Skip to main content

The Development of Wavefront Technology and its Application to Ophthalmology

  • Chapter

Abstract

Wavefront technology was originally developed for the improvement of star images in optical astronomy. In 1978, this technology was for the first time applied to ophthalmology. At the University of Heidelberg, Germany, a closed loop adaptive optical system was designed to compensate for optical aberrations of the human eye. In the meantime, superresolution in retinal imaging has been achieved, providing detailed information on photoreceptors, small blood vessels, and nerve fiber structure in the human eye in vivo. Recently, new wavefront technology has been developed for the assessment of the human eye and it is now possible to apply a custom treatment to the eye, using the excimer laser. An adaptive optical closed loop system has been devised for preoperative simulation of refractive outcomes of aberration-free refractive surgical procedures. Treatment of a patient’s entire wavefront error has been demonstrated to improve the patient’s visual acuity beyond best spectacle-corrected vision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Bille, K. Freischlad, G. Jahn, F. Merkle: Image restoration by adaptiveoptical phase compensation. Proceedings “6th International Conference on Pattern Recognition”, Munich, Germany, Oct. 19–22, 1982

    Google Scholar 

  2. J.F. Bille: Method and Apparatus for Forming an Image of the Ocular Fundus, U.S. Patent 4, 579, 430 (April 1, 1986)

    Google Scholar 

  3. J.F. Bille, G. Jahn, M. Frieben: Modal control for wavefront reconstruction in adaptive optics. Advanced Technology Optical Telescopes, SPIE 332, 269 (1982)

    Google Scholar 

  4. J.F. Bille, B. Grimm, J. Liang, K. Mueller: Imaging of the retina by scanning laser tomography. New Methods in Microscopy and Low Light Imaging, SPIE 1161, 417 (1989)

    Google Scholar 

  5. J. Liang: A new method to precisely measure the wave aberrations of the human eye with a Hartmann-Shack sensor. Dissertation, Ruprecht-Karls-Universität, Heidelberg, 1991

    Google Scholar 

  6. J. Liang, B. Grimm, S. Goelz, J.F. Bille: Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor, J. Opt. Soc. Am. A 11, 1949 (1994)

    Article  CAS  Google Scholar 

  7. M. Kasper, D. Looze, S. Hippler, T. Herbst, A. Glindemann, T. Ott, A. Wirth: ALFA: Adaptive Optics Calar Alto Observatory — optics, control system, and performance. Exp. Astron. 10, 49 (2000)

    Article  Google Scholar 

  8. A.W. Dreher, J.F. Bille, R.N. Weinreb: Active optical depth improvement of the laser tomographic scanner. Appl. Opt. 28, 804 (1989)

    Article  PubMed  CAS  Google Scholar 

  9. G.V. Vdouin: Adaptive mirror micro machined in silicon. PhD thesis, University of Delft, Netherlands, 1997

    Google Scholar 

  10. D. Droste, J.F. Bille: An ASIC for Hartmann-Shack wavefront detection. IEEE J. Solid-State Circuits (2002)

    Google Scholar 

  11. E.S. Claflin, N. Baraket: Configuring on electrostatic membrane mirror by least-squares fitting with analytically derived influence functions. J. Opt. Soc. Am. A 3, 1833 (1986)

    Article  CAS  Google Scholar 

  12. F. Müller: Konzeption und Entwicklung eines adaptio-optisch korrigierten Laser-Scanning Retina-Tomographen, Dissertation, University of Heidelberg, 2001

    Google Scholar 

  13. S. Wühl: Aktive Korrektur optischer Aberrationen mittels genetischer Algorithmen, Diploma Thesis, University of Heidelberg, 2000

    Google Scholar 

  14. R. Ragazzoni: Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 43, 289 (1996)

    Article  Google Scholar 

  15. J.F. Bille: Method for Programming an Active Mirror to Mimic a Wavefront, U.S. Patent 6, 220, 707 B1 (April 24, 2001)

    Google Scholar 

  16. U. von Pape: Wavefront sensing in the human eye. PhD Dissertation, University of Heidelberg, 2002

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bille, J.F. (2003). The Development of Wavefront Technology and its Application to Ophthalmology. In: Bille, J.F., Harner, C.F.H., Loesel, F.H. (eds) Aberration-Free Refractive Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97918-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97918-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97920-0

  • Online ISBN: 978-3-642-97918-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics