Skip to main content

Techniken zur energetischen Verwendung von Wasserstoff

  • Chapter
Wasserstoff als Energieträger

Zusammenfassung

Die folgenden Beispiele zur technischen Verwendung von Wasserstoff als Sekundärenergieträger sollen vor allem der Illustration von Anwendungen dienen. Es ist nicht beabsichtigt, hier einen geschlossenen Überblick über das gesamte sich noch in Entwicklung befindliche Gebiet zu vermitteln. Der interessierte Leser sei auf die umfangreiche Literatur verwiesen. Eine Auswahl charakteristischer Anwendungen erfolgte nach Gesichtspunkten, in denen Wasserstoff besondere Vorteile gegenüber derzeit im Einsatz befindlicher Verfahren der Energietechnik bietet. Hierzu zählen Speicherbarkeit, Kompatibilität und eine Vielfalt von Kombinationsmöglichkeiten mit anderen Energieträgern sowie geringe, unter Umständen verschwindende Schadstoffemissionen, die, unter langfristigen Aspekten gesehen, ein Hauptargument für zukünftige energietechnische Anwendungen darstellt [2.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 2

  1. Zweig, R.M.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1901–1908.

    Google Scholar 

  2. Neuen Kraftstoffen auf der Spur, Studie im Auftrag des BMFT, Bonn 1974, S. 303.

    Google Scholar 

  3. Martinenko, A.; Wagner, H.G.: Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 2, 1960, Nr. 14.

    Google Scholar 

  4. Schlosser, E.G.: Catalytic hydrogen combustion on nickel oxide. Bunsen-Ges. f. Phys. Chem., Ber. 71, Nr. 4 (1967) 352–358.

    Google Scholar 

  5. Newhall, H.K.; Shahed, S.M.: 13th Int. Symp. on Combustion, Pittsburgh, Pa. 1971 P. 381.

    Google Scholar 

  6. Kydd, P.H.; Foss, W.I.: 10th Int.-Symp. on Combustion Univ. Cambridge, Großbrit. Aug. 17–21, 1964.

    Google Scholar 

  7. France, D.H.: Int. J. Hydrogen Energy 5 (1980) 369–374.

    Article  Google Scholar 

  8. Suzuki, K.: Int. J. Hydrogen Energy 7 (1982) 227–230.

    Article  Google Scholar 

  9. Lavole, G.A.; Schalder, A.F.: Combust. Sci. Technol. 8, No. 5-6 (1974) 216–224.

    Google Scholar 

  10. Bilger, R.W.; Kent, J.H.: Combust. Sci. Technol. 9, No. 1-2 (1974) 25–29.

    Article  Google Scholar 

  11. Sanchez-Tarifa, C; Sanmartin, J.R.; Frage, E.: Formation of nitrogen oxides in the combustion process of hydrogen in air. Paper 2.1 — 10, 9th World Energy Conf., London, 1974.

    Google Scholar 

  12. Ericson, W.D.; Klick, G.F.: Analytical chemical study of the effect of carbon dioxide and water vapor on hydrogen air constant pressure combustion. NASA-TN — D-5768 (1970).

    Google Scholar 

  13. Sampath, P.; Shum, F.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1467–1480.

    Google Scholar 

  14. Baker, N.R.: Proc. 9th Intersociety Energy Conv. Eng. Conf. New York, Soc. of Mech. Eng. 1974, pp. 463–467.

    Google Scholar 

  15. Gregory, D.P.: Gas Wärme Int. 26 (1977) 124–134.

    Google Scholar 

  16. Durao, D.F.G.; Whitelaw, J.H.: Proc. Roy. Soc. Ser. A; 338, No. 1615, (1974) 479–501.

    Article  Google Scholar 

  17. Beedgen: Einsatz und Aufbau von Gasbrennern für die Industrie, Gas Wärme Int. 12 (1972).

    Google Scholar 

  18. Anon: Gasbrenner, Marktübersicht. Öl Gas Feuerungstech. 6 (1973).

    Google Scholar 

  19. Plassmann, E.: Chem. Ing. Tech. 44, No. 1-2 (1972) 20–27.

    Article  Google Scholar 

  20. Bonne, U.: Int. J. Hydrogen Energy 8, No. 4 (1983) 295–299.

    Article  Google Scholar 

  21. Hiroyasu, H.; Kadota, T.; Arai, M.: Adv. in Hydrogen Energy 2, Vol. 2, (1980) 1199–1214.

    Google Scholar 

  22. Jasionowski, W.J.; Pangborn, J.B.; Johnson, D.G.: Int. J. Hydrogen Energy, Vol. 5, No. 3 (1980) 323–336.

    Article  Google Scholar 

  23. Pangborn, J.B.; Scott, M.; Sharer, J.: Int. J. Hydrogen Energy 2 (1977) 431.

    Article  Google Scholar 

  24. Radcliffe, S.W.; Hickmann, R.G.: J. Inst. Fuel, Dec. 75 (1975) 208.

    Google Scholar 

  25. Haruta, M.; Sano, H.: Int. J. Hydrogen Energy 6 (1981) 601–608.

    Article  Google Scholar 

  26. Mercea, J.; Grecu, E.; Fodor, T.: Int. J. Hydrogen Energy 6 (1981) 389–396.

    Article  Google Scholar 

  27. Kulacki, F.A.; Boriah, S.; Martin, S.A.: Int. J. Hydrogen Energy 6 (1981) 73–96.

    Article  Google Scholar 

  28. Mercea, J. et. al.: Int. J. Hydrogen Energy 7 (1982) 483–488.

    Article  Google Scholar 

  29. Haruta, M.; Souma, Y.; Sano, H.: Int. J. Hydrogen Energy 7 (1982) 729–736; ebenda 737-740, ebenda 801-808.

    Article  Google Scholar 

  30. Anon: Catalyst handbook: With special reference to unit processes in amonia and hydrogen manufacture. London: Wolfe 1971.

    Google Scholar 

  31. Jennings, T.J.; Armstrong, W.E.; Voge, H.H.: Development of hydrogen-oxygen catalysts. NASA-CR-72118, Technol. Appl. Center, Univ. New Mexico 1967.

    Google Scholar 

  32. Ledjeff, K.: A catalytic hydrogen-oxygen heater a self limiting reaction. Abstr. 5th World Hydrogen Energy Conf. Toronto 1984. Fraunhofer Inst, für solare Energiesysteme, Freiburg 1984.

    Google Scholar 

  33. Brewer, G.D.: Int. J. Hydrogen Energy 3 (1978) 461–474.

    Article  Google Scholar 

  34. Gasturbinen-Heizkraftwerke. Auf dem Wege zu neuen Energiesystemen, Programmstudie: Nichtnukleare Energieträger, im Auftrag des BMFT, Teil III, S. 117, 1975.

    Google Scholar 

  35. Tsujikawa, Y; Swada, T.: Int. J. Hydrogen Energy 7 (1982) 499–505.

    Article  Google Scholar 

  36. Colladay, R.S.: Thermal feasibility of using methane or hydrogen fuel for direct cooling of a first stage turbine stator. NASA-TN-D-6041, NTIS, 1970.

    Google Scholar 

  37. Tsujikawa, Y.; Sawada, T.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1481–1482.

    Google Scholar 

  38. Riple, J.C.; Baerst, C.F.: Preliminary studies of a turbofan engine and fuel system for use with liquid hydrogen. Proc. Int. Symp. Hydrogen in Air Transp., DFVLR, Stuttgart 1979.

    Google Scholar 

  39. Grobman, J.; Norgreen, C: Turbojet emissions, hydrogen versus JP. NASA-TM — X-68258, (1973).

    Google Scholar 

  40. Grobman, J.; Ingebo, R.D.: Jet engine exhaust emissions of high-altitude commercial aircraft projected to 1990. NASA-TM-X-3007, (1974).

