thanaraj TA, Argos P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci 1996; 5: 1973–1983.PubMedCrossRefGoogle Scholar
  176. 176.
    Brunak S, Engelbrecht J. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level. Proteins 1996; 25: 237–252.PubMedCrossRefGoogle Scholar
  177. 177.
    Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm-Genome 1996; 7: 563–574.PubMedCrossRefGoogle Scholar
  178. 178.
    Percudani R, Pavesi A, Ottonello S. Transfer RNA gene redundancy and translational selection in Saccharomyces cereviaise. J Mol Biol 1997; 268: 322–330.PubMedCrossRefGoogle Scholar
  179. 179.
    Soma A, Kumagai, Nishikawa K, Himeno H. The anticodon loop is a major determinant of Saccharomyces cerevisiae tRNA. J Mol Biol 1996; 263: 707–714.PubMedCrossRefGoogle Scholar
  180. 180.
    Himeno H, Yoshida S, Soma A, Nishikawa K. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNALeu in vitro. J Mol Biol 1997; 268: 704–711.PubMedCrossRefGoogle Scholar
  181. 181.
    Ruvolo V, Altszuler R, Levitt A. The transcript encoding the circumsporozoite antigen of plasmodium berghei utilizes heterogeneous polyadenylation sites. Mol Biochem Parasitol 1993; 57: 137–150.PubMedCrossRefGoogle Scholar
  182. 182.
    Hotz HR, Lorentz P, Fischer R, Krieger S, Clayton C. Role of 3’ UTRs in the regulation of hexose transporter mRNA in T.brucei. Mol Biochem Parasitol 1995; 75: 1–14.PubMedCrossRefGoogle Scholar
  183. 183.
    Tormay P, Sawers A, Böck A. Role of stoichometry between mRNA, translation factor Se1B and selenocysteyl-tRNA in selenoprotein synthesis. Mol Microbiol 1996; 21: 1253–1259.PubMedCrossRefGoogle Scholar
  184. 184.
    Lesoon A, Mehta A, Singh R, Chisolm GM, Driscoll DM. An RNA-binding protein recognizes a mammalian selenocysteine insertion sequence element required for cotranslational incorporation of selenocysteine. Mol Cell Biol 1997; 17: 1977–1985.PubMedGoogle Scholar
  185. 185.
    Beyer K, Dandekar T, Keller W. RNA-ligands selected by cleavage stimulation factor (CstF) contain distinct sequence motifs that function as downstream elements in 3’-end processing or pre-mRNA. J Biol Chem. 1997; 272: 26769–26779.PubMedCrossRefGoogle Scholar
  186. 186.
    Wickens M, Anderson P, Jackson RJ. Life and death in the cytoplasm: messages from the 3’ end. Curr Op Genetics Dev 1997; 7: 220–232.CrossRefGoogle Scholar
  187. 187.
    Keaveney MR, Flouriot G, Pope C, Gannon F. The 3° untranslated region of the human estrogen receptor gene post-transcriptionally reduces mRNA levels. Biochem Soc Trans. 1996; 24: 1075.Google Scholar
  188. 188.
    Sachs AB, Sarnow P, Matthias MW. Starting at the beginning, middle, and end: Translation initiation in eukaryotes. Cell 1997; 89: 831–838.PubMedCrossRefGoogle Scholar
  189. 189.
    Keller W. No end yet to messenger RNA 3’ processing. Cell 1995; 81: 829–832.PubMedCrossRefGoogle Scholar
  190. 190.
    Ahringer J, Kimble J. Control of the sperm-oocyte switch in Caenorrhabiditis elegans hermaphrodites by the fem-3 3’ untranslated region. Nature 1991; 349: 346–348.PubMedCrossRefGoogle Scholar
  191. 191.
    SenGupta DJ, Zhang B, Kraemer B,Pochart P,Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 1996; 93: 8496–8501.PubMedCrossRefGoogle Scholar
  192. 192.
    Ephrussi A, Lehmann R. Oskar induces germ cell formation. Nature 1992; 358: 387–392.PubMedCrossRefGoogle Scholar
  193. 193.
    Kim-Ha J, Smith JL, Macdonald PM. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 1991; 66: 23–35.PubMedCrossRefGoogle Scholar
  194. 194.
    Kim-Ha J, Webster PJ, Smith JL, Macdonald PM. Multiple RNA regulatory elements mediate distinct steps in the localization of oskar mRNA. Development 1993; 119: 169–178.PubMedGoogle Scholar
  195. 195.
    Pokrywka NJ, Stephenson EC. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev Biol 1995; 167: 363–370.PubMedCrossRefGoogle Scholar
  196. 196.
    Serano TL, Cohen RS. A small predicted stem-loop structure mediates oocyte localization of Drosophila Kto mRNA. Development 1995; 121: 3809–3818.PubMedGoogle Scholar
  197. 197.
    Erdélyi M, Michon A-M, Guichet A, Bogucka-Glotzer J, Ephrussi A. A requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 1995; 377: 524–527.PubMedCrossRefGoogle Scholar
  198. 198.
    Markussen FH, Michon AM, Breitwieser W, Ephrussi A. Translational contorl of oskar generates short OSK, the isoform that induces polar granule assembly. Development 1995; 121: 3723–3732.PubMedGoogle Scholar
  199. 199.
    Kim-Ha J, Kerr K, Macdonald PM. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 1995; 81: 403–412.PubMedCrossRefGoogle Scholar
  200. 200.
    Ferrandon D, Elphick L, Nusslein-Volhard C, St Johnston D. Staufen protein associates with the 3’ UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 1994; 79: 1221–1232.PubMedCrossRefGoogle Scholar
  201. 201.
    Veyrune JL, Campbell GP, Wiseman J, Blachard JM, Hesketh JE. A localisation signal in the 3’ untranslated region of c-myc mRNA targets c-myc mRNA and beta-globin reporter sequences to the peri-nuclear cytoplasm and cytoskeletal-bound polysomes. J Cell Sci 1996; 109: 1185–1194.PubMedGoogle Scholar
  202. 202.
    Kufel J, Kirsebom LA. Residues in Escherichia coli RNAse P RNA important for cleavage site selection and divalent metal ion binding. J Mol Biol 1996; 263: 685–698.PubMedCrossRefGoogle Scholar
  203. 203.
    Warnecke JM, Furtse JP, Hardt WD, Erdmann VA, Hartmann RK. Ribonuclease P (RNaseP) RNA is converted to a Cd++-ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNAse P cleavage site. Proc Natl Acad Sci USA 1996; 93: 8924–8928.PubMedCrossRefGoogle Scholar
  204. 204.
    Costa M, Dème E, Jacquier A, Michel F. Multiple tertiary interactions involving domain II of group II selfsplicing introns. J Mol Biol 1997; 267: 520–536.PubMedCrossRefGoogle Scholar
  205. 205.
    Cullen BR, Malim MH. The HIV-1 Rev protein: prototype of a novel class of eukaryotic post-transcriptional regulators. TIBS 1991; 16: 346–350.Google Scholar
  206. 206.
    Dandekar T, Koch G. DNA and mRNA sequence of the immune protective DNA ligase I gene match the rev response element of HIV. DNA Sequence-the Journal of DNA sequencing and mapping 1996; 6: 119–121.PubMedGoogle Scholar
  207. 207.
    Hemmings-Mieszczak M, Steger G, Hohn T. Alternative structrues of the cauliflower mosaic virus 35S RNA leader: implication for viral expression and replication. J Mol Biol 1997; 267: 1075–1088.PubMedCrossRefGoogle Scholar
  208. 208.
    Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem 1995 Mar 15; 228(3): 531–550.Google Scholar
  209. 209.
    Ribes V, Römisch K, Giner A, Dobberstein B, Tollervey D. E.coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 1990; 63: 591–600.PubMedCrossRefGoogle Scholar
  210. 210.
    Luo Y, Kurz J, MacAfee N, Krause MO. C-myc deregulation during transformation induction: involvement of 7SK RNA. J Cell Biochem 1997; 64: 313–327.PubMedCrossRefGoogle Scholar
  211. 211.
    Barr ML, Bertram EG. A chromosomal remnant involved in X chromosome inactivation. Nature 1949; 163: 676–677.PubMedCrossRefGoogle Scholar
  212. 212.
    Hendrich BD, Willard HF. Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum Mol Genet 1995; 4: 1765–1777.PubMedGoogle Scholar
  213. 213.
    Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for XIST in X chromosome inactivation. Nature 1996; 379: 131–137.PubMedCrossRefGoogle Scholar
  214. 214.
    Clemson CM, McNeil JA, Willard H, Lawerence JB. XIST paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 1996; 132: 1–17.CrossRefGoogle Scholar
  215. 215.
    Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X-inactivation centre is expressed exclusively from the inactive X chromosome. Nature 1991; 349: 38–44.PubMedCrossRefGoogle Scholar
  216. 216.
    Lyon MF. Pinpointing the center. Nature 1996; 379: 116–117.PubMedCrossRefGoogle Scholar
  217. 217.
    Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawerence J, Willard H. The human XIST gene: Analysis of a 17kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992; 71: 527–542.PubMedCrossRefGoogle Scholar
  218. 218.
    Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S. The product of the mouse XIST gene is a 15 kb inactive X-specific transcript containing no conserved ORF and is located in the nucleus. Cell 1992; 71: 515–526.PubMedCrossRefGoogle Scholar
  219. 219.
    Rastan S, Brown SDM. The search for the mouse X chromosome inactivation centre. Genet Res 1990; 56: 99–106.PubMedCrossRefGoogle Scholar
  220. 220.
    Lee JT, Strauss WM, Dausman JA, Jaenisch R. A 45o kb transgene displays properties of the mammalian X-inactivation center. Cell 1996; 86: 83–94.PubMedCrossRefGoogle Scholar
  221. 221.
    Rastan S. Non-random X chromosome inactivation in mouse X-autosome translocation embryos: location of the inactivation centre. Embryol Exp Morphol 1983; 78: 1–22.Google Scholar
  222. 222.
    Willard HF, Salz HK. Remodelling chromatin with RNA. Nature 1997; 386: 228–229.PubMedCrossRefGoogle Scholar
  223. 223.
    Herzing LBK, Romer JT, Horn JM, Ashworth A. Xist has properties of the X chromosome inactivation center. Nature 1997; 386: 272–279.PubMedCrossRefGoogle Scholar
  224. 224.
    Lee JT, Jaenisch R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 1997; 386: 275–279.PubMedCrossRefGoogle Scholar
  225. 225.
    Lee JT, Strauss WM, Dausman JA, Jaenisch R. A 45o kb transgene displays properties of the mammalian X-inactivation center. Cell 1996; 86: 83–94.PubMedCrossRefGoogle Scholar
  226. 226.
    Kuroda MI, Palmer MJ, Lucchesi JC. X chromosome dosage compensation in Drosophila. Sem Dev Biol 1993; 4: 107–116.CrossRefGoogle Scholar
  227. 227.
    Kelley RL, Kuroda MI. Equality for X chromosomes. Science 1995; 270, 1607–1610.PubMedCrossRefGoogle Scholar
  228. 228.
    Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL. roxi RNA paints the X chromosome of male drosophila and is regulated by the dosage compensation system. Cell 1997; 88:445–457.Google Scholar
  229. 229.
    Amrein H, Axel R. Genes expressed in neurons of adult male drosophila. Cell 1997; 88:459–469.Google Scholar
  230. 230.
    Nicoll M, Akerib CC, Meyer BJ. X chromosome-counting mechanisms that determine nematode sex. Nature 1997; 388: 200–204.PubMedCrossRefGoogle Scholar
  231. 231.
    Akerib CC, Meyer BJ. Identification of X chromosome regions in Caenorhabditis elegans that contain sex-determination signal elements. Genetics 1994; 138: 1105–1125.PubMedGoogle Scholar
  232. 232.
    Pachnis V, Belayew A, Tilghman S. Locus unlinked to a-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 1984; 81: 5523–27.PubMedCrossRefGoogle Scholar
  233. 233.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol 1990; 10: 28–36.PubMedGoogle Scholar
  234. 234.
    Brunkow M, Tilghman SM. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 1990; 5: 1092–1101.CrossRefGoogle Scholar
  235. 235.
    Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991; 351: 153–155.PubMedCrossRefGoogle Scholar
  236. 236.
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–365.PubMedCrossRefGoogle Scholar
  237. 237.
    Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA. Parentalorigin-specific epigenetic modification of the mouse H19 gene. Nature 1993; 362: 751–755.PubMedCrossRefGoogle Scholar
  238. 238.
    Bartolomei MS, Webber AL, Brunkow ME, Tilghman, SM. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 1993; 7: 1663–1673.PubMedCrossRefGoogle Scholar
  239. 239.
    Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, Cedar H. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 1993; 12: 3669–3677.PubMedGoogle Scholar
  240. 240.
    Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 1993; 73: 61–71.PubMedCrossRefGoogle Scholar
  241. 241.
    Sasaki H, Jones PA, Chaillet JR, Ferguson-Smith AC, Barton S, Reik W, Surani A. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev 1992; 6: 1843–1856.PubMedCrossRefGoogle Scholar
  242. 242.
    Eden S, Cedar H. Action at a distance. Nature 1995; 375: 16–17.PubMedCrossRefGoogle Scholar
  243. 243.
    Wevrick A, Kerns JA, Francke U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet 1994; 3: 1877–1882.PubMedCrossRefGoogle Scholar
  244. 244.
    Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet 1994; 8: 52–58.PubMedCrossRefGoogle Scholar
  245. 245.
    Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls R, Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet 1995; 9: 395–400.PubMedCrossRefGoogle Scholar
  246. 246.
    Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767.PubMedCrossRefGoogle Scholar
  247. 247.
    Ambros V, Moss EG. Heterochronic genes and the temporal control of C. elegans development. Trends Genet 1994; 10: 123–127.PubMedCrossRefGoogle Scholar
  248. 248.
    Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984; 226: 409–416.PubMedCrossRefGoogle Scholar
  249. 249.
    Ruvkun G, Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 1989; 338: 313–319.PubMedCrossRefGoogle Scholar
  250. 250.
    Wightmann B, Ha I, Ruvkun G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855–862.CrossRefGoogle Scholar
  251. 251.
    Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G. Negative regulatory sequences in the lin-14 3’ -untranslated regions are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 1991; 5: 1813–1824.PubMedCrossRefGoogle Scholar
  252. 252.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.PubMedCrossRefGoogle Scholar
  253. 253.
    Ha I, Wightman B, Ruvkun G. A bulged lin-411ín-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 1996; 10: 3041–3050.PubMedCrossRefGoogle Scholar
  254. 254.
    Wickens M, Takayama K. Deviants-or emissaries. Nature 1994; 367: 17–18.PubMedCrossRefGoogle Scholar
  255. 255.
    Moss EG, Lee RC, Ambros V. The cold shock domain proten lin-28 contols developmental timing in C. elegans and is regulated by the lin -4 RNA. Cell 1997; 88: 637–646.PubMedCrossRefGoogle Scholar
  256. 256.
    Gesteland RF, Atkins JF, eds. The RNA World. Plainview, NY: Cold Spring Harbor Lab Press 1993: 303–357.Google Scholar
  257. 257.
    Greider CW, Blackburn EH. Identification of a specific telomer terminal transferase activity in Tetrahymena extracts. Cell 1985; 43. 405–413.PubMedCrossRefGoogle Scholar
  258. 258.
    Greider CW, Blackburn EH. The telomer terminal trasnferase of tetranhymena is a ribonucleoprotein enzymewith two kinds of primer specificity. Cell 1987; 51: 887–898.PubMedCrossRefGoogle Scholar
  259. 259.
    Blackburn EH. Telomerase. In: Gesteland RW, Atkins JF, eds. The RNA World. Plainview, NY: Cold Spring Harbor Lab Press 1993: 557–576.Google Scholar
  260. 260.
    Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat syntheis. Nature 1989; 337: 331–337.PubMedCrossRefGoogle Scholar
  261. 261.
