Survey of Spaceborne Missions and Sensors

  • Herbert J. Kramer


A NASA/GSFC solar-terrestrial mission in the explorer program with the objectives to determine: the elemental and isotopic composition of matter, the origin of the elements, the formation of the solar corona and acceleration of the solar wind. S/C builder: JHU/APL. The S/C structure has two octagonal decks, 1.6 m across and 1 m high; the S/C is three-axis stabilized with the spin axis Earth/sun pointing. The mission is planned for a launch in August 1997 with a Delta II launch vehicle from Cape Canaveral, Florida. S/C mass = 785 kg (includes 189 kg of fuel), power=430 W, nominal life of the mission is 5 years.2)


Solar Wind Synthetic Aperture Radar Tropical Rainfall Measure Mission Satellite Laser Range Swath Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 2).
    Information provided by D. L. Margolies of NASA/GSFCGoogle Scholar
  2. 3).
    “The ACTIVE International Space Plasma-Wave Laboratory,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 45–49Google Scholar
  3. 4).
    Aktivny-IK, Interavia Space Directory, 1992–93, pp. 149Google Scholar
  4. 5).
    NASDA handout at the CEOS WGD-10 Meeting in Annapolis MD, April 16–19, 1991Google Scholar
  5. 6).
    “Japan Delays Remote-Sensing Missions,” Space News, March 30/April 5, 1992, p. 9Google Scholar
  6. 7).
    “ADEOS,” NASDA brochure, 1993Google Scholar
  7. 8).
    P. Y. Deschamps, M. Herman, A. Podaire, M. Leroy, M Laporte, P. Vermande, “A Spatial Instrument for the Observation of Polarization and Directionality of Earth Reflectances: POLDER,” IGARSS’90 Conference Proceedings, Washington, D. C.Google Scholar
  8. 9).
    “Upper Atmosphere Monitoring with ADEOS — ILAS and RIS,” EA/NIES brochure provided by Y. Sasano of NIESGoogle Scholar
  9. 10).
    “Ozone Layer Observation by Satellite Sensors,” Proceedings of the International Workshop on Global Environment and Earth Observing Satellite Sensors, December 8–9, 1993, Tokyo, JapanGoogle Scholar
  10. 11).
    Y. Sasano, et al.,“ILAS and RIS for ADEOS,” SPIE, Vol. 1490, 1991, pp. 233–242Google Scholar
  11. 12).
    “Retroreflector-In-Space for ADEOS: Earth-Space-Earth Laser Long-Path Absorption Measurements of Atmospheric Trace Species,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 488–490Google Scholar
  12. 13).
    A. Minato, N. Sugimoto, S. Sasano, “Optical Design of Cube-Corner Retroreflectors Having Curved Mirror Surfaces,” Applied Optics, Vol. 31, 1992, pp. 6015–6020Google Scholar
  13. 14).
    “Monitoring the Earth Environment from Space,” NASDA BulletinGoogle Scholar
  14. 15).
    CEOS WGD-11 Meeting Report, Nov. 5–7, 1991, Toulouse, Attachment 28aGoogle Scholar
  15. 16).
    M. Nakajima, Y. Ito, H. Maejima, Y. Kojima, “The Development of AMSR and GLI for ADEOS-II,” presented at the 45th Congress of the International Astronautical Federation, October 9–14, 1994, Jerusalem, IsraelGoogle Scholar
  16. 17).
    Information provided by K. Imaoka of NASDA/EOCGoogle Scholar
  17. 18).
    M. Suzuki, Y. Sasano, et al., “Conceptual design study of ILAS-II on-board ADEOS-II,” SPIE, Vol. 2533, pp. 48–55, 1995Google Scholar
  18. 19).
    M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, “Satellite Studies of the Stratospheric Aerosol,” Bulletin of the American Meteorological Society, Vol. 60, No. 9, September 1979, pp. 1038–1046Google Scholar
  19. 20).
    L. R. McMaster, M. W. Rowland, “SAGE-I Data User’s Guide,” NASA Reference Publication 1275, Aug. 1992Google Scholar
  20. 21).
    Note: A photometer is usually a broadband instrument capable of measuring thermal continuum radiation (i.e. flux) thereby permitting the study of energy balance and surface composition (also detection of infrared roughness of surface features)Google Scholar
  21. 22).
    W. Priedhorsky, B. W. Smith, J. J. Bloch, D. H. Holden, D. C. A. Roussel-Dupré, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “The ALEXIS Small Satellite Project: Initial Flight Results,” AIAA Space Programs and Technologies Conference, Sept. 21–23, 1993/ Huntsville, A1.; and Proc. SPIE Vol. 2006, 1993, pp. 114–126Google Scholar
  22. 23).
    Information provided by J. Bloch of LANL, Albuquerque, NMGoogle Scholar
  23. 24).
    W. C. Priedhorsky, J. J. Bloch, S. P. Wallin, W. T. Armstrong, O. H. W. Siegmund, J. Griffee, R. Fleeter, “The ALEXIS Small Satellite Project: Better, Faster, Cheaper Faces Reality,” IEEE Transactions on Nuclear Science, Vol. 40, No. 4, August 4, 1993, pp. 863–873Google Scholar
  24. 25).
    J. J. Bloch, et al., “Design, Performance and Calibration of the ALEXIS Ultrasoft X-Ray Telescopes,” SPIE, Vol. 1344, 1990, pp. 154–165Google Scholar
  25. 26).
    “Soviets Launch Largest Earth Resources Satellite on Modified Salyut Platform,” Aviation Week & Space Technology/April 8, 1991, pp. 21–22Google Scholar
  26. 27).
    “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1Google Scholar
  27. 28).
    “ALMAS — Sowjetischer Erdsatellit mit Synthetic Aperture Radar zur Erderkundung,” IKF Berlin, 1990, aus der Reihe: Informationen aus der internationalen Zusammenarbeit.Google Scholar
  28. 29).
    “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1Google Scholar
  29. 30).
    “Sowjetisches Weltraumauge sammelt Ströme digitaler Daten,” VDI Nachrichten, 21. Dez., 1990, Seite 20Google Scholar
  30. 31).
    “Almaz Falls from Orbit,” Space News, Oct 26-Nov. 1, 1992, p. 1Google Scholar
  31. 32).
    Information provided by NPO Machinostroyenia (P. A. Shirokov, L. A. Tararin, et. al.)Google Scholar
  32. 33).
    Note: the term ‘technogenic actions’ (in Table 12) refers to the variations in the natural environment caused by human actions or activities (eg., construction, operation of water, thermal and atomic power stations)Google Scholar
  33. 34).
    Y. Osawa, H. Wakabayashi, K. Toda, T. Hamazaki, “Advanced Land Observing Satellite (ALOS): Mission Requirements, Payloads and Satellite System,” paper of NASDA provided by K. MisawaGoogle Scholar
  34. 35).
    Ampte brochure of MPE GarchingGoogle Scholar
  35. 36).
    Special Issue on the Active Magnetosphere Particle Tracer Explorer (AMPTE), in IEEE Trans. on Geoscience and Remote Sensing, May 1985, Volume GE-23, No. 3, pp. 175–314Google Scholar
  36. 37).
    A. Valenzuela, G. Haerendel, H. Föppl, F. Melzner, H. Neuss, E. Riegler, J. Stöcker, O. Bauer, H. Höfner, J. Loidl, “The AMPTE artificial comet experiments,” reprinted from Nature Vol. 320, No. 6064, pp. 700–723, April 24, 1986Google Scholar
  37. 38).
    “AMPTE,” Interavia Space Directory 1992–93, p. 149Google Scholar
  38. 39).
    “The Active Plasma Experiments in the Earth’s Magnetometers,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group, ESA SP-1107, November 1990, pp. 55–60Google Scholar
  39. 40).
    Information provided by Yu. M. Mikhailov, IZMIRANGoogle Scholar
  40. 41).
    Note: the figure of 650 serviceable platforms in a footprint was provided by ‘CLS ARGOS’ of ToulouseGoogle Scholar
  41. 42).
    “A Definition Study of an Advanced Data Collection and Location System (ADCLS),” prepared for GSFC by ECOSYSTEMS International Inc., January 1986Google Scholar
  42. 43).
    Information provided by S. Grahn of SSCGoogle Scholar
  43. 44).
    Information provided by O. Norberg of IRF, KirunaGoogle Scholar
  44. 45).
    Jack Kaye, “Summary of ATLAS Shuttle Missions,” Paper presented at the EOS-B Atmospheric Payload Panel Meeting Washington, D. C., Feb. 26–27, 1991Google Scholar
  45. 46).
    Information provided by the Earth Science Application Division (ESAD Office) at NASA HQ, WashingtonGoogle Scholar
  46. 47).
    SUSIM brochure of Naval Research Lab, available at NASA HQ’s Document Resource FacilityGoogle Scholar
  47. 48).
    “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412Google Scholar
  48. 49).
    P. Barthol, K. U. Grossmann, D. Offermann, “Telescope design of the CRISTA/SPAS experiment aboard the Space Shuttle,” SPIE, Vol 1331, Stray Radiation in Optical Systems, 1990, pp. 54–63Google Scholar
  49. 50).
    “The China-Brazil Earth Resources Satellite Program,” paper provided by G. Santana of INPEGoogle Scholar
  50. 51).
    “CBERS Spacecraft: Conception and Design,” paper presented by E. A. Parada Tude of INPE and by C. Quin-nan of CAST at the 1st Brazilian Symposium of Aerospace Technology, Sao Jose dos Campos, Aug. 27–31, 1990Google Scholar
  51. 52).
    G. K. Rayalu, et al., “Multispectral and Multitemporal Optical Sensors of CBERS,” INPE internal paperGoogle Scholar
  52. 53).
    Zhu Yilin, “Ziyuan-1, China’s First Earth Resources Satellite (CBERS),” Earth Space Science Review, July-September 1994, Vol. 3, No. 3, pp. 16–19Google Scholar
  53. 54).
    Ch. Reigber, P. Schwintzer, “A Challenging Microsatellite Payload for Geophysical Research and Application,” in: Small Satellites for Remote Sensing, Space Congress’95, Bremen, May 24–25, 1995, pp. 83–89, European Space Report, Munich, 1995Google Scholar
  54. 55).
    Information provided by P. Schwintzer of GFZGoogle Scholar
  55. 56).
    ISTP Global GEOSPACE Science — Energy Transfer in Geospace, ESA/NASA/ISAS brochure, 1992Google Scholar
  56. 57).
    J. Credland, G. Mecke, J. Ellwood, F. Drigani, P. Ferri, et al., Special Section of the CLUSTER mission, spacecraft, payload, data, and mission operations, ESA Bulletin, No. 84, Nov. 1995, pp. 113–150Google Scholar
  57. 58).
    “The Cluster Mission — Scientific and Technical Aspects of the Instruments,” ESA SP-1103, ISSN 0379–6566, Oct. 1988Google Scholar
  58. 59).
    Information provided by S. Kilston of Lockheed Martin, Palo Alto, CAGoogle Scholar
  59. 60).
    The internet URL address is: Scholar
  60. 61).
    Information provided by D. B. GeruU, R. N. Herring, and B. Wientzen of EarthWatch, Longmont, CO.Google Scholar
  61. 62).
    Information provided by V. Leonard of Resource21Google Scholar
  62. 63).
    Note: The cirrus band has been selected because it can detect high, thin cirrus conditions and differentiate them from atmospheric conditions near the surface that look the same in the visible band. Consequently, knowledge of the cirrus contribution can be exploited to remove its radiance contributions in all bands, permitting better estimates of surface reflectance.Google Scholar
  63. 64).
    V. N. Oraevsky, Yu. D. Zhugzhda, “Project CORONAS-I — Orbital Observations of the Solar Activity and Oscillations, 1991,” Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)Google Scholar
  64. 65).
    I. Sobelman, I Zhitnik et al., “XUV and Optical Observations of the Sun by Means of the TEREK-C Telescope/ Coronograph and the RES-C Spectroheliometer aboard the CORONAS-I satellite,” 1992, Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)Google Scholar
  65. 66).
    Yu. D. Kotov, S. I. Nikolsky, V. I. Dranovsky, “Satellite Project PHOTON for the study of solar hard radiation,” paper provided by Yu. KotovGoogle Scholar
  66. 67).
    Yu. Kotov, K. Pflug, G. Schmidtke, “EUV-PHOKA, “paper provided by K. PflugGoogle Scholar
  67. 68).
    R. A. Cooper, D. H. Burks, “Space Physics Missions Handbook,” NASA, Office of Space Science and Applications, Feb. 1991Google Scholar
  68. 69).
    Special Section on CRRES, Journal of Spacecraft and Rockets, Vol. 29, No. 4 July-Aug. 1992, pp. 555–617Google Scholar
  69. 70).
    R. A. Hoffman, G. D. Hogan, R. C. Maehl, “Dynamics Explorer Spacecraft and Ground Operating Systems,” Space Science Instrumentation, 5, 1981, pp. 349–367Google Scholar
  70. 71).
    W. H. Farthing, L. J. Cahill, et al., “Magnetic Field Observations on DE-A and -B,” Space Science Instrumentation, 5, 1981, pp. 551–560Google Scholar
  71. 72).
    S. D. Shawhan, R. A. Helliwell, et al., “The Plasma Wave and Quasi-Static Electric Field Instrument (PWI) for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 535–550Google Scholar
  72. 73).
    J. L. Burch, R. A. Hoffman, et al., “High-Altitude Plasma Instrument for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 455–463Google Scholar
  73. 74).
    C. R. Chappell, J. H. Hoffman, et al., “The Retarding Ion Mass Spectrometer on Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 477–491Google Scholar
  74. 75).
    E. G. Shelley, et al., “The Energetic Ion Composition Spectrometer (EICS) for the Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 443–454Google Scholar
  75. 76).
    L. A. Frank et al., “Global Auroral Instrumentation for the Dynamics Explorer Mission,” Space Science Instrumentation 5, 1981, pp. 369–393Google Scholar
  76. 77).
    N. C. Maynard et al., “Instrumentation for Vector Electric Field Measurements from DE-B,” Space Science Instrumentation, 5, 1981, pp. 523–534Google Scholar
  77. 78).
    G. R. Carignan, et al., “The Neutral Mass Spectrometer on Dynamics Explorer B,” Space Science Instrumentation, 5, 1981, pp. 429–441.Google Scholar
  78. 79).
    N. W. Spencer, et al., “The Dynamics Explorer Wind and Temperature Spectrometer,” Space Science Instrumentation, 5, 1981, pp. 417–428Google Scholar
  79. 80).
    P. B. Hays, et al., “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Science Instrumentation, 5, 1981, pp. 395–416Google Scholar
  80. 81).
    R. A. Heelis, W. B. Hanson, et al., “The Ion Drift Meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 511–521Google Scholar
  81. 82).
    W. B. Hanson et al., “The Retarding Potential Analyzer for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 503–510Google Scholar
  82. 83).
    J. P. Krehbiel, L. H. Brace, W. H. Pinkus, R. B. Kaplan, et. al., “The Dynamics Explorer Langmuir Probe Instrument,” Space Science Instrumentation, 5, 1981, pp. 493–502Google Scholar
  83. 84).
    J. D. Winningham, R. A. Hoffman, et al., “The Low Altitude Plasma Instrument (LAPI),” Space Science Instrumentation, 5, 1981, pp. 465–475Google Scholar
  84. 85).
    W.D. Meyer, “DMSP: Review of its Impact, in Monitoring Earth’s Ocean, Land, and Atmosphere from Space,” Volume 97, Progress in Astronautics and Aeronautics, AIAA, 1985, pp. 131–147Google Scholar
  85. 86).
    S. Ferry, “The Defense Meteorological Satellite System Sensors: An Historical Overview,” May 1989Google Scholar
  86. 87).
    R. B. Gomez, M. C. Colton, D. Boucher, F. P. Kelly, “The Defense Meteorological Satellite Program (DMSP),” ISSSR, Maui, HI, Nov. 16–20, 1992Google Scholar
  87. 88).
    R. Massom, “Satellite Remote Sensing of Polar Regions,” Applications, Limitations and Data Availability, Bel-haven Press, LondonGoogle Scholar
  88. 89).
    J. W. Sherman, “The Near-Term Suite of Satellite Sensors to Support Developing Countries’ Climate and Global Change Photograms,” Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of the Environment, ERIM Ann Arbor ML, Volume I, 27–31 May 1991, pp. 27–28Google Scholar
  89. 90).
    The rotating antenna sweeps the surface in two alternating modes — one in which all four frequencies are recorded, and another in which only 85 GHz data are recorded. The use of a single antenna results in different ground resolutions for each frequency.Google Scholar
  90. 91).
    Information of all Block 5D-3 sensors and update of Table 30 provided by Major J. Sorlin-Davis, Dept. of USAF, The PentagonGoogle Scholar
  91. 92).
    “Defense Meteorological Satellite Program, Visible and Infrared Imagery Collection,” NOAA-NSIDC, Feb.’84Google Scholar
  92. 93).
    “Data Management Plan for the Archive of DMSP Digital Data at NGDC,” April 28, 1992, Draft; Courtesy of W. Kroehl, NGDCGoogle Scholar
  93. 94).
    J. Holloinger, “DMSP Special Sensor Microwave/Imager Calibration/Validation,” Final Report, Vol. I and II, NRL, 1989Google Scholar
  94. 95).
    Courtesy G. Scharfen, NOAA/NESDIS/NSIDCGoogle Scholar
  95. 96).
    M. Sasaki, H. Hashimoto, “Launch and Observation of the Experimental Geodetic Satellite of Japan’, IEEE Transactions on Geoscience and Remote Sensing, Volume 25, No. 5, Sept. 1987Google Scholar
  96. 97).
    G. Asrar. R. Greenstone (editors), “MTPE/EOS Reference Handbook 1995 “NASA/GSFCGoogle Scholar
  97. 98).
    “Earth Observing System,” Reference Handbook 1990, and 1991, NASA/GSFCGoogle Scholar
  98. 99).
    “Optical Remote Sensing of the Atmosphere,” 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 23–58Google Scholar
  99. 100).
    G. Asrar, D. J. Dokken, “EOS Reference Handbook,” March 1993, NASAGoogle Scholar
  100. 101).
    ASTER instrument characteristics from Internet home page of EOS Project Science Office. The URL address is: ( Scholar
  101. 102).
    MODIS brochure of NASA/GSFC provided by M. D. KingGoogle Scholar
  102. 103).
    Information provided by C. Schueler and J. Thunen of Hughes SBRCGoogle Scholar
  103. 104).
    MTPE/EOS Reference Handbook, 1995, NASA, G. Asrar and R. Greenstone (editors)Google Scholar
  104. 105).
    Earth Observation from Space, Report of ‘Committee on Earth Studies,’ ‘Space Studies Board,’ ‘Commission on Physical Sciences, Mathematics and Applications,’ ‘National Research Council,’ National Academy Press, Washington, D. C., 1995Google Scholar
  105. 106).
    “A Small Equatorial Satellite to Complement the Global Geospace Science Program — Equator — S,” MPE Equa-tor-S proposal, Sept. 30, 1991Google Scholar
  106. 107).
    “EQUATOR-S — A Contribution to the Interagency Solar-Terrestrial Physics Programme,” MPE paper provided by H. HöfnerGoogle Scholar
  107. 108).
    J. A. Dezio, C. A. Jensen, “Earth Radiation Budget Satellite,” in Monitoring Earth’s Ocean, Land, and Atmosphere, Vol. 97 by AIAA, 1985, pp. 261–292Google Scholar
  108. 109).
    ESA Bulletin No. 65 Feb. 1991Google Scholar
  109. 110).
    W. Markwitz, “Das ERS-1 Bodensegment, Empfang, Verarbeitung und Archivierung von SAR Daten,” Die Geo-wissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 111–115Google Scholar
  110. 111).
    D. Gottschalk, “ERS-1 Mission and System Overview,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 100–101Google Scholar
  111. 112).
    M.F. Buchroithner, J. Raggan, D. Strobl “Geokodierung und geometrische Qualitätskontrolle,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 116–112Google Scholar
  112. 113).
    E. P. W. Attema, “The Active Microwave Instrument On-Board the ERS-1 Satellite,” Proc. IEEE, Vol. 79, No.6, June 1991, pp. 791–799Google Scholar
  113. 114).
    ERS-1 User Handbook, ESA SP-1148, May 1992, pp. 6–7Google Scholar
  114. 115).
    G. Schreier, K. Maeda, B. Guindon, “Three Spaceborne SAR Sensors: ERS-1, JERS-1, and RADARSAT-Competition or Synergism?,” Geo Informationssysteme, Heft 2/1991, Wichmann Verlag, Karlsruhe, pp. 20–27Google Scholar
  115. 116).
    R. Winter, D. Kosmann “Anwendungen von SAR-Daten des ERS-1 zur Landnutzung,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 128–132Google Scholar
  116. 117).
    W. Kühbauch, “Anwendung der Radarfernerkundung in der Landwirtschaft,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 122–127Google Scholar
  117. 118).
    Note: The on-board PRARE instrument of the ERS-1 payload could not achieve operational status after launch. The instrument worked nominally for five days after launch (five contacts with the command station showed nominal telemetry). A thorough failure analysis came to the conclusion that the most likely cause of the PRARE failure is RAM damage due to radiation (destructive RAM latch-up).Google Scholar
  118. 119).
    ‘ESA Signs Long-awaited Imagery Sales Deal,’ Space News, Feb. 10–16, 1992, p. 4Google Scholar
  119. 120).
    C. R. Francis, G. Graf, et al., “The ERS-2 Spacecraft and its Payload,” ESA Bulletin, No. 83, Aug. 1995, pp. 13–31Google Scholar
  120. 121).
    G. Duchossois, P. Martin, “ERS-1 and ERS-2 Tandem Operations,” ESA Bulletin, No. 83, August 1995, pp. 54–60Google Scholar
  121. 122).
    N. Stricker, A. Hahne, et al., “ATSR-2: The Evolution in its Design from ERS-1 to ERS-2,” No. 83, August 1995, pp. 32–37Google Scholar
  122. 123).
    C.J. Readings, ‘The Interim GOME Science Report,’ Feb. 1990,Google Scholar
  123. 124).
    ‘The Global Ozone Monitoring Experiment (GOME) and ERS-2,’ Earth Observation Quarterly, ESA periodical No. 32 Dec. 1990Google Scholar
  124. 125).
    A. Hahne, et al., “GOME: A New Instrument for ERS-2,” ESA Bulletin, No. 73, February 1993, pp. 22–29Google Scholar
  125. 126).
    GOME Global Ozone Monitoring Experiment, Interim Science Report, ESA SP-1151, September 1993Google Scholar
  126. 127).
    Information provided by G. T. Christiansen of Leslie Taylor Associates, Bethesda, MD and by P. Nuspl of W. L. Pritchard & CO. Inc.Google Scholar
  127. 128).
    S.K. Tatevian, A.N. Zakharov, “The Geodynamical Satellite ETALON,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 3–9Google Scholar
  128. 129).
    ESA Press Release, ESA/ESTEC, 1991Google Scholar
  129. 130).
    P. Ferri, H. Hübner, S. Kellock, W. Wimmer, “The Joint ESA-NASA Operations for Eureca’s Deployment and Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 81–90Google Scholar
  130. 131).
    F. Dreger, J. Fertig, D. Gawthrope, S. Martin, et. al., “Eureca: The Flight Dynamics of the Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 92–99Google Scholar
  131. 132).
    Journal of Geomagnetism and Geoelectricity including Space Physics, Volume 33, No. 1, 1981, featuring EXOS-B, pp. 1–160Google Scholar
  132. 133).
    K. I. Oyama et al., “Electron Temperature Probe on Board Japan’s 9th Scientific Satellite Ohzora,” J. Geomagnetism and Geoelectricity, Volume 37, 1985, pp. 413–430Google Scholar
  133. 134).
    EXOS-D (Akebono) — Japan’s 12th Scientific Satellite — A Study of auroral particle acceleration processes, ISAS brochureGoogle Scholar
  134. 135).
    Selected papers on EXOS-D (Akebono) Observations in Geophysical Research Letters, Volume 18, No. 2, Feb. 1991, pp. 293–352Google Scholar
  135. 136).
    Information provided by J. T. Skladany of Final Analysis Inc., Greenbelt, MDGoogle Scholar
  136. 137).
    D. Baker, G. Chin, R. Pfaff, “NASA’s Small Explorer Program,” Physics Today, Dec. 1991, pp. 44–51Google Scholar
  137. 138).
    C. W. Carlson, “The Fast Auroral Snapshot Explorer,” EOS, Vol. 73, No. 23, 1992, pp. 249, 253, 254Google Scholar
  138. 139).
    Information provided by C. Cattell of UCBGoogle Scholar
  139. 140).
    Q. B. Zheng, X. R. Xue, “Optical Design of the Remote Sensing Instrument for FY-1 Meteorological Satellite,” Chinese Journal of Infrared & Millimeter Waves, Volume 9, Number 2, 1989Google Scholar
  140. 141).
    ‘The Data Format and the calibration Parameters of FY-1 Meteorological Satellite,’ Satellite Meteorology Center, SMAGoogle Scholar
  141. 142).
    Information provided by Wang Xinmin of the Shanghai Institute of Technical Physics, ShanghaiGoogle Scholar
  142. 143).
    ‘China Launches first Fengyun II,’ Flight International, 11–17 Dec. 1991, p. 20Google Scholar
  143. 144).
    Paper provided by LANL (D. C. Cobb)Google Scholar
  144. 145).
    M. André (editor) and the Freja Science Team, “The Freja Scientific Payload,” Swedish Institute of Space Physics, Kiruna, May 1991Google Scholar
  145. 146).
    “The Freja Scientific Satellite,” brochure of Swedish Space CorporationGoogle Scholar
  146. 147).
    “Systeme und Sensoren,” p. 45, Taschenbuch zur Fernerkundung, Wichmann, 1990Google Scholar
  147. 148).
    S.K. Tatevian, “The Space Geodetic Complex GEO-IK,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 9–11Google Scholar
  148. 149).
    JANE’s Spaceflight Directory, 1988–89, pp. 332–333Google Scholar
  149. 150).
    GEOS — Projects under Development, ESA Report to COSPAR, Jan. 1977, pp. 112–123Google Scholar
  150. 151).
    “GEOS,” Interavia Space Directory 1992–93, pp. 155–156Google Scholar
  151. 152).
    H.R. Stanley, “The GEOS 3 Project,” Journal of Geophysical Research, July 30, 1979, pp. 3779–3783Google Scholar
  152. 153).
    “The Navy GEOSAT Mission: An Overview,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987Google Scholar
  153. 154).
    “The Navy GEOSAT Mission Radar Altimeter Satellite Program,” in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985 AIAA, pp. 440–463Google Scholar
  154. 155).
    D. R. Mantripp, J. K. Ridley, C. G. Rapley, “Antarctic map from the Geosat Radar Altimeter Geodetic Mission,” ESA Earth Observation Quarterly, No. 37–38, May-June 1992, pp. 6–10Google Scholar
  155. 156).
    Information provided by B. Barry of Ball Aerospace, Boulder, CO, and by Ch. Kilgus of JHU/APLGoogle Scholar
  156. 157).
    “The GEOTAIL Mission,” in NASAFacts, GSFC, June, 1992Google Scholar
  157. 158).
    “Delta Launches GEOTAIL,” Space News, July 27-Aug. 9, 1992, p. 12Google Scholar
  158. 159).
    “GEOTAIL Instruments and Initial Results,” Foreword by A. Nishida, Journal of Geomagnetism and Geoelectricity, ISSN 0022–1392, Vol. 46, 1994,Google Scholar
  159. 160).
    Information provided by Ch. Reigber and R. König of GFZ PotsdamGoogle Scholar
  160. 161).
    “Understanding Signals from GLONASS Navigation Satellites,” International Journal of Satellite Communications’, Vol. 7, 11–12, 1989, pp. 11–22Google Scholar
  161. 162).
    “Russians Launch Trio of GLONASS Satellites,” GPS World, January 1995, p. 15Google Scholar
  162. 163).
    N. L. Johnson, “GLONASS Spacecraft,” GPS World, Nov. 1994, pp. 51–58Google Scholar
  163. 164).
    URL address: Scholar
  164. 165).
    Y. Gouzhva, I. Koudryavtsev, V. Korniyenko, I. Pushkina, “GLONASS Receivers: An Outline,” GPS World, January 1994, pp. 30–36Google Scholar
  165. 166).
    Courtesy of A. Selivanov, ISDE and B. Zhukov, IKI, MoscowGoogle Scholar
  166. 167).
    P. N. Misra, E. T. Bayliss, R. R. LaFrey, M. M. Pratt, R. A. Hogaboom, R. Muchnik, “GLONASS Performance in 1992: A Review,” GPS World, May 1993, pp. 28–38Google Scholar
  167. 168).
    “The NAVSTAR GPS System,” AGARD Lecture Series No. 161, ISBN 92–835–04771, Sept. 1988Google Scholar
  168. 169).
    “Understanding Signals from GLONASS Navigation Satellites,” International Journal of Satellite Communications, Vol. 7 11–12, 1989, pp.11–22Google Scholar
  169. 170).
    “Navstar,” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 404–405Google Scholar
  170. 171).
    “GPS — the Next Generation,” GPS World, Nov. Dec. 1991, pp. 12–16Google Scholar
  171. 172).
    H. Montgomery, “Organizing the Technology,” GPS World, April 1992, pp. 18–20Google Scholar
  172. 173).
    “GPS — the Next Generation,” GPS World, Nov./Dec. 1991, p. 12Google Scholar
  173. 174).
    Glen Gibbons, “What in the World!?!” GPS WORLD, April 1991, p. 21–24Google Scholar
  174. 175).
    B. Tryggö, R. Bäckström, “Threading the Needle: Differential GPS on the Baltic Sea,” in GPS World Sept. 1991, pp. 22–26Google Scholar
  175. 176).
    “GPS is Newest Aid in Earthquake Forecasting,” Space News, March 18–24 1991, pp. 22Google Scholar
  176. 177).
    “Smart Policy: Make Best GPS Data Available to All,” Space News, April 1–7 1991, pp. 15Google Scholar
  177. 178).
    N.E. Ivanow, V. Salistchew, “GLONASS and GPS: Prospects for a Partnership,” GPS WORLD, April 1991, p. 36–40Google Scholar
  178. 179).
    W. Johnson, “Attitude Adjustment, GPS Innovation keeps Satellites Oriented,” Satellite Communications, June 1995, pp. 19–21Google Scholar
  179. 180).
    “International GPS Services for Geodynamics,” 1994 Annual Report, September 1, 1995, IGS Central Bureau, edited by J. F. Zumberge, R. Liu, and R. E. NeilanGoogle Scholar
  180. 181).
    G. Beutler, E. Brockmann, “Proceedings of the International GPS Service for Geodynamics (IGS) Workshop,” March 25–26, 1993, Astronomical Institute, University of BernGoogle Scholar
  181. 182).
    CIGNET Report, CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 235–256Google Scholar
  182. 183).
    P.K. Enge, R.M. Kalafus, M.F. Ruane, “Differential Operation of the Global Positioning System,” IEEE Communications Magazine, July 1988, Vol. 26, No.7, pp. 48–59Google Scholar
  183. 184).
    B. McGarigle, “’Top 40 Hydrography: Surveying with FM-based DGPS,” GPS World April 1993 pp. 37–40Google Scholar
  184. 185).
    “California-Based Firms Offer Highly Accurate GPS Services,” Space News, Nov. 29-December 5, 1993, p. 7Google Scholar
  185. 186).
    GPSWORLD, Dec. 1993, p. 39Google Scholar
  186. 187).
    S/C drawing courtesy of J. Keating, Lockheed Martin Astro Space, Valley Forge, PAGoogle Scholar
  187. 188).
    M. Homma, M. Minowa, M. Kobayashi, M. Harada, “Geostationary Meteorological Satellite System in Japan” in ‘Monitoring Earth’s Ocean, Land, and Atmosphere from Space,’ Volume 97 AIAA, 1985, pp. 570–583Google Scholar
  188. 189).
    Information provided by T. Hiraki of JMA, TokyoGoogle Scholar
  189. 190).
    “Space System with Geostationary Meteorological Satellite (GOMS),” Paper of Planeta, Moscow, Nov. 1990Google Scholar
  190. 191).
    S. A. Stoma, Yu. V. Trifonov, “Geostationary Space System ‘ELECTRO’ (GOMS): Preconditions for Creation and Structure,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 2–6Google Scholar
  191. 192).
    O. M. Miroshnik, et. al., “A Drama in Orbit with a Happy Ending,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 7–10Google Scholar
  192. 193).
    Yu. V. Trifonov, “S/C ELECTRO On-board Control Complex,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 11–14Google Scholar
  193. 194).
    Yu. V Trifonov, A. V. Gorbunov, “Prospects for the ELECTRO Space System Development,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 14–15Google Scholar
  194. 195).
    “Testing Einstein with Orbiting Gyroscopes, Gravity Probe B,” Stanford University brochureGoogle Scholar
  195. 196).
    Information provided by C. W. F. Everitt of Stanford University, Stanford, CAGoogle Scholar
  196. 197).
    J. A. Lipa, D. H. Gwo, R. K. Kirschman, “Status of the cryogenic inertial reference system for the Gravity Probe B mission,” SPIE, Vol. 1765 Cryogenic Optical Systems and Instruments V, 23–24 July 1992, San Diego, pp. 85–93Google Scholar
  197. 198).
    C. W. F. Everitt, D. Bardas, Y. M. Xiao, et al., “Three Papers on Gravity Probe B,” presented at The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991Google Scholar
  198. 199).
    M. Tapley, et al., “Gradiometry Coexperiments to the Gravity Probe B and Step Missions,” Advanced Space Research, Vol. 11, No. 6, 1991, pp. 179–182Google Scholar
  199. 200).
    R. F. C. Vessot, M. W. Levine, “A Test of the Equivalence Principle Using a Space-Borne Clock,” General Relativity and Gravitation, Vol. 10, No. 3, 1979, pp. 181–204Google Scholar
  200. 201).
    When a superconductor like niobium spins, it generates a magnetic field effect known as the ‘London moment,’ after physicist Fritz London (1900–1954).Google Scholar
  201. 202).
    Note: PODS = Passive Orbital Disconnect StrutsGoogle Scholar
  202. 203).
    P. Slater, ‘Remote Sensing’ Optics and Optical Systems, Addison-Wesley, 1980, pp. 462–465Google Scholar
  203. 204).
    HCMM System in ‘Manual of Remote Sensing,’ Second Edition, American Society of Photogrammetry, 1983, pp. 663–670Google Scholar
  204. 205).
    J. H. King, “Availability of IMP-7 and IMP-8 Data for the IMS Period,” The IMS Source Book, GSFC, pp. 10–20,Google Scholar
  205. 206).
    ‘Space Applications,’ DOS Annual Report 1990–91. pp. 13–23Google Scholar
  206. 207).
    “Arianespace Receives Contract for Indian Launches,” Space News, March 14–20, 1994, p. 3Google Scholar
  207. 208).
    “INTERBALL — Study of Magnetospheric Plasma and Solar-Terrestrial Relations,” Academy of Sciences of the USSR Space Research Institute, 1987Google Scholar
  208. 209).
    J. Büchner, L. M. Seljenyi, “Interbol erforscht die Magnetosphäre,” Astronomie und Raumfahrt, GDR, 25. Jahrgang, 1987, Heft 3, pp. 77–80Google Scholar
  209. 210).
    “Interball Project — Magnetospheric System of 4 Spacecraft,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 61–73Google Scholar
  210. 211).
    “Indian Remote Sensing Satellite and Associated Data Products,” A.K.S. Gopalan, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, p. 71, ERIM, Ann Arbor, MI, 1990Google Scholar
  211. 212).
    IRS Newsletter, ISRO, Vol. 2 No. 1, March 1991Google Scholar
  212. 213).
    “India Expands Access to Imagery,” Space News Aug. 26 — Sept. 8, 1991, p. 22Google Scholar
  213. 214).
    “India Calls IRS-1B Launch a Success,” Space News, September 9–15, 1991, p. 12 Transmission data rate: 125 Mbit/s (X-Band), TT&C in S-Band (Mission control center at Bangalore). Eosat of Lanham, MD (the Landsat data distributor) bought the worldwideGoogle Scholar
  214. 215).
    IRS-1C Executive Summary, IRS-1C/1D Project, May 1990, ISROGoogle Scholar
  215. 216).
    “India’s IRS-1C Satellite to offer sharper Images,” Space News, May 25–31, 1992 p. 11Google Scholar
  216. 217).
    “India Readies Sharper IRS-1C for Molniya Launch,” Space News, January 9–15, 1995, p. 3Google Scholar
  217. 218).
    IRS-IE MEOSS Utilization Plan, ISRO, July 1991Google Scholar
  218. 219).
    Document on Configuration of IRS-P2 and MOS and their Interfaces, ISAC, Bangalore, Nov. 1992Google Scholar
  219. 220).
    Special issue on ‘Instrumentation for the International Sun-Earth Explorer Spacecraft’ in IEEE Transactions on Geoscience Electronics, Volume 16, No.3, July 1978Google Scholar
  220. 221).
    K. P. Wenzel, “Earth’s Distant Geomagnetic Tail Explored by ISEE-3 Spacecraft,” ESA Bulletin 37, 1984 pp. 46–50Google Scholar
  221. 222).
    A. Balogh, R. J. Hynds, J. J. van Rooijen, G. A. Stevens, T. R. Sanderson, K. P. Wenzel, “Energetic Particles in the Hehosphere — Results from the ISEE-3 Spacecraft,” ESA Bulletin 27, 1981, pp. 4–12Google Scholar
  222. 223).
    “Japanese Elated as JERS-1 Rescue Works,” Space News, April 13–19, 1992, p. 1 and p. 20Google Scholar
  223. 224).
    K. Maeda, M. Nakai, O. Ryuguji, “JERS-l/ERS-1 Verification Program and Future Verification Program,” Advanced Space Research, Vol. 12, No. 7, pp. 327–331, 1992Google Scholar
  224. 225).
    Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 83–84Google Scholar
  225. 226).
    R. Kolenkiewicz, S. Zerbini, “LAGEOS-II: A collaborative NASA-ASI Mission,” CSTG Bulletin No.ll, Title: New Satellite Missions for Solid Earth Studies,, June 1989, pp. 13–18Google Scholar
  226. 227).
    “Columbia Successfully Lofts Italian Lageos Satellite,” Space News, Oct. 26-Nov. 1, 1992, p. 13Google Scholar
  227. 228).
    NASA/ASI Lageos II brochureGoogle Scholar
  228. 229).
    E. J. Sheffner, “The Landsat Program: Recent History and Prospects,” PE&RS, Vol. 60„ 1994, pp. 735–744Google Scholar
  229. 230).
    “Fernerkundung, Daten und Anwendungen,” W. Markwitz/R. Winter, Wichmann Verlag, 1989, S. 32–36Google Scholar
  230. 231).
    “Taschenbuch zur Fernerkundung,” F. Strathmann, Wichmann Verlag, 1990Google Scholar
  231. 232).
    Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, Chapter 3Google Scholar
  232. 233).
    “Satellite Loss Raises Questions for Eosat’s Future,” Space News, October 11–17, 1993, p. 3Google Scholar
  233. 234).
    EOSAT Landsat Technical Notes, September 1992Google Scholar
  234. 235).
    M. D. King ‘The Editor’s Corner,’ The Earth Observer, Vol. 6, No. 1, January/February 1994Google Scholar
  235. 236).
    B. L. Markham, et al., “Radiometric Calibration of the Landsat-7 Enhanced Thematic Mapper Plus,” Proceedings of IGARSS’94, Volume IV, pp. 2004–2006Google Scholar
  236. 237).
    J. R. Irons, D. L. Williams, B. L. Markham, “Landsat-7 ETM+ On-Orbit Calibration and Data Quality Assessment,” Proceedings IGARSS’95, Vol. II, pp. 1573–1575Google Scholar
  237. 238).
    D. L. Williams, J. R. Irons, et al., “Landsat Advanced Technology Instrument (LATI) Concepts,” Landsat Satellite Information in the Next Decade, ASPRS Conference Proceedings, Sept. 25–28, 1995, Vienna, VAGoogle Scholar
  238. 239).
    A. S. Levine (editor), “LDEF — 69 Months in Space, First Post-Retrieval Symposium,” NASA Conference Publication 3134 (Part 1 and Part 2), Proceedings of a symposium sponsored by NASA at Kissimmee, Florida, June 2–8, 1991Google Scholar
  239. 240).
    W. Flury, “Europe’s Contribution to the Long Duration Exposure Facility (LDEF) Meteoroid and Debris Impact Analysis,” ESA Bulletin, Number 76, November 1993, pp. 112–118Google Scholar
  240. 241).
    B.B. Schardt, B.H. Mollberg, “The Orbiter Camera Payload System’s Large-Format Camera and Attitude Reference System,” in Monitoring the Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, pp. 684–709Google Scholar
  241. 242).
    The satellite missions are named in honor of Meriwether Lewis (1774–1809) and William Clark (1770–1838), who headed the first overland expedition of about 40 persons (1804–06) to the Pacific coast and back, starting in St. Louis, Missouri. The expedition was initiated by President Thomas Jefferson, who wanted a first survey (information in the form of maps and diaries) of the territory west of the Mississippi acquired by the Louisiana Purchase in 1803 from France.Google Scholar
  242. 243).
    Information provided by J. S. Pearlman and S. K. Manlief of TRW, Redondo Beach, CAGoogle Scholar
  243. 244).
    Note: The NICMOS3 array is being developed for the next-generation IR instruments for the Hubble Space Telescope.Google Scholar
  244. 245).
    Information provided by J. Jacobi of CTA, McLean, VA and by R. J. Hayduk of NASA/HQ, Washington, DCGoogle Scholar
  245. 246).
    “Lidar In-Space Technology Experiment (LITE): NASA’s first In-Space Lidar System for Atmospheric Research,” Optical Engineering, Jan. 1991, Vol. 30 No. 1 pp. 88–95Google Scholar
  246. 247).
    F. F. Mobley, L. D. Eckard, G. H. Fountain, G. W. Ousley, “Magsat — A New Satellite to Survey the Earth’s Magnetic Field,” IEEE Transactions on Magnetics, Vol. Mag. 16, No. 5, September 1980, pp. 758–760Google Scholar
  247. 248).
    R. Langel, G. Ousley, J. Berbert, “The MAGSAT Mission,” Geophysical Research Letters, Vol. 9, No. 4, April 1982, pp. 243–245Google Scholar
  248. 249).
    R. Langel, “The Magnetic Earth as Seen from Magsat, Initial Results,” Geophysical Research Letters, Vol. 9, No.4, April 1982, pp. 239–242Google Scholar
  249. 250).
    Information provided by V. Connors and D. O. Neil of NASA/LaRCGoogle Scholar
  250. 251).
    “The Cambridge Encyclopedia of Space,” Cambridge University Press 1990, p. 235Google Scholar
  251. 252).
    The original text was reviewed by Y. V. Trifonow of VNIIEM, MoscowGoogle Scholar
  252. 253).
    COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hy-drometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”Google Scholar
  253. 254).
    Y. V. Trifonov, “Meteor-3 space system for hydrometeorological observation,” VNIIEM, Moscow, 1991Google Scholar
  254. 255).
    ‘Soviets to Launch U.S. Ozone Mapper,’ Space News Aug. 5–18, 1991, p. 14Google Scholar
  255. 256).
    ‘TOMS Arrives Successfully in Space,’ Space News Aug. 19–25, 1991, p. 2Google Scholar
  256. 257).
    “TOMS Mission Declared Over by NASA Officials,” Space News, February 20–26, 1995, p. 11Google Scholar
  257. 258).
    Courtesy of B. S. Zhukov (IKI RAN), Y. V Trifonov and Y. V. Dubrovinsky (VNIIEM), MoscowGoogle Scholar
  258. 259).
    Meteor 2–22 was launched in honor of A. G. Iosiphyan, the founder and first director of VNIIEM and the designer of the Meteor-1, Meteor-2, and Meteor-Priroda satellite seriesGoogle Scholar
  259. 260).
    Information provided by H. D. Dicken of the University of BremenGoogle Scholar
  260. 261).
    ESA Information Note to the Press No. 4, Feb. 11, 1991, “MOP-2 Ready for Launch”Google Scholar
  261. 262).
    “Current and Planned European Operational Meteorological Satellite Systems,” John Morgan, Proceedings of the Twenty-Third International Symposium on Remote Sensing of The Environment, Bangkok, Thailand, April 18–25, 1990, ERIM, Ann Arbor, MI, Vol. I, pp. 107–116.Google Scholar
  262. 263).
    ‘The Meteosat Operational Programme — From Experiments to Exploitation,’ Earth Observation Quarterly, No. 25, March 1989Google Scholar
  263. 264).
    Introduction to the METEOSAT Operational System, ESA BR-32 ISSN 250–1589, Sept. 1987Google Scholar
  264. 265).
    ‘EUMETSAT Directory of Meteorological Satellite Application,’ ISBN 92 91110 006 4, 1991, EUMETSATGoogle Scholar
  265. 266).
    “Meteosat Data Collection System,” March 1990, ESOCGoogle Scholar
  266. 267).
    “Meteosat DCP Satellite Retransmission System,” January 1990, ESOCGoogle Scholar
  267. 268).
    “Meteosat WEFAX Transmissions,” ESOC paper, March 1990Google Scholar
  268. 269).
    “Meteosat High Resolution Image Dissemination,” ESOC paper, Oct. 1989Google Scholar
  269. 270).
    “MOSAIC Meteorological Data Distribution,” EUMETSAT, EUM UG 01Google Scholar
  270. 271).
    “Meteosat Second Generation Programme Proposal,” ESA/PB-EO, Nov. 1992Google Scholar
  271. 272).
    Information provided by G. Moody and D. Finn of OSC, and by W. J. Koshak of NASA/MSFCGoogle Scholar
  272. 273).
    “Soviets to Set Record Pace for MIR Repairs,” Space News June 10–16, 1991, p. 12Google Scholar
  273. 274).
    “Earth Imagery from MIR offered to Commercial Buyers,” Space News, April 25-May3, 1992, p. 27Google Scholar
  274. 275).
    Overview paper provided by G. Zimmermann of DLR (IKF) Berlin, Aug. 1991Google Scholar
  275. 276).
    Note: The sensors of existing modules are operational (Priroda and Spektr modules are planned)Google Scholar
  276. 277).
    MIR Earth Images are sold by ‘Energiya Deutschland GmbH’, a joint venture of NPO Energiya, Moscow and Kayser-Threde of Munich, Germany — see Space News, Aug. 17–23, 1992, p. 13Google Scholar
  277. 278).
    F. Ackermann, J. Bodechtel, F. Lanzl, D. Meissner, P. Seige, H. Winkenbach;”MOMS-02 — Ein multispektrales Stereo-Bildaufnahmesystem für die zweite deutsche Spacelab-Mission D2,” Geo-Informations-Systeme, Zeitschrift für interdisziplinären Austausch innerhalb der Geowissenschaften, Wichmann Verlag, Jahrgang 2, Heft 3/1989, S. 5–11Google Scholar
  278. 279).
    J. Bodechtel, D. Meißner, P. Seige, H. Winkenbach, J. Zilger, “The MOMS Experiment on STS-7 and STS-11 -First Results and Further Development of the Modular Optoelectronic Multispectral Scanner,” Proceedings of the Eighteenth International Symposium on Remote Sensing of the Environment, Volume 1, 1984, pp. 77–85Google Scholar
  279. 280).
    “MOMS-01: First Results of STS-7 Mission,” IGARSS’83Google Scholar
  280. 281).
    J. Bodechtel, S. Lutz, “Neue Wege der Erderkundung,” aus Einsichten, Forschung an der LMU, pp. 38–43, 1992Google Scholar
  281. 282).
    Courtesy of P. Seige, DLRGoogle Scholar
  282. 283).
    John D. Mill, et al., “Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives,” Journal of Spacecraft and Rockets, Vol. 31, No. 5, September-October 1994, pp. 900–907Google Scholar
  283. 284).
    J. F. Carbary, E. H. Darlington, K. Heffernan, T. J. Harris, C. I. Meng, M. J. Mayr, P. J. McEvaddy, K. Peacock, “Aerial Surveillance Sensing Including Obscured and Underground Object Detection,” Proceedings of SPIE, April 4–6, 1994, Orlando Florida, Volume 2217Google Scholar
  284. 285).
    Note: The spatial resolution of the SPIMs is driven by the point-spread function in one direction (along the slit) and by the point-spread function and the mirror step size in the other direction. For the 0.05° mirror steps one can assume that it is driven by the point-spread function in both directions, and is about 0.85 mrad. The spatial resolution is diminished by using the 0.1° steps or by reducing the number of bins in the readout, by co-adding 2, 4, or 8 adjacent pixels. This is to reduce the bandwidth requirement by trading spatial resolution, spectral resolution and frame rate. The nadir resolution is 0.85 mrad × 900 km ≃ 770 m. Nadir FOV is 17 mrad (1o) × 900 km ≃ 15 km × 15 km.Google Scholar
  285. 286).
    Note: The bins are formed in the SPIM electronics by co-adding 1, 2, or 4 adjacent pixels; this is done to reduce the data bandwidth requirement in cases where UVISI is not the principal instrument, or higher frame rates are needed which can be traded off against resolution. For the case of 136 and 272 bins, the bins overlap; for the case of 68 bins, the bins are noncontiguous.Google Scholar
  286. 287).
    “The NIMBUS-7 User’s Guide,” NASA/GSFC, Prepared by The Landsat/Nimbus Project, Aug. 1978Google Scholar
  287. 288).
    “NIMBUS-7, Observing the Atmosphere and Oceans,” NASA pamphlet Dec. 1983Google Scholar
  288. 289).
    W. P. Menzel, J. F. W. Purdom, “Introducing GOES-I: The first of a Generation of new Geostationary Operational Environmental Satellites,” Bulletin of the American Meteorological Society, Vol. 75 No. 5, May 1994, pp. 757–781Google Scholar
  289. 290).
    Note: For a number of years the designation GOES Next (N) was used to identify the first of the satellites that would follow the GOES I-M series. It was also thought this GOES N would be the start of a totally new generation satellite series. However, during the time frame of about 1992–95, NOAA has come to realize that a new satellite series would take at least a decade to develop, manufacture, and launch. This new situation made NOAA realize it would need a few more clones of the current GOES I-M series to maintain continuity of GOES service prior to the GOES Next being available. What has evolved is a program that will likely buy 3–4 additional GOES I-M satellites beyond the GOES I-M series. These would then be labeled GOES N through Q. GOES R would be the first of a new generation of three-axis stabilized satellites. (Information: R. Heymann of NOAA).Google Scholar
  290. 291).
    E. P. Mercanti, “Need for Expanded Environmental Measurement Capabilities in Geosynchronous Earth Orbit,” Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of the Environment,’ ERIM, Volume I, pp. 45–55Google Scholar
  291. 292).
    R. Koffler, L. Spayd, “30 Years of Operational Environmental Satellites: A Retrospective and Future View of the United States Program,” presented at the Twenty-Third International Symposium on Remote Sensing of the Environment, Bangkok, Thailand, April 18–25, 1990, pp. 95–97Google Scholar
  292. 293).
    J.R. Greaves, W.E. Schenk, ‘The Development of the Geosynchronous Weather Satellite System,’ in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985, pp. 150–181Google Scholar
  293. 294).
    Space Sensors, brochure of Hughes Santa Barbara Research Center (SBRC), January 1994Google Scholar
  294. 295).
    “The Geostationary Operational Satellite Data Collection System,” NOAA Technical Memorandum NESDIS 2, June 1983Google Scholar
  295. 296).
    “Users Guide for Random Reporting — An Introduction to GOES Random Reporting Services,” NOAA, AprilGoogle Scholar
  296. 297).
    User Interface Manual, Version 1.1, for the ‘Data Collection System Automatic Processing System (DAPS),’ Integral Systems Inc., Sept. 1990Google Scholar
  297. 298).
    Information provided by M. J. Nestlebush of NOAA/NESDISGoogle Scholar
  298. 299).
    J. Savides, “Geostationary Operational Environmental Satellite GOES I-M,” System Description, Space Systems/Loral, Palo Alto, CA, Dec. 1992Google Scholar
  299. 300).
    “The GOES I-M Series Satellites — A brief description and Status Report,” NOAA draft paper, March 1993Google Scholar
  300. 301).
    “GOES I-M Data Book” by Space Systems/LoralGoogle Scholar
  301. 302).
    M. J. Nestlebush, “The Geostationary Operational Environmental Satellite Data Collection System,” NOAA Technical Memorandum NESDIS 40, June 1994Google Scholar
  302. 303).
    A. F. Durham, “Future Polar Satellite Program Plan for Global Environmental Observations,” IAF 92–0083, 43rd Congress of the International Astronautical Federation, Aug. 28-Sept. 5, 1992 Washington, D. C.Google Scholar
  303. 304).
    Bruce H. Needham, “Instrumentation and Services for the NOAA Polar-Orbiting Operational Environmental Satellites (POES) in the 21st Century,” NOAA/NESDIS, Office of System Development, Washington D.C.,’90Google Scholar
  304. 305).
    “Pre-Phase-A Study of NOAA O, P, Q Spacecraft and Ground Segment LRPT and HRPT Data Handling and Transmission Subsystems” Draft Final Report, Oct. 16, 1990, Atlantic Research Corp. prepared for NASA/GSFCGoogle Scholar
  305. 306).
    Note: Although the original acronym for ‘Search and Rescue’ is ‘SAR’ in the context of NOAA missions, it was changed in this book consistently to ‘S&R’ in order to distinguish it from the other widely-used meaning of SAR, namely ‘Synthetic Aperture Radar,’ a sensor type. A consequence is the use of ‘S&RSAT’ (instead of SARSAT)Google Scholar
  306. 307).
    CEOS Summary Report, WGD-10 Meeting, Annapolis MD, April 16–18, 1991Google Scholar
  307. 308).
    CEOS Summary Report, WGD-10 Meeting, Annapolis MD., April 16–18, 1991Google Scholar
  308. 309).
    Note: In order to conform with the S&R designation the original acronym for SARSAT was changed to S&RSAT in this book (see footnote 306).Google Scholar
  309. 310).
    Advanced TIROS-N (ATN) NOAA-I, NASA /NOAA Bulletin 1991Google Scholar
  310. 311).
    “Proceedings of the Twenty-Third International Symposium of Remote Sensing Environment,” Vol. I, Bangkok, Thailand, April 18–25, 1990,, Erim, P.O. 8618 Ann Arbor Mich. p. 94Google Scholar
  311. 312).
    Y. G. Zurabov, “The COSPAS-S&RSAT System: Results and Prospects,” Space Bulletin, Vol. 1, No. 1 1993, pp.Google Scholar
  312. 313).
    Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, Bangkok, Thailand, April 18–25, 1990, p. 89, Erim, Ann Arbor, MIGoogle Scholar
  313. 314).
    F. v. Scheele, “Star Formation and Ozone Depletion: The Swedish ODIN Satellite to Eye Heaven and Earth,” Nordic Space Activities, No. 5, 1994, pp. 44–46Google Scholar
  314. 315).
    “ODIN — A Small Satellite for Astronomy and Atmospheric Research,” SSC/SNSB brochureGoogle Scholar
  315. 316).
    Verbal information provided by B. Kutuza of IRE (Russian Academy of Sciences), MoscowGoogle Scholar
  316. 317).
    Information provided by M. Deckett of Orbcomm, Dulles, VAGoogle Scholar
  317. 318).
    Information provided by F. Primdahl of TUD, Lyngby, DenmarkGoogle Scholar
  318. 319).
    P. Donaldson, “Mapping Magnetism,” Space, April 1993Google Scholar
  319. 320).
    “The ESA Earth Observation Programme and its Role in Global Remote Sensing,” P. Goldsmith, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment,” Vol. I, ERIM, Ann Arbor, MI, pp. 125–137.Google Scholar
  320. 321).
    Programme Proposal for the first Polar Orbit Earth-Observation Mission using the Polar Platform, Part 1, ESA paper, 31–08–89Google Scholar
  321. 322).
    Objectives and Strategy for the Earth-Observation Programme of the European Space Agency, ESA, Oct. 88Google Scholar
  322. 323).
    Polar Platform Concept Evaluation, ESA paper, Sept. 25, 1989Google Scholar
  323. 324).
    Programme Proposal for the first ESA Polar Platform, ESA/PB-EO (89) 32, Sept. 1, 1989Google Scholar
  324. 325).
    Programme Proposal for the Development and Exploitation of the First Polar Orbit Earth-Observation Mission (POEM-1) using the Polar Platform, ESA/POEM 1, Issue 1, Oct. 28, 1991, Part 1, Issue 1, Oct. 30, 1991, Part 2Google Scholar
  325. 326).
    “MERIS Medium Resolution Imaging Spectrometer,” ESA brochureGoogle Scholar
  326. 327).
    M. Morel, J. L. Bézy, F. Montagner, A. Morel, J. Fischer, “Envisat’s Medium-Resolution Imaging Spectrometer,” ESA Bulletin, No. 76, November 1993, pp. 40–46Google Scholar
  327. 328).
    M. Endermann, H. Fischer, “Envisat’s High-Resolution Limb Sounder: MIPAS,” ESA Bulletin 76, November 1993, pp. 47–52Google Scholar
  328. 329).
    W. Posselt, “Michelson Interferometer for Passive Atmospheric Sounding,” Proceedings of the Twenty-fourth International Symposium on Remote Sensing of the Environment, May 27–31, 1991, Rio de Janeiro, Volume II, pp. 737–748, ERIM, Ann Arbor MI.Google Scholar
  329. 330).
    “ASAR Advanced Synthetic Aperture Radar,” ESA brochureGoogle Scholar
  330. 331).
    S. Karnevi, E. Dean, D. J. Q. Carter, S. S. Hartley, “Envisat’s Advanced Synthetic Aperture Radar: ASAR,” ESA Bulletin, No. 76, November 1993, pp. 30–35Google Scholar
  331. 332).
    A. Resti, “Envisaťs Radar Altimeter: RA-2,” ESA Bulletin, No. 76, November 1993, pp. 58–60Google Scholar
  332. 333).
    A. Popescu, P. Ingmann, “Envisaťs Global Ozone Monitoring by Occultations of Stars Instrument: GOMOS,” ESA Bulletin, No. 76, November 1993, pp. 36–39Google Scholar
  333. 334).
    GOMOS handout from Atmospheres Panel Meeting’ in Washington DC, Feb. 26–27, 1991Google Scholar
  334. 335).
    “GOMOS — Global Ozone Monitoring by Occultation of Stars,” ESA brochureGoogle Scholar
  335. 336).
    Robert Kandel, “Radiation and the Energy Balance,” Paper presented at the ESA ‘Earth Observation User Consultation Meeting,’ ESTEC, May 1991, The Consultative Document Collection of Preprints for the Meeting.Google Scholar
  336. 337).
    “MIMR Multifrequency Imaging Microwave Radiometer on POEM,” ESA brochure F-31Google Scholar
  337. 338).
    “ASCAT Advanced Scatterometer,” ESA brochureGoogle Scholar
  338. 339).
    H. Ebner, H. R. Schulte, H. Hölzl, D. Miller, P. Hans, “ASCAT — Advanced Wind Scatterometer,” IGARSS’92 Volume I, pp. 435–439Google Scholar
  339. 340).
    “Improved Atmospheric Sounding Infrared,” ASI/CNES brochure, April 1991Google Scholar
  340. 341).
    “The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 11–15Google Scholar
  341. 342).
    “ISTP Global GEOSPACE Science — Energy Transport in Geospace,” ESA/NASA/ISAS brochure, 1992 of GSFCGoogle Scholar
  342. 343).
    “The Precise Range and Range Rate Equipment PRARE: Status Report on System Development, Preparations for ERS-1 and Future Plans,” Submitted by F. Flechtner, K. Kaniuth, Ch. Reigber, H. Wilmes of DGFI, Second International Symposium on Precise Positioning with the Global Positioning System (GPS’90), Sept.’90, OttawaGoogle Scholar
  343. 344).
    P. Hartl, C. Reigber “Das PRARE-System der ERS-1 Mission,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 156–162.Google Scholar
  344. 345).
    “PRIRODA,” Ein Forschungsmodul der sowjetischen Orbitalstation MIR zur Fernerkundung der Erde, Wissenschaftliche Nutzlast Technische Beschreibung, Institut für Kosmosforschung (IKF), Berlin, 1990Google Scholar
  345. 346).
    “PRIRODA-Experimente,” Programm zur Beschaffung, Verarbeitung, Bewertung und Anwendung von Daten des Multisensorsystems PRIRODA der sowjetischen Orbitalstation MIR, 1992–94, DARA, Berlin, Mai 1991Google Scholar
  346. 347).
    “Complex for Remote Sensing of the Earth,” Science Program, DLR paper 1991Google Scholar
  347. 348).
    Orbital Station MIR, Complex of Remote Sensing of the Earth “PRIRODA,” Scientific Program, IRE brochure, Moscow, 1991Google Scholar
  348. 349).
    G. Zimmermann, “Mission PRIRODA,” German Proposals to Scientific Program, DARA Bulletin, Dec. 1991Google Scholar
  349. 350).
    M. L. Chanin, M. Desbois, A. Hauchecorne, “ALISSA a French Russian cooperation in the PRIRODA mission.” Paper of CNRS — Service d’AeronomieGoogle Scholar
  350. 351).
    R. Furrer, H. Rubin, M. Schaale, A. V. Poberovsky, A. V. Mironenkov, Y. M. Timofeyev, “MIRIAM — A Space-borne Sun Occultation Experiment for Atmospheric Trace Gas Spectroscopy,” Geo Journal 32.1, Januar 1994, pp.Google Scholar
  351. 352).
    “MIRIAM 1995–1998 MIR-Infrared Atmospheric Measurements — Untersuchung der Atmosphäre aus der Raumstation MIR,” Institut für Weltraumwissenschaften an der Freien Universität Berlin, 1994Google Scholar
  352. 353).
    German User Requirements to PRIRODA Mission, Annex 1 of Protocol to MOMS-2 for the PRIRODA Mission, DLR paper of PRIRODA Workshop, May 1991Google Scholar
  353. 354).
    Protocol of the Meeting of Specialists of USSR and Germany on MOMS-2 for the PRIRODA Mission. DLR paper, May 1991Google Scholar
  354. 355).
    S. Föckersperger, et al., “MOMSNAV: Location of the Russian Space Station MIR with Differential GPS,” Proceedings of the 2nd ESA International Conference on GNC, ESTEC, 12–15 April 1994, pp. 159–165Google Scholar
  355. 356).
    * IKAR-D, -P and MSU-SK with forward look angle (in flight direction) of 40° against nadirGoogle Scholar
  356. 357).
    R. K. Raney, A.P. Luscombe, E.J. Langham, S. Ahmed “Radarsat,” reprint from Proceedings of the IEEE, Vol. 79, No. 6, June 1991Google Scholar
  357. 358).
    * Nominal: range dependent and processor dependent; ** Nominal: ground range resolution varies with rangeGoogle Scholar
  358. 359).
    ‘Sowjetisches kosmisches System zum Studium der Naturschätze der Erde und zur Umweltkontrolle — der heutige Stand und die Perspektiven für den Zeitraum 1991–1995,’ the paper is a translation of a presentation given by L. Dessinow of the USSR Academy of Sciences in 1989.Google Scholar
  359. 360).
    Interavia Space Directory 1990–91, p. 436Google Scholar
  360. 361).
    E. L. Lukashevich, “The Space System Resurs-F for the Photographic Survey of the Earth,” Space Bulletin, Vol. 1, No. 4, 1994, pp. 2–4Google Scholar
  361. 362).
    Information provided by the State Center “PRIRODA,” MoscowGoogle Scholar
  362. 363).
    Courtesy of E. L. Lukashevich of State Center Priroda, MoscowGoogle Scholar
  363. 364).
    Note: For S/C No. 37 and (39), the orbit was changed from an altitude of 275 km (275 km) to an altitude of 355 km (180 km), respectivelyGoogle Scholar
  364. 365).
    T.M. Wasjuchina, A.M. Wolkow, “Zustand und Perspektiven der Entwicklung Kosmischer Systeme zur Erforschung natürlicher Ressourcen der Erde und der Hydrometeorologie,” Moscow 1988, translated into German by R. Müller, 1989 (IKF)Google Scholar
  365. 366).
    COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hydrometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”Google Scholar
  366. 367).
    Information provided by D. Gilman and J. L. LaBrecque of NASA/HQGoogle Scholar
  367. 368).
    Information provided by R. Ibba of ASI, Rome, ItalyGoogle Scholar
  368. 369).
    Brochures and documentation provided by OHB-SystemGoogle Scholar
  369. 370).
    Interavia Space Directory 1990–91 (previously Jane’s Space Flight Directory), pp. 122–124Google Scholar
  370. 371).
    D. N. Baker, G. M. Mason, O. Figueroa, G. Colon, J. G. Watzin, R. M. Aleman, “The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) Mission,” Preprint 93–128, U. of Maryland — see also (by the same authors): IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 3, May 1993, pp. 531–541Google Scholar
  371. 372).
    Payload Definition Document for SAN MARCO D/L Satellite, CRA, Oct. 1987Google Scholar
  372. 373).
    G. Schmidtke, H. Doll, C. Wita, and S. Chakrabarti, “Solar EUV/UV and equatorial airglow measurements from San Marco-5,” Journal of Atmospheric and Terrestrial Physics, Vol. 53, No. 8, pp. 781–785, 1991Google Scholar
  373. 374).
    Jane’s Spaceflight Directory 1988–89, pp. 35–36Google Scholar
  374. 375).
    INPE brochure ‘SCD1 Data Collection Satellite,’ and fax information from Prof. P. M. Fagundes, Rio de JaneiroGoogle Scholar
  375. 376).
    “SCD1 Satellite Description,” and “The Brazilian Data Collecting System,” papers provided by C. E. Santana of INPE, May/June 1992Google Scholar
  376. 377).
    Information provided by C. E. Santana of INPEGoogle Scholar
  377. 378).
    “The first Brazilian Earth Observation Satellite (SRR),” paper by C. E. Santana and J. Kono of INPEGoogle Scholar
  378. 379).
    “Satellite Launch to Advance Brazilian Space Program,” Space News Aug. 31-Sept. 6, 1992, p. 43Google Scholar
  379. 380).
    “Orbital Sciences Captures $120 Million in Business, Pegasus Launches Ocean Satellite Ordered,” Space News, March 11–17, 1991, p. 7Google Scholar
  380. 381).
    “OSC Reviews Seastar Design,” Space News, Oct. 28 — Nov. 3, 1991, p. 22Google Scholar
  381. 382).
    “System Concept for Wide-Field-Of View Observations of Ocean Phenomena from Space,” NASA-NOAA-Eosat publication, 1987Google Scholar
  382. 383).
    H. v.d. Piepen, V. Amman, R. Doerffer, “Remote Sensing of Substances in Water,” GeoJournal 24.1, pp. 24–27, 1991 (May) by Kluwer Academic PublishersGoogle Scholar
  383. 384).
    “Roles and Responsibilities of HRPT Stations for SeaWiFS,” SeaWiFS Project Office, GSFC, Dec. 19, 1991Google Scholar
  384. 385).
    S. D. Holland, “The NASA Electronic Still Camera System,” IEEE IGARSS’92 Volume I, pp. 149–151Google Scholar
  385. 386).
    D. L. Amsbury, J. M. Bremer, “Recent Developments in Space Shuttle Remote Sensing, using hand-held Film Cameras,” IGARSS’92, Volume I, pp. 152–154Google Scholar
  386. 387).
    S. G. Ackleson, D. E. Pitts, “Global Distribution of hand-held Photographs of Ocean and Coastal Regions Taken during Space Shuttle Missions, 1981–1991,” IEEE IGARSS’92 Volume II, pp. 1550–1552Google Scholar
  387. 388).
    R. M. Nelson, K. J. Willis, W. J. Daley, F. R. Brumbaugh, J. M. Bremer, “Cataloging and Indexing — The Development of the Space Shuttle Mission Data Base and Catalogs from Earth Observations hand-held Photography,” IEEE IGARSS’92 Volume I, pp. 155–157Google Scholar
  388. 389).
    Manual of Remote Sensing, Second Edition, American Society of Photogrammetry, 1983, pp. 1707–1710Google Scholar
  389. 390).
    H. v.d. Piepen, V. Amann, H. Helbig, HH. Kim, W. Hart, et al. “The Promise of Remote Sensing,” IEEE paper presented at IGARSS’82, June 1–4, MunichGoogle Scholar
  390. 391).
    “X-Band Synthetic Aperture Radar (X-SAR) and its Shuttle-Borne Application for Experiments,” paper by Herwig Öttl and Francesco ValdoniGoogle Scholar
  391. 392).
    R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 827–838Google Scholar
  392. 393).
    Special Issue on SIR-C/X-SAR, IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, July 1995Google Scholar
  393. 394).
    “Skylab,” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 117–122Google Scholar
  394. 395).
    P. Slater, “Remote Sensing,” Optics and Electronics Systems, Addison-Wesley Publishing Co., 1980, pp. 456–462Google Scholar
  395. 396).
    J. R. Cowley, G. M. Lawrence, “Earth Limb Altitude Determination for the Solar Mesosphere Explorer,” AIAA-83–0429Google Scholar
  396. 397).
    Ch. Barth, “Solar Mesosphere Explorer to Study Ozone,” Nature, Volume 293, Sept. 24, 1981Google Scholar
  397. 398).
    J. R. Stuart, K. A. Gause, “Solar Mesosphere Explorer Mission,” AIAA paper, 17th Aerospace Sciences Meeting, Jan. 15–17, 1979,Google Scholar
  398. 399).
    “Solar Mesosphere Explorer — Experiment Description,” LASP paper, University of Colorado at BoulderGoogle Scholar
  399. 400).
    “Solar Mesosphere Explorer — Scientific Data & Publications,” Final Report, LASP, December 1989Google Scholar
  400. 401).
    S. P. Maran, B. E. Woodgate, “A Second Chance for Solar Max,” Sky & Telescope, June 1984, pp. 498–500Google Scholar
  401. 402).
    A. Chaikin, “Solar Max: Back from the Edge,” Sky & Telescope, June 1984, pp. 494–497Google Scholar
  402. 403).
    “NASA’s Solar Maximum Mission: A Look at the New Sun,” June 1987, NASA brochure, edited by J. B. GurmanGoogle Scholar
  403. 404).
    “The Solar Maximum Mission Experiments,” Solar Physics, Volume 65, pp. 5–109Google Scholar
  404. 405).
    R. C. Willson, S. Gulkis, M. Janssen, S. H. Hudson, G. A. Chapman, “Observations of Solar Irradiance Variability,” Science, Volume 211, Feb. 1981, pp. 700–702Google Scholar
  405. 406).
    A. C. Aikin, W. Henze, D. J. Kendig, R. Nakatsuka, H. J. P. Smith, “Variations of Mesospheric Equatorial Ozone as observed by the Solar Maximum Mission,” Geophysical Research Letters, Vol. 17, No. 3, March 1990, pp. 299–300Google Scholar
  406. 407).
    P. Lo Galbo, M. Bouffard, “SOHO — A Cooperative Scientific Mission to the Sun,” ESA Bulletin, Aug. 1992, pp. 21–25Google Scholar
  407. 408).
    “The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 21–24Google Scholar
  408. 409).
    J. Credland, F. Felici, M. Grensemann, J. A. Steinz, “Three Missions, Three Launches, Six Spacecraft for Science in 1995,” ESA-Bulletin, No. 82, May 1995, pp. 36–47Google Scholar
  409. 410).
    The SOHO Mission — Scientific and Technical Aspects of the Instruments, ESA SP-1104, ISSN 0379–6566, Nov. 1988Google Scholar
  410. 411).
    F. Felici, F. C. Vandenbussche, C. Berner, R. Thomas, W. Worrall, et al., Special Section of the SOHO project, spacecraft, payload, and operations in ESA Bulletin No. 84, Nov. 1995, pp. 81–112Google Scholar
  411. 412).
    “The SOLAR-A Mission,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 74–76Google Scholar
  412. 413).
    “Yohkoh’s Prodigious Output helps Scientists Study Sun,” Space News, June 7–13, 1993, p. 12Google Scholar
  413. 414).
    “Spacelab-1 Metric Camera, User Handbook and Data Catalogue,” compiled by M. Schroeder, E Suckfüll, G. Todd, and P. Lohmann of DLR, Oberpfaffenhofen, Dec. 1986Google Scholar
  414. 415).
    “Overview of ATMOS Results from Spacelab-3,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 64–66Google Scholar
  415. 416).
    CNES viewgraphs of 1991Google Scholar
  416. 417).
    Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 22–23Google Scholar
  417. 418).
    Note: Spot-1 was retired from normal operations in Sept. 1990. Both of its recorders are defect. Spot Image wants to reactivated Spot-1 to meet increased demand for satellite imagery. See Space News Dec. 4, 1991, p. 4Google Scholar
  418. 419).
    R. M. Bevilacqua, et al., “Polar Stratospheric Studies with the Polar Ozone and Aerosol Measurement Experiment (POAM-II),” Proceedings of the American Meteorological Society, Eighth Conference on Atmospheric Radiation, January 23–28, 1994, Nashville, TNGoogle Scholar
  419. 420).
    F. Achard, J. P. Malingreau, T. Phulpin, G. Saint, B. Saugier, B. Segun, D. Vidal-Madjar, “The Vegetation Instrument on Board SPOT-4 — A Mission for Global Monitoring of the Continental Biosphere,” LERTS brochure, Toulouse, 1990Google Scholar
  420. 421).
    Information provided by T. Gentet of CNES, ToulouseGoogle Scholar
  421. 422).
    A. Ammar, A. Baudoin, D. Assemat, M. Arnaud, “The SPOT Programme, An Operational Earth Observation System,” Proceedings 45th Congress of the International Astronautical Federation, October 9–14, 1994, IsraelGoogle Scholar
  422. 423).
    “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412Google Scholar
  423. 424).
    Information provided by E. Hilsenrath of NASA/GSFC, Greenbelt, MDGoogle Scholar
  424. 425).
    M. Lefebvre, “Stella,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 25–32Google Scholar
  425. 426).
    Information provided by A. B. Renshaw of STARSYSGoogle Scholar
  426. 427).
    A. Kaveeshwar, “The STARSYS Data Messaging and Geopositioning System,” International Journal of Satellite Communications, Vol. 12, 1994, pp. 63–69Google Scholar
  427. 428).
    Information provided by S. C. Solomon, University of Colorado at BoulderGoogle Scholar
  428. 429).
    S. C. Solomon, et al., “The Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995Google Scholar
  429. 430).
    S. M. Bailey, et al., “Science Instrumentation for the Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995Google Scholar
  430. 431).
    Information provided by S. Chakrabarti of Boston University, Boston, MAGoogle Scholar
  431. 432).
    D. M. Cotton, et al., “A single-element imaging spectrograph,” Applied Optics, Vol. 33, 1994, p. 1958Google Scholar
  432. 433).
    J. S. Vickers, et al., “Gas ionization solar spectral monitor (GISSMO),” Optical Engineering, Vol. 32, 1993, p. 3126Google Scholar
  433. 434).
    Information provided by D. Forrest of the University of New Hampshire at DurhamGoogle Scholar
  434. 435).
    “Telespazio Readies Temisat Satellite for Summer Launch,” Space News, April 19–25, p. 24Google Scholar
  435. 436).
    “Temisat,” Kayser Threde paperGoogle Scholar
  436. 437).
    “Blackbird: A Family of Microsatellites for Communications and Remote Sensing,” Kayser Threde brochureGoogle Scholar
  437. 438).
    Information provided by G. E. Cameron and by K. J. Heffernan of JHU/APLGoogle Scholar
  438. 439).
    Note: Codacon = Anode with position location coded to 2n (in the case of SEE, n=10)Google Scholar
  439. 440).
    “Predicted Topex Positioning Accuracy with Differential GPS Techniques,” presented at, and published in the ‘Proceedings of the first International Symposium on Precise Orbit Positioning with GPS’ April 15, 1985Google Scholar
  440. 441).
    Lee-Lueng Fu, M. Lefebvre, “TOPEX/Poseidon: Precise Measurement of Sea Level From Space,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Missions, June 1989, pp. 51–54Google Scholar
  441. 442).
    ‘Currents’ — the JPL Topex/Poseidon Newsletter, March 1990, Issue 1Google Scholar
  442. 443).
    Topex/Poseidon Science Investigation Plan, NASA (Document Resource Facility), Sept. 1, 1991Google Scholar
  443. 444).
    Ch. A. Yamarone, et al., “TOPEX/Poseidon Mission Global Measurements of Sea Level at Unprecedented Accuracy,” 45th Congress of the International Astronautical Federation, Oct. 9–14, 1994, JerusalemGoogle Scholar
  444. 445).
    ‘Topex-Poseidon Partners Discuss Sequel’, Space News, Aug. 17–23, 1992, p. 3Google Scholar
  445. 446).
    TOPEX/Poseidon Internet homepageGoogle Scholar
  446. 447).
    “Other Satellite-Based Microwave Systems,” Lecture Notes in Earth Sciences — The Interdisciplinary Role of Space Geodesy, Springer Verlag I. Mueller, S. Zerbini, chap. 5, p. 161Google Scholar
  447. 448).
    DORIS — Precision Satellite-Based Orbit Determination, CNES brochureGoogle Scholar
  448. 449).
    A. Ratier, et al., “TOPEX/Poseidon Follow-On: A Small-Satellite Programme for the Monitoring of Wind, Sea State, Ocean Circulation and Mean Sea Level,” in Small Satellites for Remote Sensing, Space Congress, Bremen, Germany, May 24–25, 1995, European Space Report, Munich, Germany, pp. 21–32Google Scholar
  449. 450).
    T. D. Tarbell, M. Brimer, B. Jurcevich, J. Lernen, K. Strong, A. Title, J. Wolfson, L. Gloub, R. Fisher, “The Transition Region and Coronal Explorer,” Proc. of the Third SOHO Workshop, Estes Park, CO, September 26–29, 1994, pp. 375–384Google Scholar
  450. 451).
    TRACE www page of GSFC and of LockheedGoogle Scholar
  451. 452).
    “The Early Observing System Reference Handbook, ESAD Missions 1990–1997,” NASA/GSFC, pp. 62–64Google Scholar
  452. 453).
    T. Keating,T. Ryan, “Tropical Rainfall Measuring Mission (TRMM): US/Japan Science Operations,” AIAA-92–0594Google Scholar
  453. 454).
    T. Kozu, M. Kojima, K. Oikawa, K. Okamoto, T. Ihara, T. Manabe, “Development Status of Rain Radar for Tropical Rainfall Measuring Mission,” IEEE IGARSS’92, Volume II, pp. 1722–1724Google Scholar
  454. 455).
    NASA paper provided by ESAD and OSSA.Google Scholar
  455. 456).
    T. Kozu, et al., “TRMM Precipitation Radar: Calibration and Data Collection Strategies,” Proceedings of IGARSS’94, Volume IV, pp. 2215–2217Google Scholar
  456. 457).
    EOS Reference Handbook, NASA/GSFC, 1993Google Scholar
  457. 458).
    Courtesy of K. Maeda, NASDAGoogle Scholar
  458. 459).
    Information provided by U. Renner of TUBGoogle Scholar
  459. 460).
    “UARS Seen as Earth Observing System’s Dress Rehearsal,” Space News September 9–15, 1991, p. 24Google Scholar
  460. 461).
    Portion of a UARS publication put out by NASA (provided by B. Needham of NOAA)Google Scholar
  461. 462).
    “Upper Atmosphere Research Satellite,’ Summaries of papers presented at the Optical Remote Sensing of the Atmosphere Topical Meeting, Feb. 12–15, 1990, Optical Society of America, Volume 4, pp. 1–22Google Scholar
  462. 463).
    “Wind Imaging Interferometer (WINDII) for the UARS Mission,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. PD3–1 to 4Google Scholar
  463. 464).
    “Windii To Read Upper Atmosphere In Depth,” Space News September 16–22, 1991, p. 8Google Scholar
  464. 465).
    ESA Bulletin No. 63, August 1990, Special Issue on UlyssesGoogle Scholar
  465. 466).
    N. Angold, et al., “Ulysses Operations at Jupiter — Planning the Unknown,” ESA Bulletin No. 72, November 1992, pp. 44–51Google Scholar
  466. 467).
    R. G. Marsden, K. P. Wenzel, “The Ulysses Jupiter Flyby — The Scientific Results,” ESA Bulletin No. 72, November 1992, pp. 52–59Google Scholar
  467. 468).
    R. G. Marsden, “Ulysses Explores the South Pole of the Sun,” ESA Bulletin No. 82, May 1995, pp. 48–55Google Scholar
  468. 469).
    K. P. Wenzel, et al., “The Ulysses Mission,” Astronomy and Astrophysics, Supplement Series, Vol. 92, January 1992, pp. 207–219Google Scholar
  469. 470).
    Information provided by E. Milton and M. Fouquet of SSTLGoogle Scholar
  470. 471).
    URL address — Scholar
  471. 472).
    J. W. Ward, “Microsatellites for global electronic mail networks,” Electronics and Communications Engineering Journal, December 1991, Vol. 3, No. 6, pp. 267–272Google Scholar
  472. 473).
    J. W. Ward, H. E. Price, “The UoSAT-2 Digital Communications Experiment,” Journal of the Institute of Electronic and Radio Engineers, 1986Google Scholar
  473. 474).
    UoSAT internet home pageGoogle Scholar
  474. 475).
    UoSAT-1: Special issue of The IERE Journal, Vol. 52, No. 8/9, August 1982Google Scholar
  475. 476).
    J. M. Radbone, “The UoSAT-2 Spacecraft CCD Imaging and Digital Store/Read-out Experiments,” The IERE Journal, Vol. 57, No. 5, September 1987, ISSN 0267–1689Google Scholar
  476. 477).
    M. N. Sweeting, “UoSAT microsatellite missions,” Electronics & Communication Engineering Journal, IEE, June 1992Google Scholar
  477. 478).
    M. N. Allery, J. J. Sellers, M. N. Sweeting, “Results of University of Surrey on-orbit microsatellite experiments,” Proceedings of the International Symposium on Small Satellite Systems and Services, Biarritz, France, June 27–30, 1994Google Scholar
  478. 479).
    M. Fouquet, “The UoSAT-5 Earth Imaging System — in-orbit results,” 2nd Conference on Small Satellite Technologies and Applications, SPIE Symposium on Aerospace Sensing, Orlando, FL, April 20–22, 1992Google Scholar
  479. 480).
    Information provided by J. Radbone of SSTL, University of Surrey, UKGoogle Scholar
  480. 481).
    “First PoSAT images,” Space, Vol. 9, No. 9, December 1993, p. 6Google Scholar
  481. 482).
    M. Fouquet, A. Brewer, “The Role of Microsatellites for Earth Observation, Eight years of orbital experience at the University of Surrey,” in Small Satellites for Remote Sensing, Proceedings of Space Congress, Bremen, Germany, May 24–25, 1995, pp. 133–144Google Scholar
  482. 483).
    SK Yoo, et al., “The KITSAT-2 CCD Earth Imaging Experiment,” Proceedings of SPIE Conference on Small Satellite Technology and Applications IV, Vol. 2317, Rome, September 1994Google Scholar
  483. 484).
    B. Hultqvist, “The Swedish Satellite Project Viking,” Journal of Geophysical Research, Vol. 95, No. A5„ May 1, 1990, pp. 5749–5752Google Scholar
  484. 485).
    B. Hultqvist, “The Viking Project,” Geophysical Research Letters, Volume 14, No. 4, April 1987, pp. 379–382Google Scholar
  485. 486).
    “The Viking Program,” EOS Transactions, American Geophysical Union, Volume 67, No. 42, Oct. 21, 1986, pp. 793–795Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.DLR/DFD, Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. (German Aerospace Research Establishment)/Deutsches Fernerkundungsdatenzentrum (German Remote Sensing Data Center)OberpfaffenhofenGermany

Personalised recommendations