Skip to main content

Abstract

A NASA/GSFC solar-terrestrial mission in the explorer program with the objectives to determine: the elemental and isotopic composition of matter, the origin of the elements, the formation of the solar corona and acceleration of the solar wind. S/C builder: JHU/APL. The S/C structure has two octagonal decks, 1.6 m across and 1 m high; the S/C is three-axis stabilized with the spin axis Earth/sun pointing. The mission is planned for a launch in August 1997 with a Delta II launch vehicle from Cape Canaveral, Florida. S/C mass = 785 kg (includes 189 kg of fuel), power=430 W, nominal life of the mission is 5 years.2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Information provided by D. L. Margolies of NASA/GSFC

    Google Scholar 

  2. “The ACTIVE International Space Plasma-Wave Laboratory,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 45–49

    Google Scholar 

  3. Aktivny-IK, Interavia Space Directory, 1992–93, pp. 149

    Google Scholar 

  4. NASDA handout at the CEOS WGD-10 Meeting in Annapolis MD, April 16–19, 1991

    Google Scholar 

  5. “Japan Delays Remote-Sensing Missions,” Space News, March 30/April 5, 1992, p. 9

    Google Scholar 

  6. “ADEOS,” NASDA brochure, 1993

    Google Scholar 

  7. P. Y. Deschamps, M. Herman, A. Podaire, M. Leroy, M Laporte, P. Vermande, “A Spatial Instrument for the Observation of Polarization and Directionality of Earth Reflectances: POLDER,” IGARSS’90 Conference Proceedings, Washington, D. C.

    Google Scholar 

  8. “Upper Atmosphere Monitoring with ADEOS — ILAS and RIS,” EA/NIES brochure provided by Y. Sasano of NIES

    Google Scholar 

  9. “Ozone Layer Observation by Satellite Sensors,” Proceedings of the International Workshop on Global Environment and Earth Observing Satellite Sensors, December 8–9, 1993, Tokyo, Japan

    Google Scholar 

  10. Y. Sasano, et al.,“ILAS and RIS for ADEOS,” SPIE, Vol. 1490, 1991, pp. 233–242

    Google Scholar 

  11. “Retroreflector-In-Space for ADEOS: Earth-Space-Earth Laser Long-Path Absorption Measurements of Atmospheric Trace Species,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 488–490

    Google Scholar 

  12. A. Minato, N. Sugimoto, S. Sasano, “Optical Design of Cube-Corner Retroreflectors Having Curved Mirror Surfaces,” Applied Optics, Vol. 31, 1992, pp. 6015–6020

    Google Scholar 

  13. “Monitoring the Earth Environment from Space,” NASDA Bulletin

    Google Scholar 

  14. CEOS WGD-11 Meeting Report, Nov. 5–7, 1991, Toulouse, Attachment 28a

    Google Scholar 

  15. M. Nakajima, Y. Ito, H. Maejima, Y. Kojima, “The Development of AMSR and GLI for ADEOS-II,” presented at the 45th Congress of the International Astronautical Federation, October 9–14, 1994, Jerusalem, Israel

    Google Scholar 

  16. Information provided by K. Imaoka of NASDA/EOC

    Google Scholar 

  17. M. Suzuki, Y. Sasano, et al., “Conceptual design study of ILAS-II on-board ADEOS-II,” SPIE, Vol. 2533, pp. 48–55, 1995

    Google Scholar 

  18. M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, “Satellite Studies of the Stratospheric Aerosol,” Bulletin of the American Meteorological Society, Vol. 60, No. 9, September 1979, pp. 1038–1046

    Google Scholar 

  19. L. R. McMaster, M. W. Rowland, “SAGE-I Data User’s Guide,” NASA Reference Publication 1275, Aug. 1992

    Google Scholar 

  20. Note: A photometer is usually a broadband instrument capable of measuring thermal continuum radiation (i.e. flux) thereby permitting the study of energy balance and surface composition (also detection of infrared roughness of surface features)

    Google Scholar 

  21. W. Priedhorsky, B. W. Smith, J. J. Bloch, D. H. Holden, D. C. A. Roussel-Dupré, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “The ALEXIS Small Satellite Project: Initial Flight Results,” AIAA Space Programs and Technologies Conference, Sept. 21–23, 1993/ Huntsville, A1.; and Proc. SPIE Vol. 2006, 1993, pp. 114–126

    Google Scholar 

  22. Information provided by J. Bloch of LANL, Albuquerque, NM

    Google Scholar 

  23. W. C. Priedhorsky, J. J. Bloch, S. P. Wallin, W. T. Armstrong, O. H. W. Siegmund, J. Griffee, R. Fleeter, “The ALEXIS Small Satellite Project: Better, Faster, Cheaper Faces Reality,” IEEE Transactions on Nuclear Science, Vol. 40, No. 4, August 4, 1993, pp. 863–873

    Google Scholar 

  24. J. J. Bloch, et al., “Design, Performance and Calibration of the ALEXIS Ultrasoft X-Ray Telescopes,” SPIE, Vol. 1344, 1990, pp. 154–165

    Google Scholar 

  25. “Soviets Launch Largest Earth Resources Satellite on Modified Salyut Platform,” Aviation Week & Space Technology/April 8, 1991, pp. 21–22

    Google Scholar 

  26. “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1

    Google Scholar 

  27. “ALMAS — Sowjetischer Erdsatellit mit Synthetic Aperture Radar zur Erderkundung,” IKF Berlin, 1990, aus der Reihe: Informationen aus der internationalen Zusammenarbeit.

    Google Scholar 

  28. “Almaz to add Dimension to Earth Study,” Space News, March 18–24, 1991, p. 1

    Google Scholar 

  29. “Sowjetisches Weltraumauge sammelt Ströme digitaler Daten,” VDI Nachrichten, 21. Dez., 1990, Seite 20

    Google Scholar 

  30. “Almaz Falls from Orbit,” Space News, Oct 26-Nov. 1, 1992, p. 1

    Google Scholar 

  31. Information provided by NPO Machinostroyenia (P. A. Shirokov, L. A. Tararin, et. al.)

    Google Scholar 

  32. Note: the term ‘technogenic actions’ (in Table 12) refers to the variations in the natural environment caused by human actions or activities (eg., construction, operation of water, thermal and atomic power stations)

    Google Scholar 

  33. Y. Osawa, H. Wakabayashi, K. Toda, T. Hamazaki, “Advanced Land Observing Satellite (ALOS): Mission Requirements, Payloads and Satellite System,” paper of NASDA provided by K. Misawa

    Google Scholar 

  34. Ampte brochure of MPE Garching

    Google Scholar 

  35. Special Issue on the Active Magnetosphere Particle Tracer Explorer (AMPTE), in IEEE Trans. on Geoscience and Remote Sensing, May 1985, Volume GE-23, No. 3, pp. 175–314

    Google Scholar 

  36. A. Valenzuela, G. Haerendel, H. Föppl, F. Melzner, H. Neuss, E. Riegler, J. Stöcker, O. Bauer, H. Höfner, J. Loidl, “The AMPTE artificial comet experiments,” reprinted from Nature Vol. 320, No. 6064, pp. 700–723, April 24, 1986

    Google Scholar 

  37. “AMPTE,” Interavia Space Directory 1992–93, p. 149

    Google Scholar 

  38. “The Active Plasma Experiments in the Earth’s Magnetometers,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group, ESA SP-1107, November 1990, pp. 55–60

    Google Scholar 

  39. Information provided by Yu. M. Mikhailov, IZMIRAN

    Google Scholar 

  40. Note: the figure of 650 serviceable platforms in a footprint was provided by ‘CLS ARGOS’ of Toulouse

    Google Scholar 

  41. “A Definition Study of an Advanced Data Collection and Location System (ADCLS),” prepared for GSFC by ECOSYSTEMS International Inc., January 1986

    Google Scholar 

  42. Information provided by S. Grahn of SSC

    Google Scholar 

  43. Information provided by O. Norberg of IRF, Kiruna

    Google Scholar 

  44. Jack Kaye, “Summary of ATLAS Shuttle Missions,” Paper presented at the EOS-B Atmospheric Payload Panel Meeting Washington, D. C., Feb. 26–27, 1991

    Google Scholar 

  45. Information provided by the Earth Science Application Division (ESAD Office) at NASA HQ, Washington

    Google Scholar 

  46. SUSIM brochure of Naval Research Lab, available at NASA HQ’s Document Resource Facility

    Google Scholar 

  47. “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412

    Google Scholar 

  48. P. Barthol, K. U. Grossmann, D. Offermann, “Telescope design of the CRISTA/SPAS experiment aboard the Space Shuttle,” SPIE, Vol 1331, Stray Radiation in Optical Systems, 1990, pp. 54–63

    Google Scholar 

  49. “The China-Brazil Earth Resources Satellite Program,” paper provided by G. Santana of INPE

    Google Scholar 

  50. “CBERS Spacecraft: Conception and Design,” paper presented by E. A. Parada Tude of INPE and by C. Quin-nan of CAST at the 1st Brazilian Symposium of Aerospace Technology, Sao Jose dos Campos, Aug. 27–31, 1990

    Google Scholar 

  51. G. K. Rayalu, et al., “Multispectral and Multitemporal Optical Sensors of CBERS,” INPE internal paper

    Google Scholar 

  52. Zhu Yilin, “Ziyuan-1, China’s First Earth Resources Satellite (CBERS),” Earth Space Science Review, July-September 1994, Vol. 3, No. 3, pp. 16–19

    Google Scholar 

  53. Ch. Reigber, P. Schwintzer, “A Challenging Microsatellite Payload for Geophysical Research and Application,” in: Small Satellites for Remote Sensing, Space Congress’95, Bremen, May 24–25, 1995, pp. 83–89, European Space Report, Munich, 1995

    Google Scholar 

  54. Information provided by P. Schwintzer of GFZ

    Google Scholar 

  55. ISTP Global GEOSPACE Science — Energy Transfer in Geospace, ESA/NASA/ISAS brochure, 1992

    Google Scholar 

  56. J. Credland, G. Mecke, J. Ellwood, F. Drigani, P. Ferri, et al., Special Section of the CLUSTER mission, spacecraft, payload, data, and mission operations, ESA Bulletin, No. 84, Nov. 1995, pp. 113–150

    Google Scholar 

  57. “The Cluster Mission — Scientific and Technical Aspects of the Instruments,” ESA SP-1103, ISSN 0379–6566, Oct. 1988

    Google Scholar 

  58. Information provided by S. Kilston of Lockheed Martin, Palo Alto, CA

    Google Scholar 

  59. The internet URL address is: http://www.spaceimage.com/

    Google Scholar 

  60. Information provided by D. B. GeruU, R. N. Herring, and B. Wientzen of EarthWatch, Longmont, CO.

    Google Scholar 

  61. Information provided by V. Leonard of Resource21

    Google Scholar 

  62. Note: The cirrus band has been selected because it can detect high, thin cirrus conditions and differentiate them from atmospheric conditions near the surface that look the same in the visible band. Consequently, knowledge of the cirrus contribution can be exploited to remove its radiance contributions in all bands, permitting better estimates of surface reflectance.

    Google Scholar 

  63. V. N. Oraevsky, Yu. D. Zhugzhda, “Project CORONAS-I — Orbital Observations of the Solar Activity and Oscillations, 1991,” Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)

    Google Scholar 

  64. I. Sobelman, I Zhitnik et al., “XUV and Optical Observations of the Sun by Means of the TEREK-C Telescope/ Coronograph and the RES-C Spectroheliometer aboard the CORONAS-I satellite,” 1992, Coronas Information Series, paper by AIP, DLR/DFD and IZMIRAN, K Pflug (editor)

    Google Scholar 

  65. Yu. D. Kotov, S. I. Nikolsky, V. I. Dranovsky, “Satellite Project PHOTON for the study of solar hard radiation,” paper provided by Yu. Kotov

    Google Scholar 

  66. Yu. Kotov, K. Pflug, G. Schmidtke, “EUV-PHOKA, “paper provided by K. Pflug

    Google Scholar 

  67. R. A. Cooper, D. H. Burks, “Space Physics Missions Handbook,” NASA, Office of Space Science and Applications, Feb. 1991

    Google Scholar 

  68. Special Section on CRRES, Journal of Spacecraft and Rockets, Vol. 29, No. 4 July-Aug. 1992, pp. 555–617

    Google Scholar 

  69. R. A. Hoffman, G. D. Hogan, R. C. Maehl, “Dynamics Explorer Spacecraft and Ground Operating Systems,” Space Science Instrumentation, 5, 1981, pp. 349–367

    Google Scholar 

  70. W. H. Farthing, L. J. Cahill, et al., “Magnetic Field Observations on DE-A and -B,” Space Science Instrumentation, 5, 1981, pp. 551–560

    Google Scholar 

  71. S. D. Shawhan, R. A. Helliwell, et al., “The Plasma Wave and Quasi-Static Electric Field Instrument (PWI) for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 535–550

    Google Scholar 

  72. J. L. Burch, R. A. Hoffman, et al., “High-Altitude Plasma Instrument for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 455–463

    Google Scholar 

  73. C. R. Chappell, J. H. Hoffman, et al., “The Retarding Ion Mass Spectrometer on Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 477–491

    Google Scholar 

  74. E. G. Shelley, et al., “The Energetic Ion Composition Spectrometer (EICS) for the Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 443–454

    Google Scholar 

  75. L. A. Frank et al., “Global Auroral Instrumentation for the Dynamics Explorer Mission,” Space Science Instrumentation 5, 1981, pp. 369–393

    Google Scholar 

  76. N. C. Maynard et al., “Instrumentation for Vector Electric Field Measurements from DE-B,” Space Science Instrumentation, 5, 1981, pp. 523–534

    Google Scholar 

  77. G. R. Carignan, et al., “The Neutral Mass Spectrometer on Dynamics Explorer B,” Space Science Instrumentation, 5, 1981, pp. 429–441.

    Google Scholar 

  78. N. W. Spencer, et al., “The Dynamics Explorer Wind and Temperature Spectrometer,” Space Science Instrumentation, 5, 1981, pp. 417–428

    Google Scholar 

  79. P. B. Hays, et al., “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Science Instrumentation, 5, 1981, pp. 395–416

    Google Scholar 

  80. R. A. Heelis, W. B. Hanson, et al., “The Ion Drift Meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 511–521

    Google Scholar 

  81. W. B. Hanson et al., “The Retarding Potential Analyzer for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 503–510

    Google Scholar 

  82. J. P. Krehbiel, L. H. Brace, W. H. Pinkus, R. B. Kaplan, et. al., “The Dynamics Explorer Langmuir Probe Instrument,” Space Science Instrumentation, 5, 1981, pp. 493–502

    Google Scholar 

  83. J. D. Winningham, R. A. Hoffman, et al., “The Low Altitude Plasma Instrument (LAPI),” Space Science Instrumentation, 5, 1981, pp. 465–475

    Google Scholar 

  84. W.D. Meyer, “DMSP: Review of its Impact, in Monitoring Earth’s Ocean, Land, and Atmosphere from Space,” Volume 97, Progress in Astronautics and Aeronautics, AIAA, 1985, pp. 131–147

    Google Scholar 

  85. S. Ferry, “The Defense Meteorological Satellite System Sensors: An Historical Overview,” May 1989

    Google Scholar 

  86. R. B. Gomez, M. C. Colton, D. Boucher, F. P. Kelly, “The Defense Meteorological Satellite Program (DMSP),” ISSSR, Maui, HI, Nov. 16–20, 1992

    Google Scholar 

  87. R. Massom, “Satellite Remote Sensing of Polar Regions,” Applications, Limitations and Data Availability, Bel-haven Press, London

    Google Scholar 

  88. J. W. Sherman, “The Near-Term Suite of Satellite Sensors to Support Developing Countries’ Climate and Global Change Photograms,” Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of the Environment, ERIM Ann Arbor ML, Volume I, 27–31 May 1991, pp. 27–28

    Google Scholar 

  89. The rotating antenna sweeps the surface in two alternating modes — one in which all four frequencies are recorded, and another in which only 85 GHz data are recorded. The use of a single antenna results in different ground resolutions for each frequency.

    Google Scholar 

  90. Information of all Block 5D-3 sensors and update of Table 30 provided by Major J. Sorlin-Davis, Dept. of USAF, The Pentagon

    Google Scholar 

  91. “Defense Meteorological Satellite Program, Visible and Infrared Imagery Collection,” NOAA-NSIDC, Feb.’84

    Google Scholar 

  92. “Data Management Plan for the Archive of DMSP Digital Data at NGDC,” April 28, 1992, Draft; Courtesy of W. Kroehl, NGDC

    Google Scholar 

  93. J. Holloinger, “DMSP Special Sensor Microwave/Imager Calibration/Validation,” Final Report, Vol. I and II, NRL, 1989

    Google Scholar 

  94. Courtesy G. Scharfen, NOAA/NESDIS/NSIDC

    Google Scholar 

  95. M. Sasaki, H. Hashimoto, “Launch and Observation of the Experimental Geodetic Satellite of Japan’, IEEE Transactions on Geoscience and Remote Sensing, Volume 25, No. 5, Sept. 1987

    Google Scholar 

  96. G. Asrar. R. Greenstone (editors), “MTPE/EOS Reference Handbook 1995 “NASA/GSFC

    Google Scholar 

  97. “Earth Observing System,” Reference Handbook 1990, and 1991, NASA/GSFC

    Google Scholar 

  98. “Optical Remote Sensing of the Atmosphere,” 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 23–58

    Google Scholar 

  99. G. Asrar, D. J. Dokken, “EOS Reference Handbook,” March 1993, NASA

    Google Scholar 

  100. ASTER instrument characteristics from Internet home page of EOS Project Science Office. The URL address is: (http://:spso.gsfc.nasa.gov/spso_homepage.html)

    Google Scholar 

  101. MODIS brochure of NASA/GSFC provided by M. D. King

    Google Scholar 

  102. Information provided by C. Schueler and J. Thunen of Hughes SBRC

    Google Scholar 

  103. MTPE/EOS Reference Handbook, 1995, NASA, G. Asrar and R. Greenstone (editors)

    Google Scholar 

  104. Earth Observation from Space, Report of ‘Committee on Earth Studies,’ ‘Space Studies Board,’ ‘Commission on Physical Sciences, Mathematics and Applications,’ ‘National Research Council,’ National Academy Press, Washington, D. C., 1995

    Google Scholar 

  105. “A Small Equatorial Satellite to Complement the Global Geospace Science Program — Equator — S,” MPE Equa-tor-S proposal, Sept. 30, 1991

    Google Scholar 

  106. “EQUATOR-S — A Contribution to the Interagency Solar-Terrestrial Physics Programme,” MPE paper provided by H. Höfner

    Google Scholar 

  107. J. A. Dezio, C. A. Jensen, “Earth Radiation Budget Satellite,” in Monitoring Earth’s Ocean, Land, and Atmosphere, Vol. 97 by AIAA, 1985, pp. 261–292

    Google Scholar 

  108. ESA Bulletin No. 65 Feb. 1991

    Google Scholar 

  109. W. Markwitz, “Das ERS-1 Bodensegment, Empfang, Verarbeitung und Archivierung von SAR Daten,” Die Geo-wissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 111–115

    Google Scholar 

  110. D. Gottschalk, “ERS-1 Mission and System Overview,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 100–101

    Google Scholar 

  111. M.F. Buchroithner, J. Raggan, D. Strobl “Geokodierung und geometrische Qualitätskontrolle,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 116–112

    Google Scholar 

  112. E. P. W. Attema, “The Active Microwave Instrument On-Board the ERS-1 Satellite,” Proc. IEEE, Vol. 79, No.6, June 1991, pp. 791–799

    Google Scholar 

  113. ERS-1 User Handbook, ESA SP-1148, May 1992, pp. 6–7

    Google Scholar 

  114. G. Schreier, K. Maeda, B. Guindon, “Three Spaceborne SAR Sensors: ERS-1, JERS-1, and RADARSAT-Competition or Synergism?,” Geo Informationssysteme, Heft 2/1991, Wichmann Verlag, Karlsruhe, pp. 20–27

    Google Scholar 

  115. R. Winter, D. Kosmann “Anwendungen von SAR-Daten des ERS-1 zur Landnutzung,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 128–132

    Google Scholar 

  116. W. Kühbauch, “Anwendung der Radarfernerkundung in der Landwirtschaft,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 122–127

    Google Scholar 

  117. Note: The on-board PRARE instrument of the ERS-1 payload could not achieve operational status after launch. The instrument worked nominally for five days after launch (five contacts with the command station showed nominal telemetry). A thorough failure analysis came to the conclusion that the most likely cause of the PRARE failure is RAM damage due to radiation (destructive RAM latch-up).

    Google Scholar 

  118. ‘ESA Signs Long-awaited Imagery Sales Deal,’ Space News, Feb. 10–16, 1992, p. 4

    Google Scholar 

  119. C. R. Francis, G. Graf, et al., “The ERS-2 Spacecraft and its Payload,” ESA Bulletin, No. 83, Aug. 1995, pp. 13–31

    Google Scholar 

  120. G. Duchossois, P. Martin, “ERS-1 and ERS-2 Tandem Operations,” ESA Bulletin, No. 83, August 1995, pp. 54–60

    Google Scholar 

  121. N. Stricker, A. Hahne, et al., “ATSR-2: The Evolution in its Design from ERS-1 to ERS-2,” No. 83, August 1995, pp. 32–37

    Google Scholar 

  122. C.J. Readings, ‘The Interim GOME Science Report,’ Feb. 1990,

    Google Scholar 

  123. ‘The Global Ozone Monitoring Experiment (GOME) and ERS-2,’ Earth Observation Quarterly, ESA periodical No. 32 Dec. 1990

    Google Scholar 

  124. A. Hahne, et al., “GOME: A New Instrument for ERS-2,” ESA Bulletin, No. 73, February 1993, pp. 22–29

    Google Scholar 

  125. GOME Global Ozone Monitoring Experiment, Interim Science Report, ESA SP-1151, September 1993

    Google Scholar 

  126. Information provided by G. T. Christiansen of Leslie Taylor Associates, Bethesda, MD and by P. Nuspl of W. L. Pritchard & CO. Inc.

    Google Scholar 

  127. S.K. Tatevian, A.N. Zakharov, “The Geodynamical Satellite ETALON,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 3–9

    Google Scholar 

  128. ESA Press Release, ESA/ESTEC, 1991

    Google Scholar 

  129. P. Ferri, H. Hübner, S. Kellock, W. Wimmer, “The Joint ESA-NASA Operations for Eureca’s Deployment and Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 81–90

    Google Scholar 

  130. F. Dreger, J. Fertig, D. Gawthrope, S. Martin, et. al., “Eureca: The Flight Dynamics of the Retrieval,” ESA Bulletin, Number 76, November 1993, pp. 92–99

    Google Scholar 

  131. Journal of Geomagnetism and Geoelectricity including Space Physics, Volume 33, No. 1, 1981, featuring EXOS-B, pp. 1–160

    Google Scholar 

  132. K. I. Oyama et al., “Electron Temperature Probe on Board Japan’s 9th Scientific Satellite Ohzora,” J. Geomagnetism and Geoelectricity, Volume 37, 1985, pp. 413–430

    Google Scholar 

  133. EXOS-D (Akebono) — Japan’s 12th Scientific Satellite — A Study of auroral particle acceleration processes, ISAS brochure

    Google Scholar 