    Blackburn EH, Greider CW. Telomers. Plainview, NY: Cold Spring Harbor Lab Press, 1995.Google Scholar
  262. 262.
    Blackburn EH, Gall JG. J Mol Bio 1978; 120:33-.Google Scholar
  263. 263.
    McEachern M, Blackburn EH. Proc Natl Acad Sci USA 1994; 91: 3453–3457.PubMedCrossRefGoogle Scholar
  264. 264.
    Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch K, West MD, Bacchetti S, Hirte HW, Counter CM, Greider CW, Wright WE, Shay JM. Cold Spring Harbor Symp Quant Biol 1995; 59: 307–315.CrossRefGoogle Scholar
  265. 265.
    Kim NA, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay, JW. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.PubMedCrossRefGoogle Scholar
  266. 266.
    de Lange T. Activation of telomerase in a human tumor. Proc Natl Acad Sci USA 1994; 91: 2882–2885.PubMedCrossRefGoogle Scholar
  267. 267.
    Singer MS, Gottschling DE. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 1994; 266: 404–409.PubMedCrossRefGoogle Scholar
  268. 268.
    Feng J, Funk W, Wang S, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp R, Yu S, Le S, West D, Harley CB, Andrews WH, Greider CW, Villeponteau B. The RNA component of human telomerase. Science 1995; 269: 1236–1241.PubMedCrossRefGoogle Scholar
  269. 269.
    Nakamura TM et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 955–959.PubMedCrossRefGoogle Scholar
  270. 270.
    Zakian VA. Telomers: Beginning to understand the end. Science 1995; 270: 1601–1607.PubMedCrossRefGoogle Scholar
  271. 271.
    Van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385: 740–743.PubMedCrossRefGoogle Scholar
  272. 272.
    Cooper JP, Nimmo ER, Allshire RC, Cech T. Regulation of telomere length and function by a myb-domain protein in fission yeast. Nature 1997; 385: 744–747.PubMedCrossRefGoogle Scholar
  273. 273.
    Marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science 1997; 275: 986–990.PubMedCrossRefGoogle Scholar
  274. 274.
    Wagner EGH, Simons RW. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 1994; 48: 713–742.PubMedCrossRefGoogle Scholar
  275. 275.
    Andersen J, Delihas N, Ikenaka K, Gren PJ, Pines O, Ilercil O, Inouye M. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucl Acids Res 1987; 15: 2089–2101.PubMedCrossRefGoogle Scholar
  276. 276.
    Misra R, Reeves PR. Role of micF in the to1C-mediated regulation of OmpF, a major outer membrane protein of Escherichia coli K-12. J Bacteriol 1987; 169: 4722–4730.PubMedGoogle Scholar
  277. 277.
    Cohen SP, McMurray LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170: 5416–5422.PubMedGoogle Scholar
  278. 278.
    Andersen J, Forst SA, Zhao KJ, Inouye M, Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem 1989; 264: 17961–17970.PubMedGoogle Scholar
  279. 279.
    Chou JH, Greenberg JT, Demple B. Post-transcriptional repression of Escherichia coli OmpF protein in response to redox stress: postive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175: 1026–1031.PubMedGoogle Scholar
  280. 280.
    Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz GA. Small, stable RNA induced by oxidative stress:Role as a pleiotropic regulator and antimutator. Cell 1997; 90: 43–53.PubMedCrossRefGoogle Scholar
  281. 281.
    McCormick-Graham M, Romero DP. Ciliate telomerase RNA structural features. Nucl Acids Res 1995; 23: 1091–1097.PubMedCrossRefGoogle Scholar
  282. 282.
    Autexier C, Greider CW. Telomerase and cancer: revisiting the telomer hypothesis. Trends Biochem Sci 1996; 21: 387–391.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and R.G. Landes Company Georgetown, TX, U.S.A. 1998

Authors and Affiliations

  • Thomas Dandekar
    • 1
  • Kishor Sharma
    • 1
  1. 1.European MolecularBiology LaboratoryHeidelbergGermany

Personalised recommendations