    Google Scholar 

  41. Straight, D.M.; Smith, A.L.; Christenson, H.H.: Brief studies of turbojet combustor and fuel system operation with hydrogen fuel at — 400 F. NASA-RM-E56K27a, (1957).

    Google Scholar 

  42. Ferri, A.; Agnone, A: Jet engine design that can drastically reduce oxides of nitrogen. AIAA-Paper 74-160 (1974).

    Google Scholar 

  43. Adt, R.R. Jr.; Swain, M.R.; Pappas, J.M.: Hydrogen engine performance project. U.S. Dept. of Energy (DOE), Second Annual Rep. Contr. No. EC-77C03-1212 (1980).

    Google Scholar 

  44. De Boer, P.C.T.; Mc. Lean, W.J.; Homann, H.S.: Int. J. Hydrogen Energy 1 (1976) 153.

    Article  Google Scholar 

  45. Varde, K.S.; Frame, G.A.: Int. J. Hydrogen Energy 8 (1983) 549–555.

    Article  Google Scholar 

  46. Leiker, M.: Die Verbrennungskraftmaschine, Bd. 5, Wien: Springer 1953.

    Google Scholar 

  47. Christoph, K.; Cartellieri, W.; Pfeifer, U.: MTZ 33, Heft 10 (1972) 391.

    Google Scholar 

  48. Li Jing-ding; Lu Ying-ging; Du Tian-Shen: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1579–1594.

    Google Scholar 

  49. Ishigohka, T.: Adv. in Hydrogen Energy 3, Vol. 3, (1982) 1095–1104.

    Google Scholar 

  50. Swain, M.R.; Adt, R.; Pappas, J.M.: Hydroge engine performance analysis project. DOE, Contract No. E (04-3)-1212, 2nd Annual Rep. (1980).

    Google Scholar 

  51. Lynch, F.E.: Adv. in Hydrogen Energy 3, Vol. 3 (1982) 1033–1051.

    MathSciNet  Google Scholar 

  52. Furuhama, S.; Kobayashi, Y.: Proc. 4th World Hydrogen Energy Conf. Vol. 3, New York: Pergamon Press 1982, pp. 1009–1020.

    Google Scholar 

  53. Peschka, W.: Flüssiger Wasserstoff als Energieträger. Wien, New York: Springer 1984.

    Book  Google Scholar 

  54. Peschka, W.: Int. J. Hydrogen Energy 9 (1984) 515–524.

    Article  Google Scholar 

  55. Ostwald, W.: Z. Elektrochemie 1 (1894) 122.

    Article  Google Scholar 

  56. Grove, W.R.: On voltaic series and the combustion of gases by platinum. Phil. Mag. 14 (1839) 127–130.

    Google Scholar 

  57. Westphal, C: Apparat zur Erzeugung elektrischer Ströme. DRP 22393 (1980).

    Google Scholar 

  58. Vielstich, W.: Brennstoffelemente. Weinheim: Verlag Chemie 1965.

    Google Scholar 

  59. Döhren, H.H.V.; Euler, K.J.: Brennstoffelemente. Varta Fachbuchreihe, Bd. 6, 1970.

    Google Scholar 

  60. Bacon, F.T.; Forrest, I.S.: Recent research in Great Britain on fuel cells. 5. Weltkraftkonf. Wien 1956, Ber. 19, K 4.

    Google Scholar 

  61. Justi, E.W.; Winsel, A.W.: Kalte Verbrennung-fuel cells. Wiesbaden: Steiner 1962.

    Google Scholar 

  62. Bacon, F.T.: Progress Review No. 57. Fuel cells. J. Inst. Fuel (1965) 406–412.

    Google Scholar 

  63. Bacon, F.T.: Fuel cells, past, present and future. Electrochim. Acta 14 (1969) 569–585.

    Google Scholar 

  64. Schmidt-Küster, W.J.: Direkte Energieumwandlung. Chemie Monographien. Stuttgart: Franckh—sche Verlagsbuchhandlung 1968.

