• M. Semsroth


Die künstliche Ernährung ist wie alle Verfahren, bei denen Organe teilweise oder gänzlich umgangen werden, eine eingreifende therapeutische Maßnahme, die sorgfältige Überwachungsmaßnahmen erfordert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong UD, Stave U (1973) A study of plasma free amino acid levels I. Metabolism 22: 549–560PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong UD, Stave U (1973) A study of plasma free amino acid levels II. Metabolism 22: 561–569PubMedCrossRefGoogle Scholar
  3. 3.
    Atwater WO, Benedict FG (1905) A respiration calorimeter with appliances for the direct determination of oxygen. Publication 42, Carnegie Institute of WashingtonGoogle Scholar
  4. 4.
    Aulick LH, Wilmore DH (1979) Increased peripheral amino acid release following burn injury. Surgery 85: 560–565PubMedGoogle Scholar
  5. 5.
    Bistrian BR (1979) A simple technique to estimate severity of stress. Surg Gynecol Obstet 148: 675–678PubMedGoogle Scholar
  6. 6.
    Blackburn GL, Bistrian BR, Maini BS (1977) Nutritional and metabolic assessment of the hospitalized patient. J Parent Ent Nutr 1: 11–22CrossRefGoogle Scholar
  7. 7.
    Boberg J, Carlson LA, Hallberg D (1969) Application of a new intravenous fat tolerance test in the study of hy-pertriglyceridaemia in man. J Atheroscler Res 9: 159–169PubMedCrossRefGoogle Scholar
  8. 8.
    Boekhorstte T, Urlus M, Doesburg Wet al. (1988) Etio-logic factors of jaundice in severely ill patients. J Hepa-tology 7: 111–117Google Scholar
  9. 9.
    Böhles H (1987) Cholestase bei totaler parenteraler Ernährung (TPE) — Eine Übersicht. Infusionstherapie 14, suppl 1: 3–9Google Scholar
  10. 10.
    Bozetti F, Migliavacca S, Gallus G et al. (1985) Nutritional markers as prognostic indicators of postoperative sepsis in patients. JPEN 9: 464–470CrossRefGoogle Scholar
  11. 11.
    Burke JF, Wolfe RR, Mullary CJ (1979) Glucose requirements following burn injury — parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg 190: 274–291PubMedCrossRefGoogle Scholar
  12. 12.
    Clowes GHA, Randall HT, Cha CJ (1980) Amino acid and energy metabolism in septic and traumatized patients. JPEN 4: 195–205CrossRefGoogle Scholar
  13. 13.
    Commor W, Hoak J, Warner E (1963) Massive thrombosis produced by fatty acid infusion. J Clin Invest 42: 860–866CrossRefGoogle Scholar
  14. 14.
    Deurenberg P, Weststrade JA, Hautvast JGAJ (1989) Changes in fat-free mass during weight loss measured by bioelectrical impedance and by densitometry. Am J Clin Nutr 49: 33–36PubMedGoogle Scholar
  15. 15.
    Dossetor JB (1966) Diagnosis and treatment, creatin-emia versus uremia: the relative significance of blood urea nitrogen and serum creatinine concentrations in azotemia. Ann Intern Med 65: 1287–1291PubMedGoogle Scholar
  16. 16.
    Dost FH (1949) Die Clearance. Klin Wochenschr 27: 257–264CrossRefGoogle Scholar
  17. 17.
    Druml W, Zadravec S, Kerbl H et al. (1990) Intensivmedizinischer Einsatz einer neuen Fettemulsion. Infusionstherapie 17: 306–312PubMedGoogle Scholar
  18. 18.
    Druml W (1987) Fettstoffwechsel und Aminosäurenstoffwechsel bei akutem Nierenversagen. Klin Ernähr 28: 3–35Google Scholar
  19. 19.
    Frayn KN (1985) Substrate turnover after injury. Br Med Bull 4: 232–239Google Scholar
  20. 20.
    Gerich JE (1988) Glucose counterregulation and its impact on diabetes mellitus. Diabetes 37: 1608–1612PubMedCrossRefGoogle Scholar
  21. 21.
    Gofferje H, Fehl W (1979) Diagnostik der Mangelernährung. Infusionstherapie 6: 3–15Google Scholar
  22. 22.
    Graut JP (1983) Clinical impact of protein malnutrition on organ mass and function. In: Blackburn GL, Grant JP, Young VR (eds) Amino acids: Metabolism and medical application. Wright PSG, Littleton/MA, pp 347–358Google Scholar
  23. 23.
    Hallberg D (1972) Fettemulsionen in der parenteralen Ernährung. Anaesthesiol Wiederbeleb 103: 55–61Google Scholar
  24. 24.
    Halperin ML, Chen CB, Cherra-Dhadli S et al. (1986) Is urea formation regulated primarily by acid — base balance in vivo? Am J Physiol 250: (Renal Fluid Electrolyte Physiol 19) F605–612Google Scholar
  25. 25.
    Hartl WA, Jauch KW, Kimmig R et al. (1988) Minor role of ketone bodies in energy metabolism by skeletal muscle tissue during the postoperative course. Ann Surg 207: 95–101PubMedCrossRefGoogle Scholar
  26. 26.
    Häussinger D (1983) Hepatocyte heterogeneity in gluta-mine and ammonia metabolism and the role of an intercellular glutamine cycle during ureagenesis in perfused rat liver. Eur J Biochem 133: 269–275PubMedCrossRefGoogle Scholar
  27. 27.
    Häussinger D, Gerok W (1986) Metabolism of amino acids and ammonia. In: Thurman RG, Kauffman FC, Jungermann K (eds) Regulation of hepatic metabolism. Intra-and intercellular compartmentation New York. Plenum, pp 253–291Google Scholar
  28. 28.
    Havel RJ (1988) Lowering cholesterol — rationale, mech-anismus and means. J Clin Invest 81: 1653–1660PubMedCrossRefGoogle Scholar
  29. 29.
    Heymsfield SB, McManus CB, Seitz SB et al. (1984) Anthrometric assessment of adult protein-energy malnutrition. In: Wright P, Heymsfield CB, McManus CB (eds) Nutritional Assessment. Blackwell, Boston, pp 27–81Google Scholar
  30. 30.
    Heymsfield SB (1990) Anthropometric measurements: Application in hospitalized patients. Infusionstherapie 17: suppl 3: 48–51PubMedGoogle Scholar
  31. 31.
    Heymsfield SB, Bethel Ra, Ansley JD et al. (1978) Cardiac abnormalities in cachectic patients before and during nutritional repletion. Am Heart J 95: 584–594PubMedCrossRefGoogle Scholar
  32. 32.
    Heymsfield SB, McManus CB (1985) Tissue components of weight loss in cancer patients. Cancer 55: 238–249PubMedCrossRefGoogle Scholar
  33. 33.
    Hickman DN, Miller RA, Rombeau II et al. (1980) Serum albumin and body weight as predictors of postoperative course in colorectal cancer. JPEN 4: 314–314CrossRefGoogle Scholar
  34. 34.
    Hume DM, Egdahl RH (1959) The importance of the brain in the endocrine réponse to injury. Ann Surg 150: 697–712PubMedCrossRefGoogle Scholar
  35. 35.
    Hunt LM (1969) An analytic formula to instantanously determine total metabolic rate for the human system. J Appl Physiol 27: 731–740PubMedGoogle Scholar
  36. 36.
    Isner JM, Roberts WC, Heymsfield SB et al. (1985) Anorexia nervosa and sudden death. Ann Intern Med 102: 49–52PubMedGoogle Scholar
  37. 37.
    Jeejeebhoy KN (1988) Bulk or bounce — The object of nutritional support. J Parent Ent Nutr 12: 539–549CrossRefGoogle Scholar
  38. 38.
    Keim NL, Mares-Perlmann JA (1984) Development of hepatic steatosis and essential fatty acid deficiency in rats with hypercaloric fat free parenteral nutrition. J Nutr 114: 1807–1815PubMedGoogle Scholar
  39. 39.
    Keller GA, West MA, Cerra FB (1985) Multiple systems organ failure, modulation of hepatocyte protein — synthesis by endotoxin activated kupffer cells. Ann Surg 210: 87–95Google Scholar
  40. 40.
    Kreisberg RA, Owen WC, Siegal AM (1971) Ethanol — induced hyperlactacidemia: inhibition of lactate utilisation. J Clin Invest 50: 166PubMedCrossRefGoogle Scholar
  41. 41.
    Krishnaswarny K, Naidu AN (1977) Microsomal enzymes in malnutrition as determined by plasma half life of antipyrine. Br Med J 1: 538–540CrossRefGoogle Scholar
  42. 42.
    Kuhn C, Leweling H, Staedt U et al. (1989) Erfassung des Ernährungszustandes mit modernen Methoden. In-fusionsther 25: 29–79Google Scholar
  43. 43.
    Lochs H (1981) Bestimmung des Ernährungszustandes. In: Lochs H, Grünert A, Druml W (Hrsg) Aktuelle Probleme der klinischen Ernährung. Klin Ernähr, Bd 5, S 42–50Google Scholar
  44. 44.
    Luger A, Graf H, Schwartz HP et al. (1986) Decreased serum Interleukin-1 activity and monocyte Interleukin-1 production in patients with fatal sepsis. Crit Care Med 14: 458–461PubMedCrossRefGoogle Scholar
  45. 45.
    Mann S, Westenskow DR, Houtchens BA (1985) Measured and predicted caloric expenditure in the acutely ill. Crit Care Med 13:173–177PubMedCrossRefGoogle Scholar
  46. 46.
    Matuschak GM, Rinald JE (1988) Organ interactions in the adult respiratory distress syndrome during sepsis. Chest 94: 400–406PubMedCrossRefGoogle Scholar
  47. 47.
    McLarty DG, Ratcliffe WA, McColl K, Smyth L (1975) Thyroid hormone levels and prognosis in patients with serious non thyreoidal illness. Lancet II: 275–276CrossRefGoogle Scholar
  48. 48.
    Meriläinen PT (1987) Metabolic monitor. Int J Clin Mo-nit Comput 4: 167–170CrossRefGoogle Scholar
  49. 49.
    Millward DJ, Garlick PJ, Dickson ON (1976) The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem J 156: 185PubMedGoogle Scholar
  50. 50.
    Müller JM, Thul P, Brenner U et al. (1987) Peter K, Dietze GE, Hartig W, Steinhardt HJ (Hrsg) Differenzierte klinische Ernährung. Klin Ernähr, Bd 25, S 6–15Google Scholar
  51. 51.
    Ollenschläger G, Schrappe-Bächer M, Steffen M et al. (1989) Erhebung des Ernährungszustandes — ein Bestandteil der klinischen Routine-Diagnostik: Choline-sterase-Aktivität als Ernährungsindikator. Klin Wo-chenschr 67: 1101–1107CrossRefGoogle Scholar
  52. 52.
    Rinke WJ (1986) Electrical impedance: A new technique to assess human body composition. Mil Med 151: 338–341PubMedGoogle Scholar
  53. 53.
    Rizza RA, Mandarino LJ, Gerich JE (1982) Effects of growth hormone on insulin action in man. Diabetes 31: 663–669PubMedCrossRefGoogle Scholar
  54. 54.
    Rizza RA, Mandarino LJ, Gerich JE (1981) Dose-response characteristics for the effect of insulin on production and utilization of glucose in man. Am J Physiol 240: E630Google Scholar
  55. 55.
    Rochester DF (1986) Malnutrition and the respiratory muscles. Clin Chest Med 7: 91–99PubMedGoogle Scholar
  56. 56.
    Rose BD (1984) Metabolic acidosis. In: Rose BD (ed) Clinical physiology of acid-base and electrolyte disorders, 2nd edn. Mc Graw-Hill, Singapore Sydney Tokyo Toronto, pp 394–439Google Scholar
  57. 57.
    Roth E (1987) Messungen der Aminosäuren im Plasma und Harn. Klin Ernähr 29: 13–22Google Scholar
  58. 58.
    Roth E, Funovics J, Mauritz W, Sporn P (1983) Parenterale Ernährung bei Sepsis. In: Eckart J (Hrsg) Sepsis — unter besonderer Berücksichtigung der Ernährungsprobleme. Beitr Infusionstherapie Klin Ernähr 10: 165–181Google Scholar
  59. 59.
    Roth E (1985) Stoffwechsel der Nährsubstrate. In: Reis-sig L (Hrsg) Handbuch der Infusionstherapie und klinischen Ernährung, Bd 2. Karger, Basel München Paris London New York, pp 55–113Google Scholar
  60. 60.
    Schlichtig R, Sargent SC (1990) Nutritional support of the mechanically ventilated patient. Crit Care CI 6: 767–784Google Scholar
  61. 61.
    Schloerb PR, Gurian JH, Lord LM et al. (1986) Bioim-pedance as a measure of total body water and body cell mass in surgical nutrition. Eur Surg Res 18: No 5Google Scholar
  62. 62.
    Semsroth M (1986) Indirekte Kalorimetrie bei beatmeten polytraumatisierten Patienten. Infusionstherapie 12: 213–237Google Scholar
  63. 63.
    Semsroth M (1985) Indirekte Kalorimetrie bei beatmeten Kindern — ein Messverfahren und seine Überprüfung an einem neu entwickelten Stoffwechsel-Lungenmodell. Infusionstherapie 12: 294–303Google Scholar
  64. 64.
    Shaw JHF, Wolfe R (1989) An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Ann Surg 290: 63–72CrossRefGoogle Scholar
  65. 65.
    Shizgal HM (1990) Validation of the measurement of body composition from whole body bioelectric impedance. Infusionstherapie 17; suppl 3: 67–74Google Scholar
  66. 66.
    Shizgal HM (1989) Determination of body composition from bioelectric impedance. 13th Clin Congr Am Soc Parent Ent Nutr, pp 175–177. Abstract Book, MiamiGoogle Scholar
  67. 67.
    Silbermann H, Eisenberg D, Ryan J et al. (1988) The relation of thyroid indices in the critically ill patient to prognosis and nutritional factors. Surg Gynecol Obstet 166: 223–238Google Scholar
  68. 68.
    Sinatra FR (1982) Cholestasis in infancy and childhood. Curr Prob Pediatr 12: 3–21CrossRefGoogle Scholar
  69. 69.
    Skeie B, Askanazi J, Rothkopf MM et al. (1988) Intravenous fat emulsions and lung function: A review. Crit Care Med 16: 183–194PubMedCrossRefGoogle Scholar
  70. 70.
    Stolberg L, Rolfe R, Gitlin N et al. (1982) D-Lactic acidosis due to abnormal gut flora. N Engl J Med 306:1344Google Scholar
  71. 71.
    Takala J, Keinänen O, Väisänen P, Kari A (1989) Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 17: 1041–1047PubMedCrossRefGoogle Scholar
  72. 72.
    Traber PG, Chianale J, Gumucio JJ (1988) Physiologic significance and regulation of heptocellular heterogeneity. Gastroenterology 95: 1130–1143PubMedGoogle Scholar
  73. 73.
    Turell DJ, Alexander JK (1964) Experimental evaluation of Weir’s formula for estimating metbolic rate in man. J Appl Physiol 19: 946–948PubMedGoogle Scholar
  74. 74.
    Viteri FE, Alvardo J (1970) The creatinine height index; its use in the estimation of the degree of protein depletion and repletion in protein caloric malnurished children. Pediatrics 46: 696PubMedGoogle Scholar
  75. 75.
    Wan JMF (1988) Lipids and the development of immune dysfunction and infection. J parenter, Enteral Nutr 12; suppl 6: 435–525Google Scholar
  76. 76.
    Warnold J, Lundholm K (1984) Clinical significance of preoperative nutritional status in 215 noncancer patients. Ann Surg 199: 299–305PubMedCrossRefGoogle Scholar
  77. 77.
    Waterlow JC, Gulick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in whole-body. North Holland, Amsterdam, pp 301–325Google Scholar
  78. 78.
    Weir JB de V (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol (Lond) 109: 1–9Google Scholar
  79. 79.
    Weissmann C (1990) The metabolic response to stress. An overview and update. Anaesthesiology 73: 308–327CrossRefGoogle Scholar
  80. 80.
    Wolfe RR, Jahoor F, Hartl WH (1989) Protein and amino acid metabolism after injury. Diabetes / Metabolism Review 5: 149–164CrossRefGoogle Scholar
  81. 81.
    Wolfe RR, Jahoor F, Shaw JHF (1987) Protein and amino acid metabolism after injury. JPEN 11: 109–111Google Scholar
  82. 82.
    Yoshioka T, Sugimoto T, Ukai T et al. (1985) Haptoglobin therapy for possible prevention of renal failure following thermal injury: A clinical study. J Trauma 25: 281–287PubMedCrossRefGoogle Scholar
  83. 83.
    Young B, Ott L, Dempsey R et al. (1989) Relationship between admission hyperglycemia and neurologic outcome of severely brain-injured patients. Ann Surg 210: 466–473PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Semsroth

There are no affiliations available

Personalised recommendations