Skip to main content

Abstract

In many applications one is measuring a variable that is both slowly varying and also corrupted by random noise. Then it is often desirable to apply a smoothing filter to the measured data in order to reconstruct the underlying smooth function. We may assume that the noise is independent of the observed variable. Furthermore we assume that the noise obeys a normal distribution with mean zero and standard deviation δ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. U. A. Bromba and H. Ziegler, Application Hints for Savitzky-Golay Digital Smoothing Filters, Analytical Chemistry, 53 (1981), pp. 1583–1586.

    Article  Google Scholar 

  2. J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, LINPACK Users’ Guide, SIAM Publications, Philadelphia, 1979.

    Book  Google Scholar 

  3. W. Gander, On the Linear Least Squares Problem with a Quadratic Constraint, Habilitationsschrift ETH Zürich, STAN-CS-78–697, Stanford University, 1978.

    Google Scholar 

  4. W. Gander, Least Squares with a Quadratic Constraint, Numer. Math., 36 (1981), pp. 291–307.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. H. Golub and C. F. Van Loan, Matrix Computations, Second Edition, The Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  6. C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–325.

    Article  MATH  Google Scholar 

  7. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  8. W. H. Press and S. A. Teukolsky, Savitzky-Golay Smoothing Filters, Computers in Physics, 4 (1990), pp. 669–672.

    Google Scholar 

  9. C. H. Reinsch, Smoothing by Spline Functions. II, Numer. Math., 16 (1971), pp. 451–454.

    Article  MathSciNet  Google Scholar 

  10. A. Savitzky and M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, 36 (1964), pp. 1627–1639.

    Article  Google Scholar 

  11. J. Steinier, Y. Termonia and J. Deltour, Comments on Smoothing and Differentiation of Data by Simplified Least Square Procedure, Analytical Chemistry, 44 (1972), pp. 1906–1909.

    Article  Google Scholar 

  12. U. von Matt, Large Constrained Quadratic Problems, Verlag der Fachvereine, Zürich, 1993.

    Google Scholar 

  13. H. Ziegler, Properties of Digital Smoothing Polynomial (DISPO) Filters, Applied Spectroscopy, 35 (1981), pp. 88–92.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gander, W., von Matt, U. (1997). Smoothing Filters. In: Solving Problems in Scientific Computing Using Maple and MATLAB®. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97953-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97953-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61793-8

  • Online ISBN: 978-3-642-97953-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics