Skip to main content
  • 476 Accesses

Abstract

Airborne observations with dedicated instruments have their own history in contributing to advances in the Geosciences and extending our general knowledge in many fields, including the numerous surveys for natural resources. These observations cannot simply be regarded as an appendix to spaceborne observations, as one might assume with virtually all the publicity on the spaceborne front; rather, airborne observations add another dimension to Earth observation and provide a wide field of applications of their own. They are the most efficient means by which laboratory- and ground-based observations can be extended to regional observations. The science community needs data on the local and regional scales for calibration of its global data from spaceborne observation and for understanding overall concepts.487)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. W. B. Johnson, S. H. Melfi, “Airborne Geoscience: The Next Decade,” The Report of the Special Interagency Task Group on Airborne Geoscience, February 1989, NASA, NOAA, NSF

    Google Scholar 

  2. Information provided by R. Anderson of SAIC, San Diego

    Google Scholar 

  3. V. Bürger, et al., “Aircraft-borne mass spectrometer measurements of HNO3, HF, SO2, (CH3)2CO, and CH3CN within STREAM II,” Proceedings of 3rd Symposium on Polar Ozone, Schliersee, Germany, 1995

    Google Scholar 

  4. F. Arnold, et al., “Measurements of Jet Aircraft Emissions at Cruise Altitude I: The odd-nitrogen gases NO, NO2, HNO2, and HNO3,” Geophysical Research Letters, Vol. 12, No. 24, December 24, 1992, pp. 2421–2424

    Article  Google Scholar 

  5. O. Möhler, Th. Reiner, F. Arnold, “A novel aircraft-based tandem mass spectrometer for atmospheric ion and trace gas measurements,” Review of Scientific Instruments, Vol. 64, No. 5, May 1993, pp. 1199–1207

    Article  Google Scholar 

  6. R. Beer, “6th TES/AES Science Team Meeting,” The Earth Observer, Vol. 4, No. 6, Nov/Dec 1992, pp. 8–10

    Google Scholar 

  7. H. P. Röser, “Heterodyne Spectroscopy for Submillimeter and Far-Infrared Wavelengths from 100 urn to 500 urn,” Infrared Physics, Vol. 32, 1991, pp. 385–407

    Article  Google Scholar 

  8. J. L. Paul, B. W. Gibbs, P. Nguyen, F. G. R. Warren, “Design of an Airborne Imaging Microwave Radiometer,” urad 92, Proceedings of the Specialist Meeting on Microwave Radiometry and Remote Sensing, pp. 454–459

    Google Scholar 

  9. Information provided by L. J. Otten of Kestrel Corporation

    Google Scholar 

  10. ‘AIRDAS Digital Scanner,’ information brochure of NASA/ARC provided by J. C. Brass

    Google Scholar 

  11. V. G. Ambrosia, J. A. Brass, et al., “AIRDAS, Development of a Unique Four Channel Scanner for Natural Disaster Assessment,” Proceedings of the 1. International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 129–141

    Google Scholar 

  12. J. van Zyl, R. Carande, Y. Lou, T. Miller, K. Wheeler, “The NASA/JPL Three-Frequency Polarimetric AIRSAR System, JPL paper

    Google Scholar 

  13. H. A. Zebker, S. N. Madsen, J. Martin, K. B. Wheeler, T. Miller, Y. Lou, G. Alberti, S. Vetrella, A Cucci, “The TOPSAR Interferometric Radar Topographic Mapping Instrument,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, Sept. 1992, pp 933–940

    Article  Google Scholar 

  14. S. N. Madsen, H. A. Zebker, J. Martin, “Topographic Mapping Using Radar Interferometry: Processing Techniques,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 1, January 1993, pp. 246–256

    Article  Google Scholar 

  15. J. J. van Zyl, et al., “The New Dual Frequency (C- and L-Band) TOPSAR Airborne Interferometric SAR,” Proceedings IGARSS ’95, Volume III, pp. 2270–2272

    Google Scholar 

  16. “Imaging Spectroscopy: Fundamentals and Prospective Applications,” F. Toselli and J. Bodechtel (Editors), Kluver Academic Publishers, Remote Sensing Volume 2, ISBN 0-7923-1535-9, 1992, pp. 97–102, Annex — Airborne Imaging Spectrometers (J. Bodechtel, S. Sommer)

    Google Scholar 

  17. B. Braam “Design and first results of the Finnish Airborne Imaging Spectrometer for Different Applications, AISA,” presented at SPIE Symposium on Optical Engineering and Remote Sensing, Orlando Fla., April 12–16,

    Google Scholar 

  18. J. L. Bufton, J. B. Garvin, J. F. Cavanaugh, L. Ramos-Izquierdo, T. D. Clem, W. B. Krabill, “Airborne Lidar for Profiling of Surface Topography,” Optical Engineering, January 1991, Vol. 30, No. 1, pp. 72–78

    Article  Google Scholar 

  19. Information provided by C. R. Webster of NASA/JPL

    Google Scholar 

  20. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3,” Applied Optics, January 20, 1994

    Google Scholar 

  21. J. E. Kalshoven, P. W. Dabney, “Remote Sensing of the Earth’s Surface with an Airborne Polarized Laser,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 31 No. 2, March 1993, pp. 438–446

    Article  Google Scholar 

  22. Information provided by J. Lindenberger of TopScan GmbH, Stuttgart, Germany

    Google Scholar 

  23. Information provided by J. R. Wang of GSFC

    Google Scholar 

  24. Information provided by R. E. Hood and R. W. Spencer of NASA/MSFC

    Google Scholar 

  25. R. W. Spencer, R. E. Hood, et al., “High-Resolution Imaging of Rain Systems with the Advanced Microwave Precipitation Radiometer,” Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 4, Aug. 1994, pp. 849–857

    Article  Google Scholar 

  26. Information provided by J. Bradley, SNL, Albuquerque, NM and by R. Finucane of LLNL, Livermore, CA

    Google Scholar 

  27. R. Peter, K. F. Künzi, G. K. Hartmann, “Latitudinal Survey of Water Vapor in the middle atmosphere using an airborne millimeterwave sensor,” Geophysical Research Letters, Vol. 15, October 1988

    Google Scholar 

  28. R. Peter, N. Kämpfer, “Stratospheric and mesospheric water vapor distribution over Northern Europe measured with an airborne mm-wave sensor,” Proceedings of IGARSS ’94, Pasadena, CA, August 1994

    Google Scholar 

  29. F. E. Hoge, “Oceanic and Terrestrial Lidar Measurements,” Chapter 6 of ‘Laser Remote Chemical Analysis,’ R. M. Measures (Editor), John Wiley & Sons, 1988, pp. 409–503

    Google Scholar 

  30. F. E. Hoge, R. N. Swift, “Oil film thickness measurement using airborne laser-induced water Raman backscatter,” Applied Optics, October 1, 1980, Vol 19, No. 19, pp. 3269–3281

    Article  Google Scholar 

  31. F. E. Hoge, R. N. Swift, “Photosynthetic Accessory Pigments: Evidence for the Influence of Phycoerythrin on the Submarine Light Field,” Remote Sensing Environment, 34, pp. 19–35, 1990

    Article  Google Scholar 

  32. A. L. Pazmany, J. Galloway, R. E. Mcintosh, “A 95 GHz Airborne Radar for High-resolution Polarimetric Cloud Measurements,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, Sept. 12–15, 1994, Volume III, pp. 663–668

    Google Scholar 

  33. A. L. Pazmany, R. E. Mcintosh, R. D. Kelly, G. Vali, “An Airborne 95 GHz Dual-Polarized Radar for Cloud Studies,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, July 1994, pp. 731–739

    Article  Google Scholar 

  34. A. L. Pazmany, J. Mead, R. Mcintosh, “95-GHz Polarimetric Radar Measurements of Orographic Cap Clouds,” Journal of Atmospheric and Oceanic Technology, Volume 11, No. 1, February 1994, pp. 140–153

    Article  Google Scholar 

  35. L. Stefanutti et al., “The Airborne Polar Experiment,” Life Chemistry Reports, Vol. 13, 1995, pp. 57–62

    Google Scholar 

  36. Information provided by U. Cortesi and B. Carli of CNR/IROE, Florence, Italy

    Google Scholar 

  37. Information provided by G. Giovanelli of CNR/FISBAT

    Google Scholar 

  38. Information provided by J. Strom of MISU, Stockholm

    Google Scholar 

  39. E. L. Jewett, K. D. Bishop, “An Airborne Mid-Wave Infrared Imaging Spectrometer for Atmospheric and Earth Science Remote Sensing Applications,” internal Lockheed report provided by E. L. Jewett

    Google Scholar 

  40. M. Loewenstein, “ARGUS: A New Instrument for PERSEUS A,” The Perseus Data Link, Issue #3, Third Quarter 1993

    Google Scholar 

  41. ) Information provided by W. S. Heaps of NASA/GSFC, Greenbelt, MD

    Google Scholar 

  42. Information provided by S. Durden of JPL

    Google Scholar 

  43. S. Durden, et al., “ARMAR Observations During TOGA/COARE,” Proceedings of IGARSS ‘94, Volume I, pp. 568–570

    Google Scholar 

  44. J. R. Irons, K. J. Ranson, D. L. Williams, R. R. Irish, F. G. Huegel, “An Off-Nadir-Pointing Imaging Spectrora-diometer for Terrestrial Ecosystem Studies,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, No. 1, January 1991, pp. 66–74

    Article  Google Scholar 

  45. J. Irons, “The Advanced Solid-State Array Spectroradiometer (ASAS),” The Earth Observer, Vol. 3,. No. 7, 1991, pp. 31–35

    Google Scholar 

  46. P. S. Stevens, J. H. Mather, W. H. Brune, “Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure,” Journal of Geophysical Research, Vol. 99, 1994, pp. 3543–3557

    Article  Google Scholar 

  47. M. Loewenstein, J. R. Podolske, K. R. Chan, S. E. Strahan, “Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment,” J. of Geophysical Research, Vol. 94, No. D9, 1989, pp. 11,589–11,598

    Article  Google Scholar 

  48. Information provided by B. A. Spiering of NASA/SSC

    Google Scholar 

  49. A. Marenco, et al., “Measurement of Ozone and Water Vapor on Airbus In-Service Aircraft: The MOZAIC Programme,” paper presented at DLR Colloquium in Cologne, April 18.–20, 1994

    Google Scholar 

  50. Information provided by R. von Wrede, Airbus Industrie, Blagnac, France

    Google Scholar 

  51. Information provided by W. Hans of GFAS

    Google Scholar 

  52. Information provided by D. Scharffe of MPICh, Mainz

    Google Scholar 

  53. Information provided by A. Wiedensohler, Institut für Troposphärenforschung, Leipzig, Germany

    Google Scholar 

  54. H. Matsueda, H. Inoue, “Measurements of trace gases in the upper atmosphere using airliner (Boeing 747),” JMA/MRI/GRL internal paper provided by H. Matsueda

    Google Scholar 

  55. U. Kälberer, “Topographic Mapping by an Airborne Microwave Altimeter Platform,” Proceedings of the 1. International Airborne Remote Sensing Conference and Exhibition,” Strasbourg, France, Volume II, September 12–15, 1994, pp. 43–51

    Google Scholar 

  56. Ch. Hug, “The Scanning Laser Altitude and Reflectance Sensor, An Instrument for Efficient 3-D Terrain Survey,” Proceedings of the ISPRS-Symposium ‘Primary Data Acquisition and Evaluation,’ September 12–16, 1994, Como, Italy,

    Google Scholar 

  57. Information provided by R. O. Green of NASA/JPL

    Google Scholar 

  58. W. M. Porter, H. T. Enmark, “A System of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” SPIE, Vol. 834 Imaging Spectroscopy II, 1987

    Google Scholar 

  59. W. M. Porter, T. G. Chrien, E. G. Hansen, Ch. M. Sature, “Evolution of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Flight and Ground Data Processing System,” SPIE, Vol. 1298, 1990, pp. 11–17

    Article  Google Scholar 

  60. T. G. Chrien, et al., “Improvements to the Airborne Visible/Infrared Spectrometer (AVIRIS) Calibration System,” Proceedings of IGARSS ‘94, Volume IV, pp. 2293–2294

    Google Scholar 

  61. A. Bochert, Ch. Wamser, “New Airborne Line Scanner Systems for High Resolution Sea Ice Observation, The Global Atmosphere and Ocean System,” Gordon and Breach Science Publishers, Vol. 2, 1994, pp. 247–251

    Google Scholar 

  62. Ch. Kottmeier, J. Hartmann, Ch. Wamser, A. Bochert, et al., “Radiation and Eddy Flux Experiment 1993, REFLEX II, Reports on Polar Research,” AWI, Vol. 133, 1994

    Google Scholar 

  63. Information provided by E. Westwater and L. Fedor of NOAA/ERL/ETL

    Google Scholar 

  64. M. D. Jacobson, L. S. Fedor, D. A. Hazen, W. B. Madsen, M. H. Francis, D. P. Kremer, “A Dual Frequency mm-Wave Radiometer Antenna for Airborne Remote Sensing of Atmosphere and Ocean,” Microwave Journal, September 1994, pp. 24–39

    Google Scholar 

  65. L. S. Fedor, et al., “Dual-Channel Microwave Radiometer for Airborne Meteorological Applications,” NOAA Technical Memorandum ERL WPL-157, 1988, p. 1989

    Google Scholar 

  66. L. S. Fedor, V. G. Irisov, “Airborne Dual-Channel Radiometric Ocean Surface Observations during SCOPE 93,” International Geoscience and Remote Sensing Symposium, 1994, pp. 2410–2112

    Google Scholar 

  67. T. L. Crawford, R. T. McMillen, T. P. Meyers, B. B. Hicks, “Spatial and Temporal Variability of Heat, Water Vapor, Carbon Dioxide, and Momentum Air-Sea Exchange in a Coastal Environment,” Journal of Geophysical Research, Vol. 98, No. D7, pp. 12869–12880, July 20, 1993

    Article  Google Scholar 

  68. T. L. Crawford, R. J. Dobosy, “A Sensitive Fast-Response Probe to measure Turbulence and Heat Flux from any Airplane,” Boundary-Layer Meteorology 59, pp. 259–278, 1992

    Article  Google Scholar 

  69. R. D. Kelly, et al., “BOREAS 1994 intercomparison among three flux aircraft,” Extended Abstracts, 22nd Conference on Agricultural and Forest Meteorology, AMS, Atlanta, GA, January 1996

    Google Scholar 

  70. R. J. Dobosy, T. L. Crawford, et al., “Judging the area represented by flux measurements from a tower in a heterogeneous region,” Extended Abstracts, 22nd Conference on Agricultural and Forest Meteorology, AMS, Atlanta, GA, January 1996

    Google Scholar 

  71. D. R. Auble, T. M. Meyers, “An H2O and CO2 open path gas analyzer for use with eddy flux measurements,” Boundary Layer Meteorology, Vol. 59, 1992, pp. 243–256

    Article  Google Scholar 

  72. J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The Structure and Phase of Cloud Tops as Observed by Polarization Lidar,” Journal of Climate and Applied Meteorology, Vol. 22, No. 8, August 1983, pp. 1319–1331

    Article  Google Scholar 

  73. Information provided by J. D. Spinhirne of NASA/GSFC

    Google Scholar 

  74. J. D. Spinhirne, “Cirrus Structure and Radiative Parameters from Airborne Lidar and Spectral Radiometer Observations: The 28 October 1986 FIRE Study,” Monthly Weather Review, Vol. 118, No. 11, November 1990, pp. 2329–2343

    Article  Google Scholar 

  75. Information provided by B. A. Spiering of NASA/SSC

    Google Scholar 

  76. M. D. King, L. F. Radke, P. V. Hobbs, “Determination of Spectral Absorption of Solar Radiation by Marine Stratocumulus Clouds from Airborne Measurements within Clouds,” Journal of the Atmospheric Sciences, Vol. 47, No. 7, April 1, 1990, pp. 894–907

    Article  Google Scholar 

  77. M D. King, M. G. Strange, P. Leone, L. R. Blaine, “Multiwavelength Scanning Radiometer for Airborne Measurements of Scattered Radiation within Clouds,” Journal of Atmospheric and Oceanic Technology, Vol. 13, No. 3, September 1986, pp.513–522

    Article  Google Scholar 

  78. T. Nakajima, M. D. King, “Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory,” Journal of Atmospheric Sciences, Vol. 47, No. 15, August 1, 1990, pp. 1878–1893

    Article  Google Scholar 

  79. ) T. Nakajima, M. D. King, J. D. Spinhirne, L. F. Radke, “Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations,” Journal of Atmospheric Sciences, Vol. 48, No. 5, March 1, 1991, pp. 728–750

    Article  Google Scholar 

  80. M. D. King, L. F. Radke, P. V. Hobbs, “Optical Properties of Marine Stratocumulus Clouds Modified by Ships,” Journal of Geophysical Research, Vol. 98, No. D2, February 20, 1993, pp. 2729–2739

    Article  Google Scholar 

  81. M. D. King, “Directional and Spectral Reflectance of the Kuwait Oil-Fire Smoke,” Journal of Geophysical Research, Vol. 97, No. D13, Sept. 1992, pp. 14545–14549

    Google Scholar 

  82. A. Gustavsson, P. O. Frölind, H. Hellsten, T. Jonsson, B. Larsson, G. Stenström, “The Airborne VHF SAR System CARABAS,” IGARSS ‘93, Vol. II, Kogakuin University, Tokyo, Japan, Aug. 18–21, 1993, pp. 558–562

    Google Scholar 

  83. B. T. Binder, M. F. Toups, S. Ayasli, E. M. Adams, “SAR Foliage Penetration Phenomenology of Tropical Rain Forest and Northern US Forest,” Proc. IEEE 1995 International Radar Conference, Alexandria, VA, May 8–11, 1995, pp. 158–163, Piscataway, 1995

    Google Scholar 

  84. M. I. Mirkin, C. F. Lee, et al., “Results on Ground Penetration SAR Phenomenology from June 1993 Yuma Experiment,” Proceedings IEEE 1995 International Radar Conference, Alexandria, VA, May 8–11, 1995, pp. 164–170, Piscataway, 1995

    Google Scholar 

  85. Information provided by A. Gustavsson of FOA, Linköping, Sweden

    Google Scholar 

  86. C. D. Anger, S. Mah, S. K. Babey, “Technological Enhancements to the Compact Airborne Spectrographic Imager (CASI),” Proceedings of the 1. International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 205–213

