Advertisement

Wirkungsmechanismus von Valproinsäure: Neurophysiologische Aspekte

  • U. Heinemann
  • J. Dreier
  • J. Stabel
  • C. L. Zhang
  • A. Leschinger
  • E. Ficker

Zusammenfassung

VPA besitzt in den von uns untersuchten In-vitro-Epilepsiemodellen von allen klinisch verwendeten Antikonvulsiva das relativ weiteste Wirk-spektrum. VPA beeinflußt die Erregungsbildung an Nervenzellen sowohl über eine nutzungsabhängige Blockade von Natriumströmen wie durch eine Blockade der T-Kalziumströme. Darüber hinaus steigert VPA die Synthese von GABA und reduziert die Bildung von Aspartat. Damit ist VPA ähnlich wie die meisten anderen klinisch verwendeten anfallsunterdrückenden Substanzen keine sehr spezifisch wirkende Substanz. Die nachgewiesenen Wirkungen von VPA sind aber vereinbar mit dem breiten Wirkspektrum von VPA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Avoli M (1986) Inhibitory potentials in neurons of the deep layers of the in vitro neocortical slice. Brain Res 370:165–170PubMedCrossRefGoogle Scholar
  2. Coulter DA, Huguenard JR, Prince DA (1989) Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 98:74–78PubMedCrossRefGoogle Scholar
  3. Coulter DA, Huguenard JR, Prince DA (1990a) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: Calcium current reduction. Br J Clin Pharmacol 100:800–806CrossRefGoogle Scholar
  4. Coulter DA, Huguenard JR, Prince DA (1990b) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade. Br J Clin Pharmacol 100:807–813CrossRefGoogle Scholar
  5. Dreier JP, Heinemann U (1990) Late low magnesium-induced epileptiform activity in rat entorhinal cortex slices becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 119:68–70PubMedCrossRefGoogle Scholar
  6. Franceschetti S, Hamon B, Heinemann U (1986) The action of valproate on spontaneous epileptiform activity in absence of synaptic transmission and on evoked changes in [Ca2+]0 in the hippocampal slice. Brain Res 386:1–11PubMedCrossRefGoogle Scholar
  7. Hablitz JJ, Heinemann U (1987) Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Dev Brain Res 36:299–303CrossRefGoogle Scholar
  8. Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Dev Brain Res 46:243–252CrossRefGoogle Scholar
  9. Heinemann U, Franceschetti S, Hamon B, Konnerth A, Yaari Y (1985) Effects of anticonvulsants on spontaneous epileptiform activity which develops in the absence of chemical synaptic transmission in hippocampal slices. Brain Res 325:349–352PubMedCrossRefGoogle Scholar
  10. Heinemann U (1987) Basic mechanisms of the epilepsies. In: Halliday AM, Butler SR, Paul R (eds) A textbook of clinical neurophysiology. Wiley & Sons, Chichester New York Brisbane Toronto Singapore, pp 497–534Google Scholar
  11. Heinemann U, Stabel J, Rausche G (1990) Activity-dependent ionic changes and neuronal plasticity in rat hippocampus. In: Storn-Mathisen J, Zimmer J, Ottersen OP (eds) Progress in Brain Research, vol 83. Elsevier Science, pp 197–214Google Scholar
  12. Heinemann U, Jones RSG (1991) Neurophysiology. In: Gram L, Dam M (eds) Comprehensive Epileptology. Raven Press, New York, pp 17–42Google Scholar
  13. Jahnsen H, Llinás RR (1984) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247Google Scholar
  14. Jones RSG, Heinemann U (1987) Abolition of the orthodromically evoked IPSP of CA1 pyramidal cells before the EPSP during washout of calcium from hippocampal slices. Exp Brain Res 65:676–680PubMedGoogle Scholar
  15. Kelly KM, Gross RA, Macdonald RL (1990) Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 116:233–238PubMedCrossRefGoogle Scholar
  16. Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro: I. Development of seizurelike activity in low extracellular calcium. J Neurophysiol 56:409–423PubMedGoogle Scholar
  17. Kostopoulos G, Avoli M, Pellegrini A, Gloor P (1982) Laminar analysis of spindles and of spikes of the spike and wave discharge of feline generalized penicillin epilepsy. Electroenc Clin Neurophysiol 53:1–13CrossRefGoogle Scholar
  18. Kostopoulos G, Avoli M, Gloor P (1983) Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 267:101–112PubMedCrossRefGoogle Scholar
  19. Lee KS, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321:160–164PubMedCrossRefGoogle Scholar
  20. Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in Neurology Vol. 44. Basic mechanisms of epilepsies: Molecular and cellular approaches. Raven, New York, pp 619–639Google Scholar
  21. Macdonald RL, Barker JL (1979) Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: Common mode of anticonvulsant action. Brain Res 167:323–336PubMedCrossRefGoogle Scholar
  22. Macdonald RL, Bergey GK (1979) Valproic acid augmants GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 170:558–562PubMedCrossRefGoogle Scholar
  23. Macdonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanisms of action. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol. 44. Basic mechanisms of the epilepsies. Raven, New York, pp 713–736Google Scholar
  24. Mody I, Lambert JDC, Heinemann U (1987) Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol 57, No. 3:869–888PubMedGoogle Scholar
  25. Müller W, Misgeld U, Heinemann U (1988) Carbachol effects on hippocampal neurons in vitro: Dependence on the rate of carbachol tissue concentration. Exp Brain Res 72:287–298PubMedCrossRefGoogle Scholar
  26. Olpe H-R, Steinmann MW, Pozza MF, Brugger F, Schmutz M (1988) Valproate enhances GAB A-A mediated inhibition of locus coeruleus neurones in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 338:655–657CrossRefGoogle Scholar
  27. Prince DA (1978) Neurophysiology of epilepsy. Ann Rev Neurosci 1:395–415PubMedCrossRefGoogle Scholar
  28. Pumain R, Menini C, Heinemann U, Silvat-Barrat C, Louvel J (1985) Chemical synaptic transmission is not necessary for epileptic activity to persist in the neocortex of the photosensitive baboon. Exp Neurol 89:250–258PubMedCrossRefGoogle Scholar
  29. Rose GM, Olpe H-R, Haas HL (1986) Testing of prototype antiepileptics in hippocampal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 332:89–92CrossRefGoogle Scholar
  30. Stanton PK, Jones RSG, Mody I, Heinemann U (1987) Epileptiform activity induced by lowering extracellular [Mg++] in combined hippocampal-entorhinal cortex slices: modulation by receptors for Norepinephrine and N-methyl-D-aspartate. Epilepsy Res 1:53–62PubMedCrossRefGoogle Scholar
  31. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276PubMedGoogle Scholar
  32. Walther H, Lambert JDC, Jones RSG, Heinemann U, Hamon B (1986) Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neursci Lett 69:156–161CrossRefGoogle Scholar
  33. Wong RKS, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Advances in neurology, vol. 44. Basic mechanisms of the epilepsies. Raven, New York, pp 583–592Google Scholar
  34. Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51:153–156PubMedCrossRefGoogle Scholar
  35. Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438PubMedGoogle Scholar
  36. Yamamoto C (1972) Intracellular studies of seizure-like afterdischarges elicited in thin hippocampal sections in vitro. Exp Neurol 35:154–164PubMedCrossRefGoogle Scholar
  37. Zona C, Avoli M (1990) Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 81:313–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • U. Heinemann
  • J. Dreier
  • J. Stabel
  • C. L. Zhang
  • A. Leschinger
  • E. Ficker

There are no affiliations available

Personalised recommendations