    Google Scholar 

  65. Peschka, W.: Neue Energiesysteme für die Raumfahrt. München: Goldmann 1972.

    Google Scholar 

  66. Pietrogrande, P. et al.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1709–1715.

    Google Scholar 

  67. Fickett, A.P.: Adv. in Hydrogen Energy 3, Vol. 3 (1982) 1129–1137.

    Google Scholar 

  68. Stonehart, P.: Adv. in Hydrogen Energy 3, Vol. 3 (1982) 1149–1161.

    Google Scholar 

  69. Kordesch, K.: Brennstoffbatterien. Wien: Springer 1984.

    Google Scholar 

  70. Kordesch, K. et al.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1657–1668.

    Google Scholar 

  71. Kordesch, K.; Gesellmann, J.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1657–1676.

    Google Scholar 

  72. Kordesch, K.V.: Survey of carbon and its role in phosphoric acid fuel cells. Brookhaben Nat. Lab. Rep, BNL 51418-UC94d (1982).

    Google Scholar 

  73. Kordesch, K.V.: Int. J. Hydrogen Energy 8 (1983) 709–714.

    Article  Google Scholar 

  74. Nuttall, L.J.; McElroy, J.F.: Adv. in Hydrogen Energy 3, Vol. 3 (1982) 1179–1187.

    Google Scholar 

  75. Chum, H.L.; Srinivasan, S.: Proc. of the Workshop on Renewable Power Sources for Transp. SERI, Golden, Col. 1983.

    Google Scholar 

  76. Holmboe, C.F.: Conversion of electricity into hydrogen according to Lawaczek. Tek. Ukebl. 78 (1931) 68–69.

    Google Scholar 

  77. Marchetti, C: Hydrogen, master key to the energy market. Euro-Spectra 10 (1971) 117–129.

    Google Scholar 

  78. Marchetti, C: The evaluation of the energy systems and the aircraft industry. Proc. Symp. Hydrogen in Air Transp, DFVLR-Stuttgart, 1979.

    Google Scholar 

  79. Gamze, M.G.: IECEC 7th, San Diego, Proc. Am. Chem. Soc, Paper 729192 (1972) 1263–1268.

    Google Scholar 

  80. Jayadevaiah, T.S.; Chin, S.C.: Economics of a hydrogen storage peaking power plant. ASME Paper No. 74-WA/PWR-6, 1974.

    Google Scholar 

  81. Salzano, F.J. et al.: Role of hydrogen in electric energy storage. In: Veziroglu, T.N., (ed.): Hydrogen Energy, Part B. New York: Plenum Press 1975.

    Google Scholar 

  82. Kippenhan, C.J.; Corlett, R.C.: Hydrogen-energy storage for electrial utility systems. Hydrogen energy, Part B, Veziroglu, T.N. (ed.). New York: Plenum Press 1975.

    Google Scholar 

  83. Nomura, M. et al.: Int. J. Hydrogen Energy 6 (1981) 397–412.

    Article  Google Scholar 

  84. Seippel, F.; Bereuter, K.: Zur Technik kombinierter Dampf-und Gasturbinenanlagen. BBC-Mitt. 47.

    Google Scholar 

  85. Sternfeld, HJ.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1595–1606.

    Google Scholar 

  86. Wojkowsky, H.; Schnurnberger, W.; Sternfeld, HJ.: Brennst. Wärme Kraft 34 (1982) 351–354.

    Google Scholar 

  87. Ackermann, J.P.; Barghusen, J.J.; Link, L.E.: Assessment study of devices for the generation of electricity from stored hydrogen. Argone Nat. Lab. Rep. ANL-75-71, Dec. 1975.

    Google Scholar 

  88. Parrish, W.R.: Economic study of electrical peaking alternatives. Hydrogen energy, Part V, Veziroglu, T.N. (ed). New York: Plenum Press 1975.

    Google Scholar 

  89. Parrish, W.R.: Hydrogen in the electrial utility industry. Selected topics on hydrogen fuel. NBS Spec. Publ. 419 (1975).

    Google Scholar 

  90. Escher, W J.D. et al.: A non polluting noiseless engine for power-plant applications with specific orientation to a high speed ground transportations systems. Rocketdyne, RIP 13, Canoga Park, Calif. (1970).

    Google Scholar 

  91. Reese, R.M.; Carmichael, A.D.: Cycle for the propulsion of deep submersibles. Proc. 6th Intersoc. Energy Conv. Eng. Conf. (IECEC) New York 1971, pp. 563–576.

    Google Scholar 

  92. Wright, D.E. et al.: Hydrogen turbine power conversion system assessment. NASA — CR-135298, RI/RD 77-252, April 1978.

    Google Scholar 

  93. Wojkowski, H.; Schnurnberger, W.; Sternfeld, H.J.: Abschätzung erzielbarer Wirkungsgrade und Kosten bei der Verstromung von Wasserstoff. EG-Abschlußbericht zu FA 404-78-7, EHD, Brüssel 1981.

    Google Scholar 

  94. Smith, J.M.; Nichols, L.D.; Seikel, G.R.: NASA-Lewis H2-O2 MHD-programm. Proc. 14th Symp. on Eng. Aspects of Magnetohydrodynamics, Paper III, 7 (1974).

    Google Scholar 

  95. Nakumara, T.; Riedmüller, W.: Hydrogen oxygen closed cycle MHD power generation system based upon thermochemical decomposition of water. Proc. 14th Symp. on Eng. Aspects of Magnetohydrodynamics, Paper III, 6 (1974).

    Google Scholar 

  96. Sodha, H.S. et al.: Int. J. Hydrogen Energy 9 (1984) 1019–1028.

    Article  Google Scholar 

  97. Smith, J.M.: Adv. in Hydrogen Energy 3 (1980) 1577–1592.

    Google Scholar 

  98. Jones, L.W.: Science 174 (1971) 367–370.

    Article  Google Scholar 

  99. Brewer, G.D.: Morris, R.E.: Study of LH2 fueld subsonic passenger transport aircraft. NASA CR-144935, Lockheed-Calif. Comp., January 1976.

    Google Scholar 

  100. Reshotko, E.: Drag reduction by cryo-fuel. Astronaut. Aeronaut. 10 (1978) 1.

    Google Scholar 

  101. Carson, L.K.; Davis, G.W.; Versaw, E.F.: Study of methane fuel for subsonic transport aircraft. NASA-CR-15) 320, Lockheed Calif. Comp. 1980).

    Google Scholar 

  102. Brewer, G.D.: Int. J. Hydrogen Energy 7 (1982) 21–41.

    Article  Google Scholar 

  103. Korycinski, P.F.: Int. J. Hydrogen Energy 3 (1978) 231–250.

    Article  Google Scholar 

  104. Jones, L.; Wuschke, C; Fahidy, T.Z.: Int. J. Hydrogen Energy 8 (1983) 581–588.

    Article  Google Scholar 

  105. Knight, R.W.: The Hindenburg accident, Rep. 11, Safety and Planning Div., Bureau of Air Commerce, Dept. of Commerce (Aug. 1938).

    Google Scholar 

  106. Sloop, J.F.: Liquid hydrogen as a propulsion fuel 1945-1959. NASA-SP-44-4, Stock No. 033-000-00707-8, U.S. Governm, Printing Office, Washington D.C., 1978.

    Google Scholar 

  107. Brewer, G.D. et al.: Assessment of crash fire hazard of LH2 fueld aircraft. Final Rep. NASA-CR-165525 (1981).

    Google Scholar 

  108. Peschka, W.: Int. Verkehrswes. 32 (1980) 447–453.

    Google Scholar 

  109. Jones, L.W.: Liquid hydrogen as a fuel for motorvehicles: A comparison with other systems. — Proc. 7th Intersoc. Energy Conv. Eng. Conf. (IECEC), Paper 729213, Publ. ACS (1972).

    Google Scholar 

  110. Peschka, W.: Liquid hydrogen for automotive vehicles-status and development in Germany. Cryogenic processes and equipment, ASME 97 — 103.

    Google Scholar 

  111. Loeken, H.: Teknisk Ukeblad 82 (1935) 555–558, 563 — 565.

    Google Scholar 

  112. Alpaugh, R.T. et al.: Proc. 2nd World Hydrogen Energy Conf. Vol. 4. New York: Pergamon Press 1978, pp. 1793–1827.

    Google Scholar 

  113. Steinberg, B.A.; Scott, D.S.: Int. J. Hydrogen Energy 9 (1984) 101–108.

    Article  Google Scholar 

  114. Foster, R.W.; Escher, W J.D.: A project plan for implementing a hydrogen fueled-hydro-gen transport rail system. E: F Technology Inc. St. Johns, Mi48879, NASA Contr. No. 10-10626 (1983).

    Google Scholar 

  115. Silla, H.: Possible future maritime fuels. Webb Inst. of Naval Architecture, Glen Glove, N.A. 1977.

    Google Scholar 

  116. Archibald, J.P.: Hydrogen fueled ships. Alternative energy sources III. Vol. 5, Veziroglu, T.N. (ed.), Berlin: Springer 1983.

    Google Scholar 

  117. Pasthuhov, A.: Adv. Cryog. Eng., Vol. 19 New York: Plenum Press 1973, pp. 276–281.

    Google Scholar 

  118. Howard, J.L.: Adv. Cryog. Eng, Vol. 19 New York: Plenum Press (1973) pp. 276–281.

    Google Scholar 

  119. Stewart, A.J.; Springer, J.H.; Doyle, T.J.: Effectiveness of superconducting electric drives. Naval Eng. J. 91, No. 2, (April 1979).

    Google Scholar 

  120. Büchner, H.: Energiespeicherung in Metallhydriden. Wien: Springer 1982.

    Book  Google Scholar 

  121. Karim, G.A.; Taylor, M.E.: Hydrogen as a fuel and the feasibility of a hydrogen oxygen engine, SAE-Paper 730089, 1973.

    Google Scholar 

  122. Brewer, G.D.: J. Aircraft 20 (1983) 935 ff.

    Article  Google Scholar 

  123. Behrendt, F.; Warnatz, J.: Adv. in Hydrogen Energy 4, Vol. 4 (1984) 1515–1528.

    Google Scholar 

  124. Takahashi, F.; Mizimoto, M.; Ikai, S.: Adv. in Hydrogen Energy 2, Vol. 2 (1980) 1165–1176.

    Google Scholar 

  125. Melvin, A.: Adv. in Hydrogen Energy 2, Vol. 2 (1980) 1177–1186.

    Google Scholar 

  126. Sano, H, et al.: Adv. in Hydrogen Energy 2, Vol. 2 (1980) 1215–1230.

    Google Scholar 

  127. Schuhmacher, H.J.: Angew. Chemie 63 (1951) 560–561.

    Article  Google Scholar 

  128. Ford, A.: Hydrogen fueled turbine boat demonstration. SAE-Paper 770797, (1977).

    Google Scholar 

  129. Schwarz, H.; Denz, H.; Zechnall, H.: Bosch Tech. Ber. 7, No. 3 (1981) 139–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Winter, CJ., Nitsch, J. (1986). Techniken zur energetischen Verwendung von Wasserstoff. In: Winter, CJ., Nitsch, J. (eds) Wasserstoff als Energieträger. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97884-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97884-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97885-2

  • Online ISBN: 978-3-642-97884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics