Skip to main content

Grundlagen der MRT und MRS

  • Chapter
Magnetresonanztomographie

Zusammenfassung

In diesem Kapitel werden neben den physikalischen Grundlagen der MRT und der MRS (Kap. 2.2–2.4) die technischen Komponenten des Geräts (Kap. 2.5), die biologischen Wirkungen der verwendeten elektrischen und magnetischen Felder (Kap. 2.6) und die Grundlagen der Kontrastmittel und ihrer Anwendung (Kap. 2.7) vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Becker ED (1980) High resolution NMR. Academic Press, New York

    Google Scholar 

  2. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11/4:425–448

    Article  PubMed  CAS  Google Scholar 

  3. Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific & Technical, Harlow

    Google Scholar 

Weiterführende Literatur

  • Abragam A (1986) Principles of nuclear magnetism. Oxford University Press, London

    Google Scholar 

  • Becker ED (1980) High resolution NMR. Academic Press, New York

    Google Scholar 

  • Fribolin H (1988) Ein- und zweidimensionale NMR-Spektro-skopie. VCH, Weinheim

    Google Scholar 

  • Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Hauser KH, Kalbitzer KR (1989) NMR für Mediziner und Biologen. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Rinck PA, Petersen SB, Muller RN (Hrsg) (1985) Magnetre-sonanz-Imaging and -Spektroskopie in der Medizin. Thieme, Stuttgart

    Google Scholar 

  • Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

Literatur

  1. Hauser KH, Kalbitzer HR (1989) NMR für Mediziner und iologen. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  2. Lufkin RB (ed) (1990) The MRI manual. Year Book Medical, Chicago

    Google Scholar 

  3. Morneburg H (Hrsg) (1995) Bildgebende Systeme für die medizinische Diagnostik. Publicis MCD, Erlangen

    Google Scholar 

  4. Morris PG (1986) Nuclear magnetic resonance imaging in medicine and biology. Claredon, Oxford

    Google Scholar 

  5. Rinck PA, Petersen SB, Muller RN (Hrsg) (1985) Magnet-resonanz-Imaging und -Spektroskopie in der Medizin. Thieme, Stuttgart

    Google Scholar 

Literatur

  1. Bottomley PA, Hardy CJ, Argersinger RE et al. (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys 14/1:1–37

    Article  PubMed  CAS  Google Scholar 

  2. Brix G, Schad LR, Lorenz WJ (1990) Evaluation of proton density by magnetic resonance imaging: phantom experiments and analysis of multiple component proton transverse relaxation. Phys Med Biol 35:53–66

    Article  PubMed  CAS  Google Scholar 

  3. Bruder H, Fischer H, Graumann R, Deimling M (1988) A new steady-state sequence for simultaneous acquisition of two MR images with clearly different contrast. Magn Reson Med 7:35

    Article  PubMed  CAS  Google Scholar 

  4. Feinberg DA, Hale JD, Watts JC et al. (1986) Halving MR imaging time by conjugation: demonstration at 3,5 kG. Radiology 161:527–531

    PubMed  CAS  Google Scholar 

  5. Frahm J, Haase A, Hänicke W, Matthaei D, Bomsdorf H, Helzel T (1985) Chemical shift selective MR imaging using a whole-body magnet. Radiology 156:441–444

    PubMed  CAS  Google Scholar 

  6. Haacke EM, Wielopolski PA, Tkach JA (1991) A comprehensive technical review of short TR, fast, magnetic resonance imaging. Rev Magn Res Med 3/2:53

    Google Scholar 

  7. Haase A (1990) Snapshot FLASH MRI. Application to T 1, T 2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Article  PubMed  CAS  Google Scholar 

  8. Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H-NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30:341–344

    Article  PubMed  CAS  Google Scholar 

  9. Haase A, Frahm J, Matthaei D et al. (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266

    Article  CAS  Google Scholar 

  10. Haase A, Matthaei W, Bartkowski R, Duhmke E, Leib-fritz D (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036

    Article  PubMed  CAS  Google Scholar 

  11. Henning J, Nauerth A, Friedburg H (1986) RARE-ima-ging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  Google Scholar 

  12. Higer HP, Bielke G (1986) Gewebecharakterisierung mit T 1, T 2 und Protonendichte: Traum und Wirklichkeit. ROFO 144/5:597–605

    Article  PubMed  CAS  Google Scholar 

  13. Kiefer B, Grässner J, Hausmann R (1994) Image acquisition in a second with half Fourier acquired single shot turbo spin echo. JMRI 4:86

    Google Scholar 

  14. Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373 (s. auch: Patentschrift, DE 2755956 C2 vom 15.12.1977, Bundespatentamt, Deutschland)

    Google Scholar 

  15. Mansfield P, Mosley AA, Baines T (1976) Fast scan proton density imaging by NMR. J Phys E 9:271–278

    Article  Google Scholar 

  16. Margosian P, Schmitt F, Purdy D (1986) Faster MR imaging: imaging with half the data. Health Care Instrum 1:195

    Google Scholar 

  17. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Res Med 15:152

    Article  Google Scholar 

  18. Mulkern RV, Wong STS, Winalski C, Jolesz FA (1990) Magn Reson Imag 8: 557

    Article  CAS  Google Scholar 

  19. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, Schajor W (1986) FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica 54:15–18

    Google Scholar 

  20. Oshio K, Feinberg DA (1991) Magn Reson Med 20:344

    Article  PubMed  CAS  Google Scholar 

  21. Pfannenstiel P, Just M, Higer HP et al. (1987) Erste klinische Ergebnisse der Gewebecharakterisierung durch T 1, T 2 und Protonendichte bei der Kernspintomographie. ROFO 146/5:591–596

    Article  PubMed  CAS  Google Scholar 

  22. Wolff S, Balaban R (1989) Magnetization transfer via cross relaxation. Magn Reson Med 10:135–144

    Article  PubMed  CAS  Google Scholar 

  23. Zur Y, Stokar S, Bendel P (1988) An analysis of fast imaging sequences with steady-state transverse magnetization refocusing. Magn Reson Med 6:175–193

    Article  PubMed  CAS  Google Scholar 

Weiterführende Literatur

  • Edelmann RR, Hesselink JR (eds) (1990) Clinical magnetic resonance imaging. Saunders, Philadelphia

    Google Scholar 

  • Morneburg H (Hrsg) Bildgebende Systeme für die medizinische Diagnostik. Publicis MCD, Erlangen

    Google Scholar 

  • Parikh AM (1991) Magnetic resonance imaging techniques. Elsevier, New York

    Google Scholar 

  • Vlaardingerbroek MT, den Boer JA (1996) Magnetic resonance imaging. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Wehrli FW (1990) Fast-scan magnetic resonance: Principles and Applications. Raven, New York

    Google Scholar 

Literatur

  1. Abart J, Eberhardt K, Fischer H et al. (1996) Impact of rapidly switched gradients magnetic fields on nerves in EPI, eingereicht bei JCAT; s. auch Proceedings of the Society of Magnetic Resonance, 3rd Scientific Meeting, S. 1221 (1995)

    Google Scholar 

  2. Adair ER, Berglund LG (1986) On the thermoregulatory consequences of NMR imaging. Magn Reson Imaging 4:312–333

    Article  Google Scholar 

  3. Basset CAL, Pawluk RJ, Pilla AA (1974) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184:575

    Article  Google Scholar 

  4. Bernhardt JH (1985) Evaluation of human exposures to low frequency field. The impact of proposed frequency radiation standards on military operations. Advisory Group for Aerospace Research & Development (NATO) (ed) Lecture fer 138. Surseine (France)

    Google Scholar 

  5. Bottomley PA, Redington RW, Edelstein WA, Schenck JF (1980) Estimating radiofrequency power deposition in body NMR imaging. Magn Reson Med 2:336–349

    Article  Google Scholar 

  6. Bourland JD, Nyenhuis JA, Mouchawar GA, Geddes LA (1990) Human peripheral nerve stimulation from z-gra-dients. Society of Magnetic Resonance in Medicine, 9th Annual Meeting, Book of Abstracts, p 1157

    Google Scholar 

  7. Bourland JD, Nyenhuis JA, Mouchawar GA, Geddes LA, Schaefer DJ, Riehl ME (1991) Z-gradient coil eddy-current stimulation of skeletal and cardiac muscle in the dog. Society of Magnetic Resonance in Medicine, 10th Annual Meeting, Book of Abstracts, p 969

    Google Scholar 

  8. Brown MA, Carden JA, Coleman RE, McKinney R, Spi-cer LD (1987) Magnetic field effects on surgical ligation clips. Magn Reson Imaging 5:443–453

    Article  PubMed  CAS  Google Scholar 

  9. Budinger TF (1988) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comp Assist Tomogr 5/6 167:800–811

    Google Scholar 

  10. Budinger TF, Fischer H, Hentschel D, Reinfelder HE, Schmitt F (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15:909–914

    Article  PubMed  CAS  Google Scholar 

  11. Bundesamt für Strahlenschutz (1995) Empfehlungen zur Vermeidung gesundheitlicher Risiken bei Anwendung magnetischer Resonanzverfahren in der medizinischen Diagnostik.

    Google Scholar 

  12. Cohen MS, Weisskoff R, Kantor H (1989) Evidence of peripheral stimulation by time-varying magnetic fields. Radiological Society of North America, 75th Annual Meeting, Scientific Program 1189

    Google Scholar 

  13. Cohen MS, Weisskoff RM, Rzedzian RR, Kantor ML (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14:409–414

    Article  PubMed  CAS  Google Scholar 

  14. Davis PL, Crooks L, Arakawa M, McRee R, Kauman L, Margulis AR (1981) Potential hazards in NMR imaging: heating effects of changing magnetic fields and RF fields on small metallic implants. AJR 137:857–860

    PubMed  CAS  Google Scholar 

  15. Ecochard J, Maret G (1987) Magnetic-field-induced skin-temperature changes of animals originate from modified air convection. Naturwissenschaften 74:39

    Article  PubMed  CAS  Google Scholar 

  16. FDA Safety Parameter Action Levels. Ann NY Acad Sci 649:399–400

    Google Scholar 

  17. Fischer H (1989) Physiological effects by fast oscillating magnetic field gradients. Radiological Society of North America, 75th Annual Meeting, Scientific Program 1188

    Google Scholar 

  18. Autorizzazione alla installazione ed uso di apparecchia-ture diagnostiche a risonanza magnetica (1991). Gazet-ta ufficiale, della Republica Italiana [Suppl] 194 (20.08.1991)

    Google Scholar 

  19. Hauert F (1989) Orientierung von Chromosomen im statischen Magnetfeld. Diplomarbeit, Fakultät für Physik Universität Heidelberg

    Google Scholar 

  20. Hentschel D, Budinger TF, Fischer H, Lewin JS, Schmitt F, Reinfelder H-E (1990) Stimulation of nerves and muscles by fast oscillating magnetic field gradients. Books of abstracts. ECNMR MB, Straßburg, p 347

    Google Scholar 

  21. Hong C-Z, Shellock FG (1990) Short-term exposure to a 1,5 Tesla static magnetic field does not affect somato-sensory-evoked potentials in man. Magn Reson Imaging 8:65–69

    Article  PubMed  CAS  Google Scholar 

  22. International Electric Committee (IEC) 601–2-33 (1995) Standard medical electrical equipment. Part 2: Particular requirements for the safety of magnetic resonance systems for medical diagnosis. Bureau Central de la Commission Electrotechnique International, Genève

    Google Scholar 

  23. International Non-Ionizing Radiation Committee of the International Radiation Protection Association (IRPA/ INIRC) (1991) Protection of the patient undergoing a magnetic resonance examination. Health Physics 61:923–928

    Google Scholar 

  24. Irnich W (1993) Electrostimulation by time-varying magnetic fields, MAGMA 2:43–49

    Article  Google Scholar 

  25. Klitzing L von (1984) Statische 0,35 Tesla-Magnetfelder beeinflussen die akustisch evozierten Potentiale beim Menschen. Naturwissenschaften 71.538

    Article  Google Scholar 

  26. Lapicque L (1909) Definition expérimentale de l’excitabilité. Soc Biol 77:280–283

    Google Scholar 

  27. Lensi M (1940) Biologische Wirkungen magnetischer Felder. Strahlentherapie 67:219–250

    Google Scholar 

  28. Mansfield P, Harvey PR (1993) Limits of neural Stimulation in echo-planar imaging. MRM 29:746–758

    CAS  Google Scholar 

  29. Maret G, Ecochard J (1986) Skin temperatures of animals and thermal convection of air under magnetic fields. Physica Scripta T 13:169–171

    Article  Google Scholar 

  30. Maret G, von Schickfus M, Mayer A, Dransfeld K (1975) Orientation of nucleic acids in high magnetic fields. Phys Rev Lett 35:397–400

    Article  CAS  Google Scholar 

  31. McRobbie D, Foster MA (1985) Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging. Phys Med Biol 30:695–702

    Article  PubMed  CAS  Google Scholar 

  32. National Radiological Protection Board (NRPB) (1991) Limits on patient and volunteer exposure during clinical magnetic resonance diagnostic procedures. Documents of the NRPB, vol 2, p 17–21

    Google Scholar 

  33. New PFJ, Rosen BR, Brady TJ et al. (1983) Potential hazards and artifacts of ferromagnetic and non-ferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 147:139–148

    PubMed  CAS  Google Scholar 

  34. Norris DG (1985) Phase errors in NMR images. Society of Magnetic Resonance in Medicine, 4th Annual Meeting, Book of Abstracts, p 1037

    Google Scholar 

  35. Prasad N, Wright DA, Ford JJ, Thornby JI (1990) Safty of 4-t MR imaging: study of effects on developing frog embryos. Radiology 174:251–253

    PubMed  CAS  Google Scholar 

  36. Reilly JP (1992) Electrical stimulation and electropatho-logy. Cambridge University Press, Cambridge

    Google Scholar 

  37. Schaefer DJ, Bourland JD, Nyenhuis JA et al. (1994) Determination of gradient-induced, human peripheral nerve stimulation. Thresholds for trapezoidal pulse trains. Society of Magnetic Resonance, Proceedings of the 2nd Meeting, p 101

    Google Scholar 

  38. Shellock FG, Crues JV (1988) Corneal temperature changes induced by high-field strength MR imaging with a head coil. Radiology 167:809–811

    PubMed  CAS  Google Scholar 

  39. Shellock FG, Curtis JS (1991) MR imaging and biomedical implants materials, and devices: An updated review. Radiology 180:541–550

    PubMed  CAS  Google Scholar 

  40. Shellock FG, Rothman B, Sarti D (1990) Heating of the scrotum by high-field-strength MR imaging. AJR 154:1229–1232

    PubMed  CAS  Google Scholar 

  41. Shuman WP, Haynor DR, Guy AW, Wesbey GE, Schaefer DJ, Moss AA (1988) Superficial- and deep-tissue temperature increases in anesthetized dogs during exposure to high specific absorption rates in a 1.5-TMR imager. Radiology 167:551–554

    PubMed  CAS  Google Scholar 

  42. Silny J (1987) Zur Gefährdung der vitalen Funktion des Herzens im magnetischen 50-Hz-Feld. Medizinischtechnischer Bericht des Instituts zur Erforschung elektrischer Unfälle, Berufsgenossenschaft Feinmechanik und Elektrotechnik, Köln

    Google Scholar 

  43. Vogl T (1987) Experimental studies on the influence of in vivo MR imaging on evoked potentials in humans. Book of Abstracts. SMRM New York, p 57

    Google Scholar 

  44. Weikl A, Moshage W, Hentschel D, Schittenhelm R, Bachmann K (1989) EKG-Veränderungen durch Einwirkung von statischen Magnetfeldern bei der Kernspintomographie in Magneten der Feldstärke 0,5 bis 4,0 Tesla. Z Kardiol 78:578–586

    PubMed  CAS  Google Scholar 

  45. Weiss G (1901) Sur la possibilité de rendre comparable entre eux les appareils servant à l’excitation électrique. Arch Ital Biol 35:413–446

    Google Scholar 

  46. Weisskoff RM, Cohen MS, Rzedzian RR (1993) Nonaxial whole-body instant imaging. Magn Res Imag 28:769–803

    Google Scholar 

  47. Wendhausen H (1986) Magnetic field-induced blood flow changes in frogs and red-green vision of man after NMR-tomography. In: Maret G, Boccara N, Kiepenhauer J (eds) Biophysical effects of steady magnetic fields. Springer Berlin Heidelberg New York

    Google Scholar 

  48. Wikso JP, Barach JP (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Transact Biomed Eng 27/12:722

    Article  Google Scholar 

  49. Zimmermann B, Hentschel D (1987) Wirkung eines statischen Magnetfeldes (3,5 T) auf das Reproduktionsverhalten von Mäusen, aud die embryonale und fetale Entwicklung und auf ausgewählte hämatologische Parameter. Digit Bilddiagn 7:155–161

    CAS  Google Scholar 

Literatur

  1. Arvela P (1979) Toxicity of rare-earths. Prog Pharmacol 2:71–114

    Google Scholar 

  2. Claussen C, Kornmesser W, Laniado M, Kaminsky S, Hamm B, Felix R (1988) Orale Kontrastmittel für die magnetische Resonanztomographie des Abdomens. Teil III: Erste Patientenuntersuchungen mit Gd-DTPA. RÖFO 148:663–689

    Google Scholar 

  3. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading/MA

    Google Scholar 

  4. Hajek PC, Engel A, Kramer J, Imhof H (1988) MR arthrography: basics technique and preliminary results. Diagn Imaging Int [Suppl]:44–45

    Google Scholar 

  5. Hamm B, Staks T, Taupitz M et al. (1994) Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. JMRI 4:659–666

    Article  PubMed  CAS  Google Scholar 

  6. Hamm B, Staks T, Mühler A et al. (in press) Phase I clinical evaluation of Gd-EOB-DTPA as a new hepatobiliary MR contrast agent: safety, pharmacokinetics and MR imaging. Radiology

    Google Scholar 

  7. Haustein J, Laniado M, Niendorf HP et al. (1993) Triple-dose versus standard-dose gadopentale dimeglu-mine: a randomized study in 199 patients. Radiology 186:855–860

    PubMed  CAS  Google Scholar 

  8. Heywang-Köbrunner SH, Haustein J, Pohl C, Beck R, Lommatzsch B, Untch M, Nathrath BJ (1994) Contrast-enhanced MR imaging of the breast: comparison of two different doses of gadopentate dimeglumine. Radiology 191:639–646

    PubMed  Google Scholar 

  9. James TL (1975) NMR in biochemistry. Academic Press, New York

    Google Scholar 

  10. Kilgore DP, Greger RK, Daniels DL, Pojunas KW, Williams AL, Haughton VM (1987) Cranial tissues: normal MR appearance after intravenous injection of Gd-DTPA. Radiology 160:757–761

    Google Scholar 

  11. Kornmesser W, Laniado M, Hamm B et al. (1987) Orale Kontrastmittel für die magnetische Resonanztomographie des Abdomens. Teil II: Phase I der klinischen Prüfung von Gd-DTPA. RÖFO 147:550–556

    PubMed  CAS  Google Scholar 

  12. Laniado M, Niendorf HP, Schörner W, Felix R (1986) Spin echo and inversion recovery sequences for Gd-DTPA enhanced magnetic resonance imaging of intracranial tumors. Acta Radiol (Stockh) [Suppl] 369:469–471

    CAS  Google Scholar 

  13. Laniado M, Sander B, Schörner W, Kornmesser W, Deimling M, Felix R (1987) The impact of steady state imaging of Gd-DTPA-enhanced magnetic resonance imaging. Magn Reson Imaging 5:543–544

    Article  Google Scholar 

  14. Niendorf HP, Seifert W (1988) Serum iron and serum bilirubin after administration of Gd-DTPA-dimeglu-mine. A pharmacological study in healthy volunteers. Invest Radiol 23:275–276

    Article  Google Scholar 

  15. Niendorf HP, Laniado M, Semmler W, Schörner W, Felix R (1987) Dose administration of Gd-DTPA in MR imaging of intracranial tumors. AJNR 8:803–815

    PubMed  CAS  Google Scholar 

  16. Niendorf HP, Alhassan A, Geens VR, Clauß W (1994) Safety review of gadopentetate dimeglumine: extended clinical experience after more than five million applications. Invest Radiol 29 [Suppl]2:179–182

    Article  Google Scholar 

  17. Renshaw PF, Owen CS, McLaughlin AG, Frey TG, Leigh JH (1986) Ferromagnetic contrast agents: a new approach. Magn Reson Med 3:217–225

    Article  PubMed  CAS  Google Scholar 

  18. Rummeny E, Ehrenheim C, Gehl HB et al. (1991) Man-ganese-DPDP as a hepatobiliary contrast agent in the magnetic resonance imaging of liver tumors. Invest Radiol 26:142–145

    Google Scholar 

  19. Sage MR (1982) Blood-brain barrier: phenomenon of increasing importance to the imaging clinician. AJR 138:887–898

    PubMed  CAS  Google Scholar 

  20. Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferruci Jr JT (1987) Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162:211–216

    PubMed  CAS  Google Scholar 

  21. Saini S, Frankel RB, Stark DD, Ferruci JT (1988) Magnetism: a primer and review. AJR 150:735–743

    PubMed  CAS  Google Scholar 

  22. Schörner W, Laniado M, Niendorf HP, Schubert C, Felix R (1986) Time-dependent changes in image contrastin brain tumors after Gd-DTPA. AJNR 7:1013–1020

    PubMed  Google Scholar 

  23. Tweedle MF (1987) Pharmacokinetics and metabolism of Gd complexes in rats. Sixth annual meeting of the society of magnetic resonance in medicine, New York, vol 2 [Abstract]

    Google Scholar 

  24. Vogl Th J, Hammerstingl R, Pegios W et al. (1994) Wertigkeit des leberspezifischen superparamagnetischen Kontrastmittels AMI-25 für die Detektion und Differentialdiagnose lebereigener Tumoren versus Metastasen. Fortschr Röntgenstr 160:319–328

    Article  CAS  Google Scholar 

  25. Weinmann JH, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of Gd-DTPA complex: a potential NMR contrast agent. AJR 142:619–624

    PubMed  CAS  Google Scholar 

  26. Weinmann HJ, Laniado M, Mützel W (1985) Pharmaco-kinetis of Gd-DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    Google Scholar 

  27. Yuh WTC, Fisher DJ, Mayr-Yuh NA, Turgut Tali E, Nguyen HD, Gao F, Ehrhardt JC (1992) Review of the use of high-dose gadoteridol in the magnetic resonance evaluation of central nervous system tumors. Invest Radiol 27, 1 [Suppl]:39–44

    Article  Google Scholar 

  28. Yuh WTC, Fisher DJ, Runge VM et al. (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR 15:1037–1051

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Semmler, W. et al. (1997). Grundlagen der MRT und MRS. In: Reiser, M., Semmler, W. (eds) Magnetresonanztomographie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97962-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97962-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97963-7

  • Online ISBN: 978-3-642-97962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics