Advertisement

Route selection and detailed line design

  • Friedrich Kiessling
  • Peter Nefzger
  • João Felix Nolasco
  • Ulf Kaintzyk
Part of the Power Systems book series (POWSYS)

Abstract

The requirements for route selection and detailed line design of a high-voltage overhead line are established by the preparatory work, studies and assessments described in Chapter 1 “Overall planning”. They have been developed on the basis of an electric network analysis, defining in principle the required starting and terminal point of a transmission connection taking into account the generation and consumption load centres. The voltage level and the required conductor cross section are as well determined by the existing network structure and the requirements of load flow, such that the design engineer is provided with essential parameters. The requirements on the supports to be used for a line project depend on the line voltage, number of circuits, conductor dimensions and arrangement as well as on climatic, topographic, infrastructure or legal aspects. When selecting the support structures, the design engineer will try to utilize available designs to avoid the expenditures for a new tower family including the workshop drawings, especially in case of relatively short lines. However, the development of new supports designed to the specific line requirements can result in technical improvements and investment savings and is an often adopted and recommended practice.

Keywords

Longitudinal Profile Route Selection Visual Impact Line Design Overhead Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 15.1
    Lomas, C. et al.: Integrating overhead lines into an environmentally sensitive world. Cigré Report 22–206, 1996Google Scholar
  2. 15.2
    Degner, T.; Kießling, F.; Tzschoppe, J.: Mindestabstand zwischen Windenergieanlagen und Freileitungen (Clearances between wind energy converters and overhead tower lines). Elektrizitätswirtschaft 98 (1999) 7, pp. 32 to 35Google Scholar
  3. 15.3
    Cigré SC22 WG02: The environmental impacts of high-voltage overhead transmission lines. Cigré SC 22 WG02.02, Final Draft 1986Google Scholar
  4. 15.4
    Ammann, M. et al.: A new 400 kV line with compact towers and composite insulated crossarms. Cigré Report 22/33/36–06, 1998Google Scholar
  5. 15.5
    Cigre SC22 WG22–14: High-voltage overhead lines. Environmental concerns, procedures, impacts and mitigation. Paris, Cigré Brochure 147, 1999Google Scholar
  6. 15.6
    Boos, K.-V., et al.: Experience gained in the operation of mulitple-circuit high-voltage overhead lines of compact design. Cigré Report 22–12, 1986Google Scholar
  7. 15.7
    Kießling, F.; Nefzger, P.: Umrüstung vorhandener 220-kV-Leitungen auf den 380-kV-Betrieb (Converting existing 220 kV lines for 380 kV operation). Elektrizitätswirtschaft 89 (1990), pp. 1322 to 1329Google Scholar
  8. 15.8
    Kießling, F. et al.: Upgrading high-voltage lines to increase their capacity and mitigate environmental impacts. Cigré Report 22–208, 1998Google Scholar
  9. 15.9
    Cigré SC 21/22: Comparison of high-voltage lines and underground cables. Report and guidelines. Paris, Cigré Brochure 110, 1997Google Scholar
  10. 15.10
    Fricke, K.G. et al.: AC overhead and underground HV lines – Comparison and new aspects. Cigré Report 21/22–07, 1996Google Scholar
  11. 15.11
    Andersen, et al.: Development of a 420 kV XLPE cable system for the metropolitan power project in Copenhagen. Cigré Report 21–201, 1996Google Scholar
  12. 15.12
    Thuries, E. et al.: Underground gas-insulated transmission line. Cigré Report 21/22–05, 1996Google Scholar
  13. 15.13
    Ryu, K.S. et al.: Development and research activities on the cryogenic power transmission cable in Corea. Cigré Report 21/22–08, 1996Google Scholar
  14. 15.14
    Cigré SC22 WG14: Summary report on the questionnaire on the effects of regulatory controls, environmental legislation, concerns, issues and developments on OHL design routing, estimation and operation. SC 22 Meeting, Sendai, Japan 1997 power transmission cable in Corea. Cigré Report 21/22–08, 1996Google Scholar
  15. 15.15
    Directive 85/337/EEC: Assessment of the effects of certain public and private projects on the environment. Brussels, EC, 1985Google Scholar
  16. 15.16
    Directive 97/11/EC: Amending Directive 85/337/EEC. Brussels, EC, 1997Google Scholar
  17. 15.17
    Fitzgerald, C.F. et al.: Community consultation and environmental assessment for high-voltage transmission line projects in New South Wales. Cigré Report 22–202, 1996Google Scholar
  18. 15.18
    Federal Republic of Germany: Gesetz zur Umsetzung der UVP-Änderungsrichtlinie, der IVU-Richtlinie und weiterer EG-Richtlinien zum Umweltschutz (Law for implementation of EIS directive and other EC directives on environmental protection). Bundesgesetzblatt Jahrgang 2001, Teil I, Nr. 40, August 2001, pp. 1950 ffGoogle Scholar
  19. 15.19
    Engsbro, L. et al.: Modernisation of the high-voltage transmission system in Denmark. Cigré Report 21/22–03, 1996Google Scholar
  20. 15.20
    O’Luain, C. et al.: Transmission line route selection procedures for minimal environmental impact in Ireland. Cigré Report 22–203, 1996Google Scholar
  21. 15.21
    Hickey, J.: The effect of environmental impact legislation on right-of-way utilisation. Cigré Report 22–202, 1992Google Scholar
  22. 15.22
    Fleckenstein, K.; Palic, M.; Rhiem, W.: Räumliche Auswirkungen von Feileitungen (Spacial effects of ovcrhead power lines). etz 113 (1992), Vol. 1, pp. 32 to 36Google Scholar
  23. 15.23
    Wedeck, H.: Zur Bedeutung der Bündelung technisch-industrieller Strukturen bei Eingriffen in das Landschaftsbild (On the significanee of bundling technical and industrial structures affecting the landscape). Raumforschung und Raumplanung 54 (1996), pp. 45 to 53Google Scholar
  24. 15.24
    Nolasco, J.F., da Silva, J.B.G.F.: Use of rights-of-way of overhead lines in urban areas – an experience in Brazil. Cigré Report 22–204, 1992Google Scholar
  25. 15.25
    Energieübertragung und Ökologie: Informationen zur Trassenpflege (Energy transmission and ecology: information on maintenance of right-of-way). Essen, RWE Energie AG, 1996Google Scholar
  26. 15.26
    Switzerland, Federal Department of the Interior: Transportation of electrical energy and protection of landscape: Guidelines. Berne, 1980Google Scholar
  27. 15.27
    O’Neill, A. M.: Criteria for the siting of power line towers. Dublin, ESBI, 1994Google Scholar
  28. 15.28
    Takebe, T. et al.: Scenery preservation measures and evaluation methods for transmission linps. Cigré Report 22–205. 1996Google Scholar
  29. 15.29
    D’Ajello, L. et al.: Quantitativen evaluation of the visual impact of overhead lines. Cigré Report 22–210, 1996Google Scholar
  30. 15.30
    Shoji Shintani, S.: Transmission lines and the environment – Route selection systems. Sendai, Cigré SC22 Colloquium, 1997Google Scholar
  31. 15.31
    The National Grid Company plc. England. Guidelines for the routing of new high-voltage overhead transmission lines. The Holford rulesGoogle Scholar
  32. 15.32
    FERC Guidelines. Federal Energy Regulatory Commission (USA). Guidelines for the Protection of Natural, Historie, Scenic, and Recreational Values in the Design and Location of Rights-of-Way and Transmission Facilities.Google Scholar
  33. 15.33
    Thompson, J.W.: Siting the Line. Landscape Architecture 46, August 1996Google Scholar
  34. 15.34
    Pilegaard, M.: Local and regional related environmental issues. Environmental impact and consequences of electrification in rural areas, grid expansions and transmission lines. Paper on behalf of UNIPEDE Group 40.SYST.Google Scholar
  35. 15.35
    Weedy, B.M.: Environmental Aspects of Route Selection for Overhead Lines in the U.S.A. Electrical Engineering Department, The University, Southhampton. Electric Power System Research, 16 (1989), pp. 217 to 226CrossRefGoogle Scholar
  36. 15.36
    Vité, Mallet and Chambon: Comparison of Technologies for Devloping 400 kV Networks, with Consideration of their Environmental Impact. EDF, Paper from Second Conference on the Development and Operation of Interconnected Power Systems. Budapest, November 1996, Session 4: The Insertion of Interconnected Systems into the Environment.Google Scholar
  37. 15.37
    Rogier, J. et al.: Visualization of overhead line project in Belgium. Cigré Report 22–209, 1996Google Scholar
  38. 15.38
    Doyen-Vigvier, C. et al.: Digital simulation for better integration of overhead transmission lines in the environment. Cigré Report 22–201, 1996Google Scholar
  39. 15.39
    3.30: Lugschitz, H.; Egger, H.: Experience with a 380 kV camouflage line. Cigré Report 22/33/36–04, 1998Google Scholar
  40. 15.40
    UNESCO: Convention on wetlands of international importance especially as waterfowl habitat. 1971, amended 1982 and 1987Google Scholar
  41. 15.41
    Bevanger, K.: Bird interactions with utility structures: Collision and electrocution, causes and mitigation measures. IBIS 136: pp. 312 to 425Google Scholar
  42. 15.42
    Heijnis, R.: Vogeltod durch Drahtanflüge bei Hochspannungsleitungen (Death of bird due to collisions with overhead power lines). Ökologie der Vögel, Second Special issue 1980Google Scholar
  43. 15.43
    Hoerschelmann, H. et al.: Verluste und Verhalten von Vögeln an einer 380-kV-Freiieitung (Losses and behaviour of birds on a 380 kV overhead line). Ökologie der Vögel, (1988), pp. 85 to 103Google Scholar
  44. 15.44
    Avian Power Line Interaction Committee (APLIC): Mitigating bird collisions with power lines: The state of the art in 1994. Washington, D.C., Edision Electric Institute, 1994Google Scholar
  45. 15.45
    Avian Power Line Interaction Committee (APLIC): Suggested practices for raptor protection on power lines: The state of the art in 1996. Washington, D. C., Electric Institute/Raptor Research Foundation, 1996Google Scholar
  46. 15.46
    Koops, F.B.J.: Collision victims of high tension lines in the Netherlands and effects of marking. Madrid, Technical sessions on power lines and the environment, 1994Google Scholar
  47. 15.47
    Piper, W. et al.: Ornithologische Begleituntersuchungen zur Errichtung einer 380-kV-Leitung (Stadorf) – Lüneburg-Krümel (Ornithological studies referring to construction of a 380 kV line Stadorf-Lüneburg-Krümmel). Internal report of Preussen Elektra AG prepared by INUF, 1992Google Scholar
  48. 15.48
    VDEW: Orientierungshilfe zu Pflegemaßnahmen in Leitungstrassen (Orientating guidelines on maintenance activities in overhead line rights-of-way). Frankfurt am Main, VDEW-Verlag, 1993Google Scholar
  49. 15.49
    Fleckenstein, K.; Rhiem, W.: Waldüberspannung und Walddurchquerung. Ökologische und landschaftspflegerische Aspekte beim Freileitungsbau (Crossing above forests or aisles through forests. Ecological and landscape aspects in case of overhead lines). Reports of ANL, 1991Google Scholar
  50. 15.50
    Brackel, V.W.: Vegetationskundliche Untersuchung einer Stromleitungstrasse (Investigations of vegetation within the power line right-of-way). Natur und Landschaft, 64 (1989) Vol. 11Google Scholar
  51. 15.51
    Coch, T.; Uther, D.: Biotopmanagement in walddurchquerenden Trassen von Hochspannungsleitungen (Biotope management in the right-of-way of overhead power lines through forests), Naturschutz und Landschaftsplanung 26 (1994), Vol. 3Google Scholar
  52. 15.52
    Hoss, H.: Digitales Höhenmodell in Waldgebieten. Erfahrungen aus Laserscanner-Befliegungen (Digital height elevation model in forestal areas. Experience from laser scanning flights). Landesvermessungsamt Baden-Württemberg 1994Google Scholar
  53. 15.53
    Mekhanoshin, B.I. et al.: Use of an airborn laser locator to improve availability and quality of maintenance of overhead lines. Cigré Report 22–204, 2000Google Scholar
  54. 15.54
    EN 50341-1: Overhead electrical lines exceeding AC 45 kV. Part 1: General requirements – Common specifications. Brussels, CENELEC 2001Google Scholar
  55. 15.55
    EN 50341-3-4: Overhead electrical lines exceeding AC 45 kV. Part 3–4: National Normative Aspccts (NNA) for Germany. Brussels, CENELEC 2001Google Scholar
  56. 15.56
    EN 50341-3: Overhead electrical lines exceeding AC 45 kV. Part 3: National Normative Aspects. Brussels, CENELEC, 2001Google Scholar
  57. 15.57
    VDE 0210: Planning and design of overhead power lines with rated voltages above 1 kV, amendrnent A4. Frankfurt am Main, DKE Draft, 1999Google Scholar
  58. 15.58
    Dahlberg, F.; Palm, Y.: Optimum tower spotting on transmission lines by means of electronic computer. Swedish State Power Board, Blue-white series No. 33 (1963)Google Scholar
  59. 15.59
    Kießling, F.: Optimum tower spotting for an overhead line. Siemens Power Engineering 5 (1983), pp. 34 to 38Google Scholar
  60. 15.60
    PSLCADD: Computer program for the integrated analysis and design of a transmission line. Madison (Wi.) Power line systems, 1997Google Scholar
  61. 15.61
    Riisio, P.J.; Kioivanta, V. M.: Computer aided design systems for line routes tower spotting and line structures in Finland. Cigré Report 22–104, 1990Google Scholar
  62. 15.62
    Ranero, I.: Automatic minimum cost support spotting by computer. Cigré Report 22–105, 1990Google Scholar
  63. 15.63
    Siemens program system Overhead Power Line. Establishment and administration of plans for overhead power lines using SICAD. Erlangen, Siemens AG 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Friedrich Kiessling
    • 1
  • Peter Nefzger
    • 2
  • João Felix Nolasco
    • 3
  • Ulf Kaintzyk
    • 4
  1. 1.BaiersdorfGermany
  2. 2.HemmingenGermany
  3. 3.Belo HorizonteBrasil
  4. 4.Siemens AGPower Transmission and DistributionErlangenGermany

Personalised recommendations