Funktionelle MRT (fMRT)

  • L. Schad
  • K. Baudendistel
  • F. Wenz

Zusammenfassung

Die Funktions- und Lokalisationsdiagnostik kortikaler Zentren spielt eine zentrale Rolle bei den meisten neurologischen bzw. neurochirurgischen Erkrankungen. Neben invasiven Methoden, wie der direkten intraoperativen Elektrostimulation, stehen verschiedene nichtinvasive Untersuchungsmethoden zur Verfügung. Hierbei unterscheidet man direkte von indirekten Methoden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Baddeley AD (1992) Working memory: the interface between memory and cognition. J. Cogn Neurosci 4:281–288CrossRefGoogle Scholar
  2. 2.
    Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedCrossRefGoogle Scholar
  3. 3.
    Bandettini PA, Jesmanovicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedCrossRefGoogle Scholar
  4. 4.
    Baudendistel K, Schad LR, Friedlinger M, Wenz F, Schröder J, Lorenz WJ (1995) Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager. Magn Reson Imaging 13/5:701–707PubMedCrossRefGoogle Scholar
  5. 5.
    Baudendistel K, Schad LR, Wenz F et al. (1996) Monitoring of task performance during functional magnetic resonance imaging of sensorimotor cortex at 1.5 T. Magn Reson Imaging 14/1:51–58PubMedCrossRefGoogle Scholar
  6. 6.
    Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Korrelation der Lokalisati-onsergebnisse der funktionellen Magnetresonanztomographie mit der Magnetenzephalographie. Radiologe 35:290–293PubMedGoogle Scholar
  7. 7.
    Bellemann ME, Spitzer M, Brix G, Kammer T, Loose R, Schwartz A, Gückel F (1995) Neurofunktionelle MR-Bildgebung höherer kognitiver Leistungen des menschlichen Gehirns. Radiologe 35:272–282PubMedGoogle Scholar
  8. 8.
    Belliveau JW, Kennedy DN, McKinstry RC et al. (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719PubMedCrossRefGoogle Scholar
  9. 9.
    Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Jesmanowicz A, Hyde JS (1995) Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52:593–601PubMedCrossRefGoogle Scholar
  10. 10.
    Binder JR, Swanson SJ, Hammeke TA et al. (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984PubMedGoogle Scholar
  11. 11.
    Blamire AM, Ogawa S, Ugurbil K et al. (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11069–11073PubMedCrossRefGoogle Scholar
  12. 12.
    Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10PubMedCrossRefGoogle Scholar
  13. 13.
    Brix G, Gückel F, Bellemann ME, Röther J, Schwartz A, Ostertag HJ, Lorenz WJ (1994) Functional MR mapping of activated cortical areas. J Nucl Med 33:200–205Google Scholar
  14. 14.
    Brüning R, Danek A (1995) Funktionelle Magnetresonanztomographie des visuellen Kortex. Radiologe 35:256–262PubMedGoogle Scholar
  15. 15.
    Bucher SF, Seelos KC, Stehling MK, Oertel WH, Reiser M (1995) Möglichkeiten der technischen und methodischen Optimierung der funktionellen Magnetresonanztomographie. Radiologe 35:228–236PubMedGoogle Scholar
  16. 16.
    Bucher SF, Seelos KC, Stehling M, Oertel WH, Paulus W, Reiser M (1995) High-resolution activation mapping of basal ganglia with functional magnetic resonance imaging. Neurology 45:180–182PubMedGoogle Scholar
  17. 17.
    Chen QS, Defrise M, Deconinck (1994) Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE-PAMI 16/12:1156–1168CrossRefGoogle Scholar
  18. 18.
    Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC (1994) Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapping 1:293–304CrossRefGoogle Scholar
  19. 19.
    Conelly A, Jachson GD, Frackowiak RS, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188:125–130Google Scholar
  20. 20.
    Constable RT, McCarthy G, Allison T, Anderson AW, Gore JC (1993) Functional brain imaging at 1.5 T using conventional gradient echo MR imaging techniques. Magn Reson Imaging 11:451–459PubMedCrossRefGoogle Scholar
  21. 21.
    Constable RT, Kennan RP, Puce A, McCarthy G, Gore JC (1994) Functional NMR using fast spin echo at 1.5 T. Magn Reson Med 31:686–690PubMedCrossRefGoogle Scholar
  22. 22.
    Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JD (1995) Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci 15/9:5870–5878PubMedGoogle Scholar
  23. 23.
    D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378/6554:279–281PubMedCrossRefGoogle Scholar
  24. 24.
    Dupont P, Orban GA, Vogels R et al. (1993) Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: a positron emission tomography study. Proc Natl Acad Sci USA 90:10927–10931PubMedCrossRefGoogle Scholar
  25. 25.
    Ebeling U, Schmid UD, Ying Z, Reulen HJ (1992) Safe surgery of lesions near the motor cortex using intraoperative mapping techniques: a report on 50 patients. Acta Neurochir (Wien) 119:23–28CrossRefGoogle Scholar
  26. 26.
    Edelman RR, Siewert B (1994) Signal targeting with alternating radiofrequency (STAR) sequences. Magn Reson Med 31:233PubMedCrossRefGoogle Scholar
  27. 27.
    Ellerman JM, Flament D, Kim SG, Fu QG, Merkle H, Ebner TJ, Ugurbil K (1994) Spatial patterns of functional activation of the cerebellum investigated using high field (4 T) MRI. NMR Biomed 7/1–2:63–68PubMedCrossRefGoogle Scholar
  28. 28.
    Fox PT, Raichle ME (1984) Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 51:1109–1120PubMedGoogle Scholar
  29. 29.
    Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144PubMedCrossRefGoogle Scholar
  30. 30.
    Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of the human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505PubMedCrossRefGoogle Scholar
  31. 31.
    Freund HJ (1990) Premotor area and preparation of movement. Rev Neurol (Paris) 146:534–547Google Scholar
  32. 32.
    Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699PubMedCrossRefGoogle Scholar
  33. 33.
    Friston KF, Jezzard P, Turner R (1994) The analysis of functional MRI time series. Hum Brain Mapping 1:153–171CrossRefGoogle Scholar
  34. 34.
    Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement-related effects of fMRI time-series. Magn Reson Med 35:346–355PubMedCrossRefGoogle Scholar
  35. 35.
    Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Re-son Med 5:323–345CrossRefGoogle Scholar
  36. 36.
    Grodd W, Schneider F, Klose U, Nägele T (1995) Funktionelle Kernspintomographie psychischer Funktionen am Beispiel experimentell induzierter Emotionen. Radiologe 35:283–289PubMedGoogle Scholar
  37. 37.
    Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses J Magn Reson 67:258–266CrossRefGoogle Scholar
  38. 38.
    Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291PubMedCrossRefGoogle Scholar
  39. 39.
    Halsey JH, Blauenstein UW, Wilson EM, Wills EH (1979) Regional cerebral blood flow comparison of right and left hand movement. Neurology 29:21–28PubMedGoogle Scholar
  40. 40.
    Hennig J, Naureth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833PubMedCrossRefGoogle Scholar
  41. 41.
    Hennig J, Speck O, Lönnecker Th, Janz C (1995) Grundlagen der funktionellen Magnetresonanztomographie. Radiologe 35:221–227PubMedGoogle Scholar
  42. 42.
    Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, Ugurbil K (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport 4:675–678PubMedCrossRefGoogle Scholar
  43. 43.
    Hu X, Kim SG (1994) Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med 3:495–503CrossRefGoogle Scholar
  44. 44.
    Ilmberger J (1995) Lokalisation kortikaler Funktionen durch elektrische Stimulation und funktionelle Magnetresonanztomographie. Radiologe 35:237–241PubMedGoogle Scholar
  45. 45.
    Jack CR, Thompson RM, Butts RK et al. (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190:85–92PubMedGoogle Scholar
  46. 46:.
    Jezzard P, Balaban RS (1995) Correction for geometric distortions in echo planar images from B0 field variations. Magn Reson Med 34:65–73PubMedCrossRefGoogle Scholar
  47. 47.
    Kami A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377/6545:155–158CrossRefGoogle Scholar
  48. 48.
    Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21PubMedCrossRefGoogle Scholar
  49. 49.
    Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617PubMedCrossRefGoogle Scholar
  50. 50.
    Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265/5174:949–941PubMedCrossRefGoogle Scholar
  51. 51.
    Kwong KK, Belliveau JW, Chesler DA et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  52. 52.
    Latchaw RE, Hu X, Ugurbil K, Hall WA, Madison MT, Heros RC (1995) Functional magnetic resonance imag-Google Scholar
  53. ing as a management tool for cerebral arteriovenous malformations. Neurosurgery 37/4:619–625Google Scholar
  54. 53.
    Majumdar S, Gore JC (1988) Studies of diffusion in random fields produced by variations in susceptibility. J Magn Reson 78:41–55CrossRefGoogle Scholar
  55. 54.
    Malach R, Reppas JB, Benson RR et al. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92/18:8135–8139PubMedCrossRefGoogle Scholar
  56. 55.
    McCarthy G, Blamire AM, Puce A et al. (1994) Functional magnetic resonance imaging of human prefrontal cortex activation during spatial working memory task. Proc Natl Acad Sci USA 91/18:8690–8694PubMedCrossRefGoogle Scholar
  57. 56.
    Mesualm MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613CrossRefGoogle Scholar
  58. 57.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  59. 58.
    Ogawa S, Lee TS, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 26:68–78CrossRefGoogle Scholar
  60. 59.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc Natl Acad Sci USA 89:5951–5955PubMedCrossRefGoogle Scholar
  61. 60.
    Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys Journ 64:803–812CrossRefGoogle Scholar
  62. 61.
    Petrides ME, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882PubMedCrossRefGoogle Scholar
  63. 62.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes: the art of scientific computing. Cambridge Univ Press, Cambridge, pp 465–469Google Scholar
  64. 63.
    Raichle ME (1989) Developing a functional anatomy of the human brain with positron emission tomography. Curr Neurol 9:161–178Google Scholar
  65. 64.
    Rao SM, Binder JR, Bandettini PA et al. (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318PubMedGoogle Scholar
  66. 65.
    Rao SM, Binder JR, Hammeke TA et al. (1995) Somato-topic mapping of the human primary motor cortex with functional magnetic resonance imaging: Neurology 45/5:919–924Google Scholar
  67. 66.
    Renshaw PF, Yurgelun-Todd DA, Cohen BM (1994) Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. Am J Psychiatry 151:1493–1495PubMedGoogle Scholar
  68. 67.
    Rueckert L, Appollonio I, Grafman J, Jezzard P, Johnson R Jr, LeBihan D, Turner R (1994) Magnetic resonance imaging functional activation of left frontal cortex during word production. J Neuroimaging 4/2:67–70PubMedGoogle Scholar
  69. 68.
    Sabbah P, Simond G, Levrier O et al. (1995) Functional magnetic resonance imaging at 1.5 T during sensorimotor and cognitive task. Eur Neurol 35/3:131–136PubMedCrossRefGoogle Scholar
  70. 69.
    Schad LR, Trost U, Knopp MV, Müller E, Lorenz WJ (1993) Motor cortex stimulation measured by magnetic resonance imaging on an standard 1.5 T clinical scanner. Magn Reson Imaging 11:461–464PubMedCrossRefGoogle Scholar
  71. 70.
    Schad LR, Wenz F, Knopp MV, Baudendistel K, Müller E, Lorenz WJ (1994) Functional 2D and 3D magnetic resonance imaging of motor cortex stimulation at high spatial resolution using standard 1.5 T imager. Magn Reson Imaging 12:9–15PubMedCrossRefGoogle Scholar
  72. 71.
    Schad LR, Bock M, Baudendistel K et al. (1996) Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging and functional MRI. Eur Radiol 6:38–45PubMedCrossRefGoogle Scholar
  73. 72.
    Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365:150–153PubMedCrossRefGoogle Scholar
  74. 73.
    Schröder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia: a study with functional magnetic resonance imaging. Br J Psychiatry 167/2:197–201PubMedCrossRefGoogle Scholar
  75. 74.
    Seelos KC, Bucher SF, Stehling MK, Oertel WH, Reiser M (1995) Funktionelle Magnetresonanztomographie der Basalganglien. Radiologe 35:263–266PubMedGoogle Scholar
  76. 75.
    Sereno MI, Dale AM, Reppas JB et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268/5212:889–893PubMedCrossRefGoogle Scholar
  77. 76.
    Snyder PJ, Novelly RA, Harris LJ (1990) Mixed speech dominance in the intracarotid sodium amytal procedure: validity and criteria issues. J Clin Exp Neuropsychol 12:629–643PubMedCrossRefGoogle Scholar
  78. 77.
    Thulborn KR, Waterton JC, Mathews PM, Radda G (1982) Oxygenation dependence of the transverse relaxation time of water in whole blood at high field. Biochim Biophys Acta 714:265–270PubMedCrossRefGoogle Scholar
  79. 78.
    Tootell RB, Reppas JB, Dale AM et al. (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Science 375/6527:106–107Google Scholar
  80. 79.
    Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279PubMedCrossRefGoogle Scholar
  81. 80.
    Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuro-imaging. Cerebrovasc Brain Metab Rev 7/3:240–276PubMedGoogle Scholar
  82. 81.
    Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 17:266–282CrossRefGoogle Scholar
  83. 82.
    Watson JD, Myers R, Frackowiak RS et al. (1993) Area V 5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3:79–94PubMedCrossRefGoogle Scholar
  84. 83.
    Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flömer F, Schröder J, van Kaick G (1994) Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 12:975–982PubMedCrossRefGoogle Scholar
  85. 84.
    Wenz F, Baudendistel K, Wildermuth S et al. (1995) Quantifizierung der hemisphärischen Asymmetrie bei Fingerbewegung mit der funktionellen Magnetresonanztomographie. Klin Neurorad 5:53–60Google Scholar
  86. 85.
    Wenz F, Baudendistel K, Knopp MV, Schad LR, Schröder J, Flömer F, van Kaick G (1995) Funktionelle Magnetresonanztomographie (fMRT) bei Bewegungsstörungen von Patienten mit Schizophrenie: Radiologe 35:267–271Google Scholar
  87. 86.
    Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992:620–633CrossRefGoogle Scholar
  88. 87.
    Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763PubMedCrossRefGoogle Scholar
  89. 88.
    Yousry TA, Schmid UD, Jassoy AG et al. (1995) Topography of the cortical motor hand area: prospective study with functional MRI and direct motor mapping at surgery. Radiology 195:23–29PubMedGoogle Scholar
  90. 89.
    Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF (1996) Functional magnetic resonance imaging of shizophrenic patients and comparison subjects during word production. Am J Psychiatry 153/2:200–205PubMedGoogle Scholar
  91. 90.
    Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11/3:641–649PubMedGoogle Scholar
  92. 91.
    Zihl J, von Cramon D, Mai N, Schmid C (1991) Disturbance of movement vision after bilateral brain damage. Further evidence and follow up observations. Brain 114:2235–2252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • L. Schad
  • K. Baudendistel
  • F. Wenz

There are no affiliations available

Personalised recommendations