Semiclassical Quantization

  • Walter Dittrich
  • Martin Reuter


We want to investigate the semiclassical or one-loop approximation of our Chern-Simons model:
$$ S\;{S_0}\;{\rm{ + }}\;{S_{CS}}\;{\rm{,}} $$
$$ {S_0}[\eta ,\;A]\;{\rm{ = }}\;\int_0^T {dt} \left[ {\frac{1}{2}{\eta ^a}{\omega _{ab}}{{\dot \eta }^b} - H(\eta ) - \sum\limits_i {{A_i}} (t){J_i}(\eta (t))} \right] $$
$$ {S_{CS}}[A]\;{\rm{ = }}\;\int_0^T {dt} \sum\limits_i {{k_i}} {A_i}(t) $$
and k i is fixed. We shall see that consistency requires k i to assume (half-) integer values only. In the following, all fields are defined on [0, T] and are assumed to be periodic.


Gauge Transformation Gauge Invariance Maslov Index Semiclassical Quantization Large Gauge Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Walter Dittrich
    • 1
  • Martin Reuter
    • 2
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenFed. Rep. of Germany
  2. 2.Institut für Theoretische PhysikUniversität HannoverHannover 1Fed. Rep. of Germany

Personalised recommendations