Advertisement

Postaggressionsstoffwechsel

  • M. Semsroth

Zusammenfassung

Betrachtet man die einzelnen am Stoffwechsel direkt oder indirekt beteiligten Organe schematisch als in Serie geschaltete Systeme (Abb. 1), so wird ihre enge funktionelle Koppelung deutlich: Bei der Versorgung stehen die eigentlichen Stoffwechselvorgänge naturgemäß am Ende dieser Kette. Versorgungsorgane wie die Lunge oder das arterielle Kreislaufsystem (Transportsystem) sind den Stoffwechselvorgängen gewissermaßen vorgeschaltet. Dagegen stehen bei der Entsorgung die Stoffwechselvorgänge als globale Quelle am Anfang des Entsorgungsflusses. Aus dieser Sicht können Entsorgungsorgane wie Leber, Niere und Lunge als nachgeschaltete Organe betrachtet werden. Während somit die arterielle Seite durch die Substratkonzentration und den Blutfluß das Angebot an die Organe global kennzeichnet, spiegelt die venöse Seite als Resultante abgelaufener Stoffwechselvorgänge einerseits den Ausnutzungsgrad des Angebotes wider (so z.B. bei Sauerstoff und Glukose), andererseits aber auch die Substratproduktion, z.B. Kohlendioxid oder Laktat (Einzelheiten s. Kap. 21).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Askanazi J, Elwyn DH, Kinney JM et al. (1978) Muscle and plasma amino acids after injury: the role of inactivity. Ann Surg 188: 797–802PubMedCrossRefGoogle Scholar
  2. 2.
    Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. J Biol Chem 242: 3239–3241PubMedGoogle Scholar
  3. 3.
    Barton RN, Stoner HB, Watson SM (1984) Plasma Cortisol and ACTH in the severely injured. Arch Emerg Med 1:170Google Scholar
  4. 4.
    Bergström J, Boström H, Fürst P (1976) Preliminary studies of energy-rich Phosphagens in muscle from severely ill patients. Crit Care Med 4:197Google Scholar
  5. 5.
    Beutler B, Cerami AC (1987) Cachectin: more than a tumor necrosis factor. New Engl J Med 316: 379PubMedCrossRefGoogle Scholar
  6. 6.
    Birkhahn RH, Long CL, Fitkin D et al. (1980) Effects of major skeletal trauma on whole body protein turnover in man measured by (l14C)-leucine. Surgery 88: 294–300PubMedGoogle Scholar
  7. 7.
    Black PR, Brooks DC, Bessey PQ, Wolfe RR, Wilmore DW (1982) Mechanism of insulin resistance following injury. Ann Surg 196: 422–433CrossRefGoogle Scholar
  8. 8.
    Cahill GF (1970) Starvation in man. New Engl J Med 282: 668–675PubMedCrossRefGoogle Scholar
  9. 9.
    Carey LC, Cloutier CT, Lowery BD (1971) Growth hormone and adrenal cortical response to shock and trauma in the human. Ann Surg 174: 451–458PubMedCrossRefGoogle Scholar
  10. 10.
    Cerra FB (1983) A manual of sugical nutrition. Mosby, St. LouisGoogle Scholar
  11. 11.
    Cerra FB (1986) Nutrition in the critically ill: modern metabolic support in the intensive care unit. In: Chernow B, Shoemaker WC (eds) Critical care — state of the art. Society Crit Care Med 7:1–18Google Scholar
  12. 12.
    Clowes GH, Hirsch E, George BC et al. (1985) The significance of altered protein metabolism regulated by proteolysis inducing factor, the circulating cleavage product of interleukin-1. Ann Surg 202: 446–458PubMedCrossRefGoogle Scholar
  13. 13.
    Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6: 51–95PubMedCrossRefGoogle Scholar
  14. 14.
    Frayn KN (1986) Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol 24: 577–599CrossRefGoogle Scholar
  15. 15.
    Gelfand RA, DeFronzo RA, Jusberg R (1983) Metabolic alterations associated with major injury of infection. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel München Paris London New York, pp 211–239Google Scholar
  16. 16.
    Gore DC, Honeycutt D, Jahoor F, Wolfe RR, Herndon DN (1991) Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients. Arch Surg 126: 38–43PubMedCrossRefGoogle Scholar
  17. 17.
    Gottardis M, Nigitsch C, Schmutzhard E, Neumann M, Putensen C, Hackl JM, Koller W (1990) The secretion of human growth hormone stimulated by human growth hormone releasing factor following severe cranio-cerebral trauma. Intensive Care Med 16:163–166PubMedCrossRefGoogle Scholar
  18. 18.
    Grünert A (1980) Die Prozesse der Energiebereitstellung in physiologischen und pathologischen Zuständen des Organismus. Klin Ernährung 5:14–32Google Scholar
  19. 19.
    Hackl JM, Gottardis M, Wieser C, Rumpl E, Stadler C, Schwarz S, Monkayo R (1991) Endocrine abnormalities in severe traumatic brain injury — a cue to prognosis in severe cranio-cerebral trauma? Intensive Care Med 17: 25–29PubMedCrossRefGoogle Scholar
  20. 20.
    Hasseigren PO (1987) Prevention and treatment of ischemia of the liver. Surg Gynecol Obstet 164:187–196Google Scholar
  21. 21.
    Kahn CR (1978) Insulin resistance, insulin sensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 27:1893–1902PubMedCrossRefGoogle Scholar
  22. 22.
    Lang K (1979) Biochemie der Ernährung, 4. Aufl. Steinkopff, DarmstadtGoogle Scholar
  23. 23.
    Little RA, Stoner HB, Frayn KN (1981) Substrate oxidation shortly after accidental injury in man. Clin Sci 61: 789–791PubMedGoogle Scholar
  24. 24.
    Long CL (1977) Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 30: 301–310Google Scholar
  25. 25.
    Machiedo GW, Thelma H, Rush BF, Dikdom G, McGee J, Lysz T (1988) Temporal relationship of hepatocellular dysfunction and ischemia in sepsis. Arch Surg 123: 424–427PubMedCrossRefGoogle Scholar
  26. 26.
    Munro HN, Allison JB (eds) (1964-1970) Mammalian protein metabolism, vol 1-4. Academic Press, New YorkGoogle Scholar
  27. 27.
    Pearl RH, Clowes GHA, Hirsch EF et al. (1985) Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J Trauma 25: 777–783PubMedCrossRefGoogle Scholar
  28. 28.
    Powanda MC, Beisel WR (1982) Hypothesis: Leukocyte endogenous mediator/endogenous pyrogen/lymphocyte — activating factor modulates the development of nonspecific and specific immunity and affects nutritional status. Am J Clin Nutr 35: 762PubMedGoogle Scholar
  29. 29.
    Reinauer H (1987) Klinische Methoden zur Messung von Hormonen und Rezeptoren. In: Ahnefeld FW, Hartig W, Holm E, Kleinberger G (Hrsg) Klin Ernährung 29. Zuckschwerdt, München Bern Wien, S 118–130Google Scholar
  30. 30.
    Reynolds EOR, Wyatt JS, Azzopardi DT, Cady EB, Wray S (1988) New non-invasive methods for assessing brain oxygenation and haemodynamics. Br Med Bull 44: 1052–1075PubMedGoogle Scholar
  31. 31.
    Rosenblatt S, Clowes GHA, George BC et al. (1983) Exchange of amino acids by muscle and liver in sepsis. Arch Surg 118:167–175PubMedCrossRefGoogle Scholar
  32. 32.
    Roth E (1986) Veränderungen im Aminosäuren-und Proteinstoffwechsel bei chirurgischen Patienten. Klin Ernährung, Bd 26. Zuckschwerdt, München Bern Wien San FranciscoGoogle Scholar
  33. 33.
    Sayeed M (1982) Membrane Na+-K+transport and ancil-liary phenomena in circulatory shock. Crowly RA, Trump BF (eds) Pathophysiology of shock, anoxia and ischemia. Williams & Wilkins, Baltimore, pp 112–132Google Scholar
  34. 34.
    Seigier TR, Young LS, Manson JM et al. (1988) Metabolic effects of recombinant human growth hormone in patients receiving parenteral nutrition. Ann Surg 208: 6–16CrossRefGoogle Scholar
  35. 35.
    Semsroth M (1985) Indirekte Kalorimetrie bei beatmeten polytraumatisierten Patienten. Infusionstherapie 12: 213–237Google Scholar
  36. 36.
    Semsroth M, Zwölfer W, Plattner H (1990) Hypermeta-bolismus bei Intensivtherapiepatienten. Beitr Anaesth Intensiv Notfallmed 33: 32–36Google Scholar
  37. 37.
    Stein TP, Leskiw MJ, Wallace HW et al. (1977) Changes in protein synthesis after trauma: Importance of nutrition. Am J Physiol 233: E 348–355Google Scholar
  38. 38.
    Teale JD, Marks V (1986) The measurement of insulinlike growth factor 1: Clinical applications and significance. Am Clin Biochem 23: 413–424Google Scholar
  39. 39.
    Ward HC, Holliday D, Sim AJW (1987) Protein and energy metabolism with biosynthetic human growth hormone after gastrointestinal surgery. Ann Surg 206: 56PubMedCrossRefGoogle Scholar
  40. 40.
    Wilmore DW (1986) Are the metabolic alterations associated with critical illness related to the hormonal environment? Clin Nutrition 5: 9–20CrossRefGoogle Scholar
  41. 41.
    Wilmore DW, Aulick LH (1978) Metabolic changes in burned patients. Surg Clin N Am 58:1173–1187PubMedGoogle Scholar
  42. 42.
    Wilmore DW, Aulick HL, Goodwin CW (1979) Glucose metabolism following severe injury. Acta Chir Scand [Suppl] 498: 43–47Google Scholar
  43. 43.
    Wilmore DW, Goodwin CW, Aulick HL et al. (1982) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 196: 221–231CrossRefGoogle Scholar
  44. 44.
    Wolfe RR, Durkot MJ, Allsop JR, Buske JF (1979) Glucose metabolism in severely burned patients. Metabolism 28:1031–1039PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Semsroth

There are no affiliations available

Personalised recommendations