    Google Scholar 

  87. Information provided by J. Hochstetler, The Naval Air Warfare Center, Weapons Division, Point Mugu, CA

    Google Scholar 

  88. Zheng Qinbo, Zhang Zhimin, Zhang Baolong, Xu Xuerong, Feng Qi, Gu Gong, “Spaceborne Chinese Imaging Spectrometer,” Proc. of the 5th ISCOPS, Shanghai, June 7–9, 1993

    Google Scholar 

  89. Xue Yongqi, et al. “New Progress of Airborne Scanners at SITP from 1986 to 1990,” paper presented at the 11th Asian Remote Sensing Conference in 1990

    Google Scholar 

  90. Y. Xue, M. Shen, C. Yang, J. Wang, W. Yu, “Modular Airborne Imaging Spectrometer (MAIS),” paper provided by Z. Zhang of SITP, Shanghai

    Google Scholar 

  91. Information provided by P. Wendling of DLR

    Google Scholar 

  92. Courtesy of B. A. Speer of SAIC

    Google Scholar 

  93. Information provided by R. F. Pueschel of NASA/ARC

    Google Scholar 

  94. K. Okamoto, S. Yoshikado, et al, “Airborne microwave rain-scatterometer/radiometer,” International Journal of Remote Sensing, Volume 3, No. 3, 1982, pp. 277–294

    Article  Google Scholar 

  95. T. Kozu, R. Meneghini, et al, “Airborne Radar and Radiometer Experiment for Quantitative Remote Measurements of Rain,” Proceedings of IGARSS ‘89, Vancouver, pp. 1499–1502

    Google Scholar 

  96. J. R. Wang, et al, “Airborne Active and Passive Microwave Observations of Super Typhoon Flo,” IEEE Transactions on Geoscience and Remote Sensing, Volume 32, No. 2, March 1994, pp. 231–240

    Article  Google Scholar 

  97. T. Kobayashi, et al., “The Design and Development of Airborne High-Resolution Topographic Imaging Radar in CRL,” Proceedings IGARSS ‘95, Vol. I, pp. 43–45

    Google Scholar 

  98. J. Carswell, R. Mcintosh, “Backscatter from the Ocean Surface under low Wind Conditions,” Proceedings of IGARSS ‘94, Volume I, pp. 562–564

    Google Scholar 

  99. Information provided by R. E. Hood of NASA/MSFC

    Google Scholar 

  100. J. Ström, J. Heintzenberg, “Water Vapor, Condensed Water, and Crystal Concentration in Orographically Influenced Cirrus Clouds,” Journal of the Atmospheric Sciences, Vol. 51, No. 16, August 15, 1994, pp. 2368–2383

    Article  Google Scholar 

  101. R. W. Dixon, R. J. Charlson, “Development of a new real-time method for measuring S(IV) in cloud water using a counter-flow virtual impactor,” Tellus, Vol. 46B, 1994, pp. 193–204

    Google Scholar 

  102. K. J. Noone, J. A. Ogren, J. Heintzenberg, R. J. Charlson, D. S. Covert, “Design and Calibration of a Counter-flow Virtual Impactor for Sampling of Atmospheric Fog and Cloud Droplets,” Aerosol Science and Technology, Vol. 8, 1988, pp. 235–244

    Article  Google Scholar 

  103. J. A. Ogren, J. Heintzenberg, R. J. Charlson, “In-situ sampling of clouds with a droplet to aerosol converter,” Geophysical Research Letters, Vol. 12, 1985, pp. 121–124

    Article  Google Scholar 

  104. C. E. Livingstone, A. L. Gray, R. K. Hawkins, et al., “The CCRS airborne SAR systems: radar for remote sensing research,” Canadian Journal of Remote Sensing, Vol. 21, No. 4, 1995 (in press)

    Google Scholar 

  105. Information brochure provided by L. Gray of CCRS, Ottawa, Canada

    Google Scholar 

  106. R. C. Wrigley, R. E. Stye, S. A. Klooster, R. S. Freedman, M. Carle, L. F. McGregor, “The Airborne Ocean Color Imager: System Description and Image Processing,” Journal of Imaging Science and Technology, Vol. 36, No. 5, Sept./Oct. 1992, pp. 423–430

    Google Scholar 

  107. M. D. King, D. Herring, “The MODIS Airborne Simulator (MAS),” The Earth Observer, Vol. 4, No. 6, 1992, pp. 15–19, the paper provides a historical background of MAS

    Google Scholar 

  108. M. D. King, et al., “Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor and Surface Properties,” Journal of Atmospheric and Oceanic Technology, submitted in April 1995

    Google Scholar 

  109. Ch. G. Stanich, F. G. Osterwisch, “Advanced Operational Hyperspectral Scanners: MIVIS and AHS,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 191–204

    Google Scholar 

  110. Information provided by G. England of Daedalus

    Google Scholar 

  111. Information provided by G. England of Daedalus Enterprises, Inc., Ann Arbor, MI

    Google Scholar 

  112. M. A. Jadkowski, R. J. Birk, R. L. Wilson, “Aerial CCD Camera System for Pipeline Right-of-Way Management,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 225–235

    Google Scholar 

  113. Information provided by D. C. Jones of UKMO at Farnborough, UK

    Google Scholar 

  114. J. Fischer, W. Cordes, A. Schmitz-Pfeiffer, W. Renger, P. Mörl, “Detection of Cloud Top Height from Backscat-tered Radiances within the Oxygen A Band — Part 2: Measurements,” JAS, Vol. 30, 1991, pp. 1260–1267

    Google Scholar 

  115. M. Kästner, K. T. Kriebel, R. Meerkötter, W. Renger, G. H. Ruppersberg, P. Wendline, “Comparison of Cirrus Height and Optical Depth Derived from Satellite and Aircraft Measurements”, submitted to Monthly Weather Review, Florida State University, Tallahassee, 1992

    Google Scholar 

  116. W. Renger, G. Ehret, P. Mörl, “Airborne Lidar for Atmospheric Research in the Arctic,” 15th ILRC Conference Abstracts, Tomsk, Russia, 1990, pp. 74–76

    Google Scholar 

  117. M. Wirth, W. Renger, G. Ehret, “Airborne DIAL Remote Sensing of the Arctic Ozone Layer,” 16th International Laser Radar Conference, Cambridge, MA, USA, Conference Abstracts, pp. 107–108, 1992

    Google Scholar 

  118. G. Ehret, W. Renger, “Atmospheric Aerosol and Humidity Profiling Using an Airborne DIAL System in the Near IR,” OSA Tech. Digest, Optical Remote Sensing of the Atmosphere, paper ThAG, 1990, pp. 586–589

    Google Scholar 

  119. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption system,” Applied Optics, Vol. 32, No. 24, August 20, 1993, pp. 4534–4551

    Article  Google Scholar 

  120. W. Krichbaumer, “Airborne Cloud Measurements with the DLR-Microlidar during the CLEOPATRA Campaign,” JTech, 1996

    Google Scholar 

  121. Ch. Werner, J. Streicher, H. Herman, H. G. Dahn, “Multiple-Scattering Lidar Experiments,” Optical Engineering, Vol. 31, 1992, pp. 1731–1745

    Article  Google Scholar 

  122. W. Krichbaumer, et al., “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Optics & Laser Technology, Vol. 25, No. 5, 1993, pp. 283–287

    Article  Google Scholar 

  123. S. Rahm, “Measurement of a wind field with an airborne continuous-wave Doppler lidar,” Optics Letters, Vol. 20, No. 2, 1995, pp. 216–218

    Article  Google Scholar 

  124. R. J. P. Lyon, F. R. Honey, P. T. Hick, “Second Generation Airborne Digital Multispectral Video: Evaluation of a DMSV for Environmental and Vegetation Assessment,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition,” Strasbourg, France, September 12–15, 1994, Volume II, pp. 105–116

    Google Scholar 

  125. K. Pfeilsticker, U. Platt, “Airborne Measurements during the Arctic Stratospheric Experiment: Observation of O3 and NO2,” paper provided by K. Pfeilsticker, University of Heidelberg

    Google Scholar 

  126. M. Fiedler, H. Frank, T. Gomer, M. Hausmann, K. Pfeilsticker, U. Platt, “The ‘Minihole’ Event on Feb. 6, 1990: Influence of Mie-Scattering on the Evaluation of Spectroscopic Measurements,” Geophysical Research Letters, Vol. 20, No. 10, pp. 959–962, May 21, 1993

    Article  Google Scholar 

  127. M. Fiedler, H. Frank, T. Gomer, M. Hausmann, K. Pfeilsticker, U. Platt,, “Ground-based Spectroscopic Measurements of Stratospheric NO2 and OClO in Arctic Winter 1989/90,” Geophysical Research Letters, Vol. 20, No. 10, May 21, 1993, pp. 963–966

    Article  Google Scholar 

  128. D. Perner, T. Klüpfel, U. Parchatka, A. Roth, T. Jorgensen, “Ground-based UV-VIS Spectroscopy: Diurnal OClO-Profiles during January 1990 above Sondre Stromfjord, Greenland,” Geophysical Research Letters, Vol. 18, No. 4, April 1991, pp. 787–790

    Article  Google Scholar 

  129. Information provided by J. Vitko of Sandia National Laboratories, Livermore, CA

    Google Scholar 

  130. Information provided by B. Fritsch and P. Röber of Dornier

    Google Scholar 

  131. A. Kaltenecker, F Müller, O. Hoffmann, “Digital Photogrammetric Assembly (DPA) — An Airborne Stereo and Multispectral Imaging and Evaluation System,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, September 12–15, 1994, Volume II, pp. 117–127

    Google Scholar 

  132. F. Müller, “Photogrammetrische Punktbestimmung mit Bilddaten digitaler Dreizeilenkameras,” Deutsche Geodätische Kommission C-372

    Google Scholar 

  133. Information received from C. J. Oliver of DRA, Malvern

    Google Scholar 

  134. C. J. Baker, A. M. Home, R. G. White, “Grazing Angle Dependency of SAR Imagery,” RADAR 92, pp. 359–362

    Google Scholar 

  135. Information provided by R. D. Edwards of DRA, Great Malvern, UK

    Google Scholar 

  136. Information provided by B. J. Choudhury of NASA/GSFC

    Google Scholar 

  137. G. Heymsfield, NASA/GSFC, “TOGA/COARE Mission Plan,” NASA paper, November 1992, pp. 51–54

    Google Scholar 

  138. P. H. Hildebrand, J. Testud, “ELDORA/ASTRAIA Capabilities for TOGA COARE,” paper provided by P. H. Hildebrand

    Google Scholar 

  139. P. H. Hildebrand, C. A. Walther, Ch. Frush, J. Testud, “The ELDORA/ASTRAIA Airborne Doppler Weather Radar: Goals Design, and First Field Tests,” submitted Nov. 4, 1993 to Proceedings of IEEE

    Google Scholar 

  140. Information provided by N. Skou of the Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  141. Information provided by S. N. Madsen and N. Skou of the Electromagnetics Institute of the Technical University of Denmark

    Google Scholar 

  142. Information provided by J. Myers of ARC

    Google Scholar 

  143. M. Bénallègue, O. Taconet, et al., “Evaluation of Calibration Methods for an Helicopter-borne Microwave Scatterometer,’ paper accepted by International Journal of Remote Sensing, 1994

    Google Scholar 

  144. R. Bernard et al., “Data Processing and Calibration for an Airborne Scatterometer,” IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-24, No. 5, September 1986, pp. 709–716

    Article  Google Scholar 

  145. D. C. Carmer, R. Horvath, D. P. Rice, J. W. Sisak, “M-7 Mapper Multispectral Testbed,” paper presented at the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, LA, January 31, — February 2., 1994

    Google Scholar 

  146. Information provided by M. Dudzik and P. Wagner of ERIM

    Google Scholar 

  147. A. R. Ochadlick, K. Birny, P. Cho, C. Duke, S. K. Krasznay, J. Evans-Morgis, J. S. Verdi, “A Description of the NADC SAR Facility and Examples of Observations and Measurements,” CH2971–0/91/000–1785, © 1991 IEEE

    Google Scholar 

  148. R. Sullivan, A. Nichols, R. Rawson, “Polarimetric X/L/C-Band SAR,” Proc. IEEE Radar Conference, Ann Arbor, Michigan, 1998, pp. 9–14

    Google Scholar 

  149. M. A. DiMango, W. T. Hanna, L. A. Andersen, “The Data Collection System (DCS) Airborne Platform,” Proceeding s of the 1st International Airborne Remote Sensing Conference and Exhibition, Volume II, Strasbourg September 12–15, 1994, pp. 22–31

    Google Scholar 

  150. Information provided by D. Ager of ERIM

    Google Scholar 

  151. H. W. Klimach, G. T. Sos, “High Performance Interferometric SAR — Description and Capabilities,” Proceedings of the 1st International Airborne and Remote Sensing Conference and Exhibition, September 12–15, 1994, Strasbourg, France, Volume III, pp. 697–710

    Google Scholar 

  152. Information provided by D. Ager of ERIM

    Google Scholar 

  153. F. Witte, “The Archimedes IIa experiment: remote sensing of oil spills in the North Sea,” International Journal of Remote Sensing, 1991, Vol. 12, No. 4, pp. 809–821

    Article  Google Scholar 

  154. Information provided by J. R. Wang of GSFC

    Google Scholar 

  155. C. S. Ruf, C. T. Swift, A. B. Tanner, D. M. Le Vine, “Interferometric Synthetic Aperture Microwave Radiometry for the Remote Sensing of the Earth,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 5, September 1988, pp. 597–611

    Article  Google Scholar 

  156. D. M. Le Vine, M. Kao, A. B. Tanner, C. T. Swift, A. Griffis, “Initial Results in the Development of a Synthetic Aperture Microwave Radiometer,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, July 1990, pp. 614–619

    Article  Google Scholar 

  157. D. M. Le Vine, T. T. Wilheit, R. E. Murphy, C. T. Swift, “A Multifrequency Microwave Radiometer of the Future,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, No. 2, March 1989, pp. 193–199

    Article  Google Scholar 

  158. A. B. Tanner, C T. Swift, “Calibration of a Synthetic Aperture Radiometer,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 1, January 1993, pp. 257–267

    Article  Google Scholar 

  159. P. W. Gaiser, C. T Swift, D. M. Le Vine, “L-Band Synthetic Aperture Radiometers for Earth Remote Sensing,” Proceedings of IGARSS ‘94, Volume II, pp. 1311–1313

    Google Scholar 

  160. F. G. Wienhold, T. Zenker, G. W. Harris, “A dual channel two tone frequency modulation tunable diode laser spectrometer for ground-based and airborne trace gas measurements,” SPIE, Vol. 2112, 1994, pp. 31–44

    Article  Google Scholar 

  161. Information provided by K. V. Chance of the Smithsonian Astrophysical Observatory, Cambridge, MA.

    Google Scholar 

  162. Information provided by C. Schiller of the Forschungszentrum Jülich, Germany

    Google Scholar 

  163. U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A New Balloon Borne Stratospheric Hygrometer,” Proceedings 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Mandelieu-Cannes, France, May 27–31, 1991, ESA SP-317, pp. 201–205

    Google Scholar 

  164. K. O. Steinvall, K. R. Koppari, U. C. M. Karlsson, “Experimental evaluation of an airborne depth-sounding lidar,” Optical Engineering, June 1993, Vol. 32, No. 6, pp. 1307–1321

    Article  Google Scholar 

  165. R. Axelsson, O. Steinvall, P. Sundberg, “Programmable Scanner for Laser Bathymetry,” reprint from the International Hydrographic Review, Monaco, LXVII(l), January 1990, pp. 161–170

    Google Scholar 

  166. J. F. R. Gower, G. A. Borstad, C. D. Anger, H. R. Edel, “CCD-Based Imaging Spectroscopy for Remote Sensing: The FLI and CASI Programs,” Canadian Journal of Remote Sensing, Vol. 18, No. 4, 1992, pp. 199–208

    Google Scholar 

  167. S. M. Till, “Airborne Electro-Optical Sensors for Resource Management,” Geocarto International, Vol 3, 1987, pp. 13–23; the article also contains the LARSEN instrument

    Article  Google Scholar 

  168. Information provided by R. S. Vickers of SRI International

    Google Scholar 

  169. Information provided by L. J. Otten of Kestrel Corporation

    Google Scholar 

  170. Information provided by F. Orlandini, Rome, Italy, as general agent for Myasishchev D. B.

    Google Scholar 

  171. H. Watanabe, M. Sano, F. Mills, S. H. Chang, S. Masuda, “Airborne and Spaceborne Thermal Multispectral Remote Sensing,” 1992, paper provided by GER

    Google Scholar 

  172. S. Rokugawa, I. Sato, et al., “Estimation of Land Surface Characteristics using an Airborne ASTER Simulator,” Proceedings of IGARSS ‘93, Volume I, pp. 123–125

    Google Scholar 

  173. S. H. Chang, M. J. Westfield, F. Lehmann, D. Oertel, R. Richter, “79-channel Airborne Imaging Spectrometer,” GER/DLR paper

    Google Scholar 

  174. S. H. Chang, B. M. Sorensen, T. D. Rubin, “A General Purpose Scanner for Airborne Remote Sensing,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition,” Strasbourg, France, September 12–15, 1994, Volume II, pp. 155–158

    Google Scholar 

  175. Information provided by E. Weinstock of Harvard University

    Google Scholar 

  176. Information provided by S. Wofsy of Harvard University

    Google Scholar 

  177. HELISCAT Technical Report by V. R. Wismann, Institute for Applied Remote Sensing, Hamburg

    Google Scholar 

  178. “High-Resolution Interferometer Sounder (HIS) Phase II,” A Report from the Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, October 1988

    Google Scholar 

  179. H. E. Revercomb, et. al., “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Applied Optics, Vol. 27, No. 15, August 1, 1988, pp. 3210–3218

    Article  Google Scholar 

  180. W. L. Smith, R. E. Revercomb, et al., “GHIS — The GOES High Resolution Interferometer Sounder,” Journal of Applied Meteorology, Vol. 29, No. 12, December 1990, pp. 1189–1204

    Article  Google Scholar 

  181. W. L. Smith, et al., “Remote Sensing Cloud Properties from High Spectral Resolution Infrared Observation,” Journal of the Atmospheric Sciences, Vol. 50, No. 12, June 15, 1993, pp. 1708–1720

    Article  Google Scholar 

  182. S. A. Ackerman, W. L. Smith, H. E. Revercomb, “Comparison of broadband and high-spectral resolution infrared observations,” International Journal of Remote Sensing, Vol. 14. No. 15, 1993, pp. 2875–2882

    Article  Google Scholar 

  183. Information provided by M. Hallikainen of HUT

    Google Scholar 

  184. M. Hallikainen et al., “A Helicopter-Borne Eight-Channel Ranging Scatterometer for Remote Sensing: Part I: System Description,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 31 No. 1, January 1993, pp. 161–169

    Article  Google Scholar 

  185. J. Hyyppä, M. Hallikainen, “Development of a Helicopter-Borne 8-Channel Ranging Scatterometer,” HUT, Laboratory of Space Technology Report 4, July 1991

    Google Scholar 

  186. J. Hyyppä, “Development and feasibility of airborne ranging radar to forest assessment,” doctoral dissertation at HUT, Finland, November 1993

    Google Scholar 

  187. Information provided by P. Ahola of HUT

    Google Scholar 

  188. J. Pallonen, “Scatterometer for arctic measurements,” Thesis, HUT, Finland, May 1992

    Google Scholar 

  189. R. Basedow, P. Silverglate, W. Rappoport, R. Rockwell, D. Rosenberg, K. Shu, R. Whittlesey, E. Zalewski, “The HYDICE Instrument Design,” International Symposium on Spectral Sensing Research (ISSSR), Nov. 15–20, 1992, Maui, Hawaii

    Google Scholar 

  190. Information provided by D. Pope of NRL

    Google Scholar 

  191. Information provided by W. H. Hensley, Sandia National Laboratories, Albuquerque, NM

    Google Scholar 

  192. D. L. Bickel, W. H. Hensley, “Interferometric SAR Phase Difference Calibration: Methods and Results,” IGARSS ‘94 Proceedings, pp. 2259–2262

    Google Scholar 

  193. Information provided by Yu. Kravtsov of IKI RAN, Moscow

    Google Scholar 

  194. A. V. Smirnow, “Polarimetric radar imagery of the ocean at grazing angles under atmospheric conditions of variable stability,” IGARSS’94 Digest, Pasadena, CA, August 8–12, 1994, pp. 805–807

    Google Scholar 

  195. N. J. S. Stacy, M. P. Burgess, “INGARA: The Australian Airborne Imaging Radar System,” Proceedings of IGARSS ‘94, Volume IV, pp. 2240–2242

    Google Scholar 

  196. F. Zagolski, et al., “Preliminary Results of the ISM Campaign — The Landes, South West France,” IGARSS ‘92, Vol. I, Houston Texas, May 26–29, 1992, pp. 6–8

    Google Scholar 

  197. Information provided by J. P. Gasstellu-Etchegorry of CNRS, Toulouse, France

    Google Scholar 

  198. Information provided by H. Oguma of NASDA/EOC

    Google Scholar 

  199. Information provided by K. Imaoka of NASDA/EOC and by T. Kozu of CRL

    Google Scholar 

  200. R. A. Barrett, A. L. Dodson, K. L. Thomas, J. L. Warren, L. A. Watts, M. E. Zolensky, “Cosmic Dust Catalog,” Vol. 13, NASA/JSC, September 1992

    Google Scholar 

  201. S. P. Palm, S. H. Melfi, D. L. Carter, “New Airborne Scanning Lidar System: Applications for Atmospheric Remote Sensing,” Applied Optics, Vol. 33, 1994

    Google Scholar 

  202. W. R. Vaughan, E. V. Browell, “A Lidar Instrument to measure H2O and Aerosol Profiles from the NASA ER-2 Aircraft,” paper presented at the Specialty Meeting on Airborne Radars and Lidars, Meteo-France, Toulouse, July 7–10, 1992

    Google Scholar 

  203. E. W. Browell, S. Ismail, “First Lidar Measurements of Water Vapor and Aerosols from High-Altitude Aircraft,” Technical Digest, OSA Optical Remote Sensing of the Atmosphere, Conference February 5–9, 1995, Salt Lake City, Utah, Vol. 2, pp. 212–214

    Google Scholar 

  204. S. Ismail, E. V. Browell, W. R. Vaughan, W. M. Hall, “Recent Developments Towards the Development of the NASA LASE Water Vapor DIAL System,” Technical Digest, IEEE COMEAS Symposium, Albuquerque, NM, March 23–25, 1993

    Google Scholar 

  205. R. Dick, M. Fruhwirth, M. Fingas, C. Brown, “Laser Fluorosensor Work in Canada,” presented at the First Thematic Conference on Remote Sensing for Marine and Coastal Environments, New Orleans, LA, June 15–17, 92

    Google Scholar 

  206. EARSeL Advances in Remote Sensing, Vol. 1, No. 2, Feb. 1992, pp. 85–90

    Google Scholar 

  207. R. Reuter, H. Wang, et al., “A Laser Fluorosensor for Martime Surveillance: Measurement of Oil Spills,” EAR-SeL Advances in Remote Sensing, Vol. III, No. 3, 1995 (in press)

    Google Scholar 

  208. K. Grüner, R. Reuter, “A new Sensor System for Airborne Measurements of Maritime Pollution and of Hydro-graphic Parameters,” Geo Journal Jan. 24, 1991, pp. 103–117

    Google Scholar 

  209. Information provided by T. Hengstermann of Optimare GmbH, Wilhelmshaven

    Google Scholar 

  210. Information provided by P. Fricker of Leica AG, Heerbrugg, Switzerland

    Google Scholar 

  211. Information provided by R. J. Blakeslee of NASA/MSFC

    Google Scholar 

  212. J. Rothermel, “The Multi-Center Airborne Coherent Atmospheric Wind Sensor (MACAWS),” The Earth Observer, Vol. 7, No. 4, July/August 1995, pp. 59–62

    Google Scholar 

  213. Information provided by NASA/HQ (D. Dokken) and by ARC (J. Myers)

    Google Scholar 

  214. Note: the 3.55–3.93 μm channels can be operated at 6.20 – 6.90 μm as well. The LSBs refer to the Least Significant Bits, which give 10-bit resolution to channels 9–12 on an otherwise 8-bit system

    Google Scholar 

  215. Information provided by D. Vandemark of NASA/GSFC

    Google Scholar 

  216. C. L. Parsons, E. J. Walsh, “Off-nadir radar altimetry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, 1989, pp. 215–224

    Article  Google Scholar 

  217. C. L. Parsons, et al., “Topographic Mapping Using a Multibeam Radar Altimeter,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 6, November 1994, pp. 1170–1178

    Article  Google Scholar 

  218. E. J. Walsh, “Surface contour radar directional wave spectra measurements during LEWEX,” Directional Ocean Wave Spectra, R. Beal (ed.), Johns Hopkins University Press, 1991, pp. 86–90

    Google Scholar 

  219. S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimeter wavelengths,” Quarterly Journal of the Royal Meteorological Society, 120, 1994, pp. 603–625

    Article  Google Scholar 

  220. S. J. English, et al., “Observations of water vapor absorption using airborne microwave radiometers at 89 and 157 GHz,” Proceedings IGARSS ‘95, Volume II, pp. 1395–1397

    Google Scholar 

  221. D. Baumgardner, J. E. Dye, B. Gandrud, D. Rogers, K. Weaver, et al., “The Multiangle Aerosol Spectrometer Probe: A new Instrument for Airborne Particle Research,” Proceedings of Ninth Symposium on Meteorological Observations and Instrumentation, American Meteorological Society Conference, March 27–31, 1995, pp. 434–439

    Google Scholar 

  222. R. J. Curran, H. L. Kyle, L. R. Blaine, J. Smith, T. D. Clem, “Multichannel scanning radiometer for remote sensing cloud physical parameters,” Revision of Science Instruments, Vol. 52, No. 10, Oct. 1981, pp. 1546–1555

    Article  Google Scholar 

  223. MEIS Information brochure provided by MacDonald Dettweiler and Associates (MDA) in Richmond B. C, Canada

    Google Scholar 

  224. S. M. Till, “Airborne Electro-Optical Sensors for Resource Management,” Geocarto International, Vol 3, 1987, pp. 13–23

    Article  Google Scholar 

  225. S. M. Till, R. A. Neville, W. D. Mc Coll, R. P. Gauthier, “The MEIS II Pushbroom Imager — Four Years of Operation,” Progress in Imaging Sensors, Proc. ISPRS Symposium, Stuttgart, September 1–5, 1986,, ESA SP-252, November 1986, pp. 247–253

    Google Scholar 

  226. K. Grüner, G. Kahlisch, H. Schreiber, P. Sliwinski, “A new Passive Microwave Linescanner for Airborne Measurements of Maritime Oil Pollutions,” paper presented at IEEE-MTT Conference 1992, Albuquerque, NM

    Google Scholar 

  227. H. Süß, K. Grüner, “Present Activities of DLR in Microwave Radiometry,” μrad 92, Proc. of Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, Boulder, CO, June 1992, pp. 408–415

    Google Scholar 

  228. H. Fischer, “Remote sensing of atmospheric trace constituents using Fourier transform spectrometers,” Berichte der Bunsen-Gesellschaft für Physikalische Chemie, Vol. 96, 1992, pp. 306–314

    Article  Google Scholar 

  229. H. Fischer, “Remote sensing of atmospheric trace gases,” Interdisciplinary Science Reviews, Vol. 98, 1993, pp. 23165–23191

    Google Scholar 

  230. H. Oelhaf, H. Fischer, “Observations of the Stratospheric Composition with the Balloon-Borne and Space-Based MIPAS Limb Emission Sounders,” IEEE, 0-7803-2567-2/95, 1995, pp. 435–439

    Google Scholar 

  231. H. Oelhaf et al., “Remote Sensing of Trace Gases with a Balloon-borne version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS),” Proceedings 10th ESA-Symposium on European Rocket and Balloon Programmes, May 1991, Mandelieu-Cannes

    Google Scholar 

  232. G. P. Adrian, T. Blumenstock, H. Fischer, L. Gerhardt, T. Guide, H. Oelhaf, P. Thomas, O. Trieschmann, “Column Amounts of Trace Gases Derived From Ground-Based Measurements with MIPAS during CHEOPS-III,” Geophysical Research Letters, Vol. 18, No. 4, April 1991, pp. 783–786

    Article  Google Scholar 

  233. T. von Clarmann, H. Fischer, F. Friedl-Vallon, A. Linden, H. Oelhaf, C. Piesch, M. Seefeldner, “Retrieval of Stratospheric O3, HNO3, and ClONO2, Profiles from 1992 MIPAS-B Limb Emission Spectra: Method, Results, and Error Analysis,” Journal of Geophysical Research, Vol. 98, No. D11, pp. 20495–20506, November, 1993

    Article  Google Scholar 

  234. T. von Clarmann, et al., “Determination of the stratospheric organic chlorine budget in the spring arctic vortex from MIPAS-B limb emission spectra and air sampling experiments,” Journal of Geophysical Research, Vol. 100, D7, July 20, 1995, pp. 13979–13997

    Google Scholar 

  235. F. Friedl-Vallon, G. Maucher, H. Oelhaf, M. Seefeldner, “The New Balloon-Borne MIPAS-B2 Limb Emission Sounder,” IGARSS ‘95, Volume I, pp. 242–244

    Google Scholar 

  236. H. Oelhaf, H. Fischer, “Observations of the Stratospheric Composition with the Balloon-Borne and Space-Based MIPAS Limb Emission Sounders,” IGARSS ‘95, Volume I, pp. 435–439

    Google Scholar 

  237. C. E. Blom, H. Fischer, N. Glatthor, T. Guide, M. Höpfner, Ch. Piesch, “Spatial and Temporal Variability of CLONO2, HNO3 and O3 in the Arctic Winter 1992/93 as Obtained by Airborne Infrared Emission Spectroscopy,” KfK internal paper

    Google Scholar 

  238. M. P. Chipperfield, J. P. Pyle, C. E. Blom, N. Glatthor, M. Höpfner, T. Guide, Ch. Piesch, P. Simon, “The Variability of ClONO2 in the Arctic Polar Vortex: Comparison of Transall MIPAS Instruments and 3D Model Results,” submitted to Journal of Geophysical Research, 1994

    Google Scholar 

  239. T. Guide, Ch. Piesch, C. E. Blom, et al., “The Airborne MIPAS Infrared Emission Experiment,”Proceedings of 1st International Airborne Remote Sensing Conference, Strasbourg, Sept. 11–15, 1994

    Google Scholar 

  240. Information provided by C. Blom of IMK, University of Karlsruhe, Germany

    Google Scholar 

  241. Information provided by J. R. Wang of GSFC

    Google Scholar 

  242. J. R. Wang, P. Racette, “Profiling of Atmospheric Water Vapor with MIR and SSM/T-2 Measurements,” Proceedings IGARSS ‘95, Volume II, pp. 1398–1400

    Google Scholar 

  243. L. B. Whitbourn, P. Hausknecht, et al., “Airborne CO2 Laser Remote Sensing System,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, September 12–15, 1994, Strasbourg, France, Volume II, pp. 94–103

    Google Scholar 

  244. L. B. Whitbourn, “100 Wavelength Rapid-Tuned CO2 Laser System Applied to Airborne Remote Sensing of Minerals,” Proceedings of the International Conference on Lasers 91, San Diego, CA, 1991, pp. 340–347

    Google Scholar 

  245. Information provided by M. Martîn-Neira of ESA/ESTEC

    Google Scholar 

  246. M. Martin-Neira, Y. Menard, J. M. Goutoule, U. Kraft, “MIRAS, a Two-Dimensional Aperture Synthesis Radiometer,” IGARSS ‘94, pp. 1323–1325

    Google Scholar 

  247. P. Haschberger, V. Tank, E. Lindermeir, “A new Sensor for Airborne Monitoring of Exhaust Emissions,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 261–271

    Google Scholar 

  248. J. R. Schott, X. Feng, T. W. Gallagher, “Modular Imaging Spectrometer Instrument,” presented at the 4th Annual 1994 IEEE Mohawk Valley Section Dual-Use Technologies and Applications Conference, Rome, NY, May 23, 1994

    Google Scholar 

  249. Note: When the number of detectors is 1 or 2, it refers to the number of lines collected per rotation of the scan mirror. The 38 detectors refer to the number of elements in each of the linear array spectrometers. However, only 30 of the 38 elements are actually distinct spectral channels. The extra 8 channels are used for cross-calibration between the two array spectrometers, i.e. there is significant spectral overlap.

    Google Scholar 

  250. Information provided by D. I. Light of Eastman Kodak Company

    Google Scholar 

  251. G. C. Toon, “The JPL MkIV interferometer,” Optics and Photonics News, October 1991

    Google Scholar 

  252. Information provided by K. R. Chan of NASA/ARC, Moffett Field, CA

    Google Scholar 

  253. J. C. Henry, T. J. Murphy, K. M. Carusone, “The Lincoln Laboratory Millimeter-Wave Synthetic Aperture Radar (SAR) and Imaging System,” Proceedings of SPIE, Vol. 1630 Synthetic Aperture Radar, 1992, pp. 35–52

    Article  Google Scholar 

  254. D. Herring, “MODIS/SeaWiFS Team Deploys Marine Optical Buoy, Continues Marine Optical Characterization Experiment,” The Earth Observer, NASA, Vol. 6, No. 1, January/February 1994, pp. 17–22

    Google Scholar 

  255. Information provided by O. Fäst of SSC, Sweden

    Google Scholar 

  256. Courtesy of B. L. Gary, NASA/JPL

    Google Scholar 

  257. A. J. Gasiewski, J. W. Barrett, P. G. Bonanni, D. H. Staelin, “Aircraft-based Radiometric Imaging of Tropospheric Temperature and Precipitation Using the 118.75 GHz Oxygen Resonance,” Journal of Applied Meteorology, Vol. 29, No. 7, 1990, pp. 620–632

    Article  Google Scholar 

  258. Update information provided by D. H. Staelin, MIT

    Google Scholar 

  259. Information provided by W. P. Rudolf of Lockheed

    Google Scholar 

  260. Information provided by R. Schwiesow of NCAR

    Google Scholar 

  261. R. L. Schwiesow, et al., “Ground-based Velocity-Measurement Performance of the NCAR Airborne Infrared Lidar System (NAILS),” NCAR Technical Note TN-405, October 1994

    Google Scholar 

  262. R. L. Schwiesow, M. P. Spowart, “The NCAR Airborne Infrared Lidar System: Status and Applications,” Journal of Atmospheric and Oceanic Technology, Volume 12, 1995

    Google Scholar 

  263. D. L. Light, “The National Aerial Photography Program as a Geographic Information System Resource,” PE&RS, Vol. 59, No. 1, January 1993, pp. 61–65

    Google Scholar 

  264. D. L. Light, J. D. Bossier, “Design Criteria for Airborne Mapping Systems,” a paper provided by D. L. Light of USGS, Reston, VA

    Google Scholar 

  265. D. L. Light, “Characteristics of Remote Sensors for Mapping and Earth Science Applications,” PE&RS, Vol. 56, No. 12, December 1990, pp. 1613–1623

    Google Scholar 

  266. Information provided by M. Shimada of NASDA/EORC

    Google Scholar 

  267. P. Abel, B. Guenther, “Calibration Results for NOAA-11 AVHRR Channels 1 an 2 from Congruent Path Aircraft Observations,” Journal of Atmospheric and Oceanic Technology, Volume 10, Aug. 1993, pp. 493–508

    Article  Google Scholar 

  268. B. A. Ridley, F. E. Grahek, J. G. Walega, “A Small High-Sensitivity, Medium-Response Ozone Detector Suitable for Measurements from Light Aircraft,” Journal of Atmospheric and Oceanic Technology, Vol. 9, April 1992, pp. 142–148

    Article  Google Scholar 

  269. B. A. Ridley, F. E. Grahek, “A Small, Low Flow, High Sensitivity Reaction Vessel for NO Chemiluminescence Detectors,” Journal of Atmospheric and Oceanic Technology, Vol. 7, April 1990, pp. 307–311

    Article  Google Scholar 

  270. Information provided by P. Spyers-Duran of NCAR

    Google Scholar 

  271. Information provided by H. Shinohara of NEC Corporation

    Google Scholar 

  272. NOAA brochure and further information provided by J. D. DuGranrut of NOAA/AOC at McDill AFB

    Google Scholar 

  273. D. P. Jorgensen, P. H. Hildebrand, Ch. L. Frush, “Feasibility Test of an Airborne Pulse-Doppler Meteorological Radar,” Journal of Climate and Applied Meteorology, Volume 22, 1983, pp. 744–757

    Article  Google Scholar 

  274. J. R. Parrish, “New NOAA OAO WP-3D Doppler Radar System,” internal paper of NOAA/OAO, Miami, FL

    Google Scholar 

  275. D. P. Jorgensen, “Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General Observations by research aircraft,” Journal of Atmospheric Sciences, Vol. 41, 1984, pp. 1268–1285

    Article  Google Scholar 

  276. D. P. Jorgensen, T. Matejka, J. D. DuGranrut, “Multi-Beam Techniques for Deriving Wind Fields from Airborne Doppler Radars,” submitted to the Journal of Meteorology and Atmospheric Physics, Spring 1994, Special Issue on Remote Sensing — Information provided by J. D. DuGranrut of NOAA/AOC at MacDill AFB, FL

    Google Scholar 

  277. J. D. Parrish, E. R. Darby, J. D. DuGranrut, A. S. Goldstein, “The NOAA Aircraft Satellite Data Link (ASDL),” NOAA Technical Memorandum OAO 3, NOAA internal paper, May 1984

    Google Scholar 

  278. H. Moosmüller, R. J. Alvarez, R. M. Jorgensen, C. M. Edmonds, D. H. Bundy, D. Diebel, M. P. Bistrow, J. L. McElroy, “An Airborne Lidar System for Tropospheric Ozone Measurement, presented at the 86th Annual Meeting of AWMA, Denver, CO, June 13–18, 1993

    Google Scholar 

  279. J. L. McElroy, et al., “Airborne UV-DIAL Measurements of Ozone Distributions in Southeastern Michigan,” presented at 86th Annual Meeting of AWMA, Denver, CO, June 13–18, 1993

    Google Scholar 

  280. Information provided by N. A. Martin of NPL

    Google Scholar 

  281. Information received from S. Nghiem and S. Durden of JPL

    Google Scholar 

  282. T. Hengstermann, R. Reuter, “Lidar fluorosensing of mineral oil spills on the sea surface,” Applied Optics, Vol. 29, No. 22, August 1990, pp. 3218–3227

    Article  Google Scholar 

  283. D. Diebel, T. Hengstermann, R. Reuter, R. Willkomm, “Laser Fluorosensing of Mineral Oil Spills,” The Remote Sensing of Oil Slicks, edited by A. E. Lodge, 1989, Institute of Petroleum, published by John Wiley & Sons, pp. 127–142

    Google Scholar 

  284. R. Reuter, D. Diebel, T. Hengstermann, “Oceanic laser remote sensing: measurement of hydrographic fronts in the German Bight and in the Northern Adriatic Sea,” International Journal of Remote Sensing, 1993, Vol. 14, No. 5, pp. 823–848

    Article  Google Scholar 

  285. Information provided by T. Kriebel of DLR

    Google Scholar 

  286. Information provided by J. R. Wang of GSFC and by T. Schmugge of USDA Hydrology Lab

    Google Scholar 

  287. G. Taubes, “NASA Launches a 5-Year Plan to Clone Drones,” Science, Vol. 260, April 16, 1993, p. 286

    Article  Google Scholar 

  288. Information provided by J. S. Langford of Aurora Flight Sciences Corporation

    Google Scholar 

  289. S. Ashley, “Ozone Drone,” Popular Science, July 1992, p. 60–64

    Google Scholar 

  290. “Project PHARUS: Realization of a Polarimetric C-Band airborne SAR,” a TNO-FEL brochure

    Google Scholar 

  291. P. Hoogeboom, P. Snoeij, P. J. Koomen, H. Pouwels, “The PHARUS Project, Results of the Definition Study Including the SAR Testbed PHARS,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 4, July 1992

    Google Scholar 

  292. P. Snoeij, P. Hoogeboom, P. J. Koomen, H. Pouwels, “A fully Polarimetric airborne C-band SAR with an electronically steerable phased array, PHARUS,” SEE & IEE Colloquium, SAR ‘93, ER93–391, pp. 48–52

    Google Scholar 

  293. P. J. Koomen, P. Hoogeboom, P. Snoeij, H. Pouwels, A Polarimetric Phased Array Airborne (PHARUS),” Proceedings of 1st International Airborne Remote Sensing Conference and E September 12–15, 1994, Volume II, pp. 63–73

    Google Scholar 

  294. Information provided by S. Green and E. O’Mongain of Spectral Signatures Ltd. of Dublin, Ireland

    Google Scholar 

  295. Information provided by F. M. Bréon, Centre D’Etude de Saclay, Gif sur Yvette, France

    Google Scholar 

  296. P. Y. Deschamps, F. M. Bréon, M. Herman, J. C. Buriez, J. L. Deuzé, A. Bricaud, M. Leroy, A. Podaire, G. Sèze, “The Polder Mission: Instrument Characteristics and Scientific Objectives,” paper accepted by IEEE Transactions on Geoscience and Remote Sensing,

    Google Scholar 

  297. Information provided by Y. H. Kerr of LERTS

    Google Scholar 

  298. V. Wismann, “Wind Measurements over the Ocean with an Airborne C-Band Scatterometer during the ERS-1 Calibration and Validation Campaign,” ERS-1 Geophysical Validation, Workshop Proceedings, April 27–30, 1992, ESA wpp-36, pp.5–9

    Google Scholar 

  299. Information provided by V. Wismann of IFARS, Wedel, Germany

    Google Scholar 

  300. Information provided by Y. Krilov of NPO Vega, Moscow

    Google Scholar 

  301. “TOGA/COARE Mission Plan,” NASA paper, November 1992, pp. 58–59

    Google Scholar 

  302. J. M. Boutry, D. Le Coz, “RAMSES: An Experimental Multi-Band Airborne Radar,” Proceedings of the ‘Speciality Meeting on Airborne Radars and Lidars,’ July 7–10, 1992, Toulouse France

    Google Scholar 

  303. N. Le Loch, D. Vidal-Madjar, J. P. Hardange, “On the calibration of the helicopter-borne Polarimetric radar RENE,” paper accepted for IEEE Transactions on Geoscience and Remote Sensing, 1994

    Google Scholar 

  304. D. Hauser, et al., “RESSAC a New Airborne FM/CW Radar Ocean Wave Spectrometer,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5, September 1992, pp. 981–995

    Article  Google Scholar 

  305. D. Hauser, G. Caudal, B. Chapron, “Observation with the RESSAC Airborne Radar During RENE-91,” ERS-1 Geophysical Validation, RENE 1991, Workshop Proceedings, April 27–30, 1992, Penhors France, ESA wpp-36, August 1992, pp. 47–53

    Google Scholar 

  306. R. D. Becker, J. P. Barriere, “Airborne GPS for Photo Navigation and Photogrammetry (An Integrated Approach),” Paper No. 84 of ‘Monitoring and Mapping Global Change,’ ASPRS/ACSM Convention, Washington,

    Google Scholar 

  307. A handout was provided by H. van der Piepen of DLR

    Google Scholar 

  308. Information provided by D. Vandemark of NASA/GSFC/WFF

    Google Scholar 

  309. F. C. Jackson, W. T. Walton, P. L. Baker, “Aircraft and Satellite Measurements of Ocean Wave Directional Spectra using Scanning-Beam Radars,” Journal of Geophysical Research, Vol. 90, No. CI, January 1985, pp. 987–1004

    Article  Google Scholar 

  310. T. Kozu, H. Masuko, T. Umehara, H. Inomata, “Development of Ocean Pollution Surveillance System (OPSS) with Side-Looking Airborne Radar,” Report to JEA, 1986

    Google Scholar 

  311. T. Kozu, et al, “Observation of Oil Slicks on the Ocean by X-Band Radar,” Proceedings of IGARSS ‘87, Ann Arbor, MI, pp. 735–740

    Google Scholar 

  312. B. Morley, et al. “NCAR’s Scanning Aerosol Backscatter Lidar (SABL): Design, Specifications, and Implementation Plan,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, September 12–15, 1994, Strasbourg, France, Volume II, pp. 83–93

    Google Scholar 

  313. M. R. Inggs, “A South African Multispectral Polarimetric Airborne SAR System,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 1–12

    Google Scholar 

  314. Information provided by V. S. Shamanaev of the Institute of Atmospheric Optics, SB-RAS, Tomsk, Russia

    Google Scholar 

  315. V. E. Zuev, B. D. Belan, D. M. Kabanov, et al. “The ‘Optik-E’ AN-30 Aircraft Laboratory for Ecological Investigations,” Atmospheric and Oceanic Optics, Vol. 5, No. 10, October 1992, pp. 658–663

    Google Scholar 

  316. “Meteorologisches Laser Ortungsgerät Svetozar,” Feingerätetechnik, DDR, 1977, Vol. 26, No. 10, p. 467

    Google Scholar 

  317. V. S. Shamanaev, K. D. Shelevoy, M. V. Trukhanenko, “Meteorological Airborne Laser Radar,” Aspects of Remote Sensing of the Atmosphere, Tomsk, 1975

    Google Scholar 

  318. A. I. Abramochkin, I. E. Penner, V. S. Shamanaev, “A Lidar for Subsatellite Investigations of Clouds,” Atmospheric and Oceanic Optics, Vol. 4, No. 3, March 1991, pp. 264–265

    Google Scholar 

  319. R. A. Neville, N. Rolands, R. Morris, I. Powell, “SFSI: Canada’s first Airborne SWIR Imaging Spectrometer,” Canadian Journal of Remote Sensing, Vol. 21, No.3, 1995, pp. 328–336

    Google Scholar 

  320. R. A. Neville, I. Powell, “Design of SFSI: An Imaging Spectrometer in the SWIR,” Canadian Journal of Remote Sensing, Vol. 18, No. 4, October 1992, pp. 210–222

    Google Scholar 

  321. Information provided by K. Staenz of CCRS

    Google Scholar 

  322. Information provided by L. Parson of USACE, Vicksburg, MS

    Google Scholar 

  323. W. J. Lillycrop, J. R. Banic, “Advancements in the US Army Corps of Engineers Hydrographic Survey Capabilities: The SHOALS System,” Marine Geodesy, Volume 15, 1995

    Google Scholar 

  324. W. J. Lillycrop. L. E. Parson, et al., “Field Testing of the US Army Corps of Engineers Airborne Lidar Hydro-graphic Survey System,” Proceedings of the Sixth Biennial National Ocean Service International Conference, Norfolk, VA, 1994, pp. 144–151

    Google Scholar 

  325. B. Braam, “OR Video: an operational tool for environmental monitoring,” Proc. International Symposium ‘Operationalization of Remote Sensing,’ Vol. 2, April 19–23 1993, Enschede, The Netherlands, pp. 191–204

    Google Scholar 

  326. M. Rantasuo, B. Braam, “Color Infrared Airborne Video System Development in Finland,” Surveying Science in Finland, Vol 10, No. 2, 1992, pp. 59–69

    Google Scholar 

  327. P. G. Lucey, T. Williams, K Horton, K. Hinck, C. Budney, “SMIFTS: A Cryogenically Cooled, Spatially Modulated Imaging Fourier Transform Spectrometer for Remote Sensing Applications,” SPIE Proceedings, Volume 1937, Aprill4–15, 1993, Orlando, FL

    Google Scholar 

  328. E. E. Uthe, W. Viezee, B. M. Morley, J. K. S. Ching “Airborne Lidar Tracking of Fluorescent Tracers for Atmospheric Transport and Diffusion Studies,” Bulletin of the American Meteorological Society, Vol. 66 No. 10, October 1985, pp. 1255–1262

    Article  Google Scholar 

  329. E. E. Uthe, B. M. Morley, N. B. Nielsen, “Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size,” Applied Optics, Vol. 27, February 1, 1982, pp. 460–463

    Article  Google Scholar 

  330. E. E. Uthe, “Elastic scattering, fluorescent scattering, and differential absorption airborne lidar observations of atmospheric tracers,” Optical Engineering, January 1991, Vol. 30, No. 1, pp. 66–71

    Article  Google Scholar 

  331. B. M. Morley, E. E. Uthe, W. Viezee, “Airborne Lidar Observations during AGASP-2,” Journal of Meteorology, Volume 29, March 1990, pp. 268–271

    Article  Google Scholar 

  332. N. B. Nielsen, E. E. Uthe, J. M. Livingston, E. J. Scribner, “Compact Airborne Lidar Mapping of Lower Atmospheric Ozone Distributions,” Reprint from the Proceedings of the International Conference on LASERS ‘91

    Google Scholar 

  333. Information provided by E. E. Uthe of SRI International

    Google Scholar 

  334. Information provided by D. Hagan of NASA/JPL

    Google Scholar 

  335. M. D. Thompson, et al., “A decade of commercial radar operations: INTERA’s Star-1 and Star-2 services,” presented at the 1st Thematic International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, April, 19–23, 1993

    Google Scholar 

  336. J. B. Mercer, “A new airborne SAR for ice reconnaissance operations,” Proceedings of the IGARSS ‘89 Symposium, Vancouver B. C. July 10–14, 1989

    Google Scholar 

  337. Handout provided by R. Lowry and L. Lalonde of INTERA

    Google Scholar 

  338. “Preliminary Technical Description STRATO 2C,” DLR paper, Revision 2, Nov. 30, 1993

    Google Scholar 

  339. U. Schumann, et al., “Scientific-Technical Concept for the Application of the Strato 2C High-Altitude Research Aircraft,” DLR paper, Feb. 1993

    Google Scholar 

  340. Minutes of ‘First international Workshop on STRATO-2C Utilization,’ DLR/Oberpfaffenhofen, Feb. 23–25, 1994

    Google Scholar 

  341. T. Wehr, S. Crewell, K. Künzi, J. Langen, H. Nett, J. Urban, P. Hartogh, “Remote sensing of CIO and HCl over northern Scandinavia in winter 1992 with an airborne submillimeter radiometer,” Journal of Geophysical Research, Vol. 100, No. D10, Oct. 1995, pp. 20.957–20.968

    Article  Google Scholar 

  342. S. Crewell, et al., “Comparison of CIO Measurements by Airborne and Spaceborne Microwave Radiometers in the Arctic Winter Stratosphere 1993,” Geophysical Research Letters, Vol. 22, No. 12, 6/1995, pp. 1489–1492

    Article  Google Scholar 

  343. J. Mees, S. Creweil, H. Nett, et al., “An airborne SIS-receiver for atmospheric measurements of trace gases at 625 to 760 GHz,” IEEE Transactions on Microwave Theory and Technology, Vol. 43, No. 11, Nov. 1995, pp. 2543–2548

    Article  Google Scholar 

  344. T. Matsumoto, P. B. Russell, C. Mina, W. Van Ark, “Airborne Tracking Sunphotometer,” Journal of Atmospheric and Oceanographic Technology, Vol. 4, 1987, pp. 336–339

    Article  Google Scholar 

  345. P. B. Russell et al., “Pinatubo and pre-Pinatubo optical depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophysical Research, in press, 1993a

    Google Scholar 

  346. R. F. Pueschel, J. M. Livingston, “Aerosol Spectral Optical Depths: Jet Fuel and Forest Fire Smokes,” Journal of Geophysical Research, Vol. 95, No. 22, 1990, pp. 417–422

    Google Scholar 

  347. M. A. Spanner R. C. Wrigley, R. F Pueschel, J. M. Livingston, D. S. Colburn, “Determination of Atmospheric Properties During the first Land Surface Climatology Project Field Experiment,” Journal of Spacecraft and Rockets, Vol. 27, No. 4, July-August 1990, pp. 373–379

    Article  Google Scholar 

  348. R. Titz, M. Birk, D. Hausmann, et al, “Observation of stratospheric OH at 2.5 THz with an airborne heterodyne system,” Infrared Physics and Technology, Vol. 36, 1995, pp. 883–891

    Article  Google Scholar 

  349. Information provided by U. Lohr of TopoSys, Ravensburg, Germany

    Google Scholar 

  350. Information provided by R. B. Herrick and S. K. Manlief of TRW, Redondo Beach, CA

    Google Scholar 

  351. Information provided by Y. Krilov of NPO Vega, Moscow

    Google Scholar 

  352. Information provided by M. A. Carroll, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI

    Google Scholar 

  353. X. Sun, J. M. Anderson, “An Easily-Deployable Miniature Airborne Imaging Spectrometer,” Proceedings of the 1st International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, September 12–15, 1994, Volume II, pp. 178–189

    Google Scholar 

  354. X. Sun, J. M. Anderson, “A Spatially-Variable Light-Frequency-Selective Component-Based Airborne Push-broom Imaging Spectrometer for the Water Environment,” Photogrammetric Engineering & Remote Sensing, Vol. 59, No. 3, March 1993, pp. 399–406

    Google Scholar 

  355. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, “Visible and Near IR Lidar Backscatter Observations on the GLOBE Pacific Survey Missions,” Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies, Jan. 14–18, 1991, New Orleans, LA

    Google Scholar 

  356. Information provided by D. Dokken of NASA/HQ and by J. Myers of ARC

    Google Scholar 

  357. Information provided by D. Oertel of DLR, Institute of Optoelectronics

    Google Scholar 

  358. R. A. Neville, R. Marois, J. W. Schwarz, S. M. Till, “Wide-angle high-resolution line-imager prototype flight test results,” Applied Optics, Vol. 31, No. 18, 1992, pp. 3463–3472

    Article  Google Scholar 

  359. S. H. Yuen, W. J. Wilson, F. K. Li, S. V. Nghiem, W B. Ricketts, “Polarimetric Measurements of Sea Surface Brightness Temperatures Using an Aircraft K-Band Radiometer,” IEEE Transactions of Geoscience and Remote Sensing, Vol. 33, No. 1, January 1995, pp. 85–92

    Article  Google Scholar 

  360. Information provided by E. S. Putnam of Hughes SBRC

    Google Scholar 

  361. Courtesy of K. Staenz of CCRS, “A Decade of Imaging Spectrometry in Canada,” Canadian Journal of Remote Sensing, Vol. 18 No. 4, October 1992, pp. 187–197

    Google Scholar 

  362. Source: Airborne Geoscience Newsletter, April 1990

    Google Scholar 

  363. Source: Airborne Geoscience Newsletter, March 1991, p. 3

    Google Scholar 

  364. Information provided by K Staenz of CCRS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (1996). Survey of Airborne Sensors. In: Kramer, H.J. (eds) Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97678-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97678-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97680-3

  • Online ISBN: 978-3-642-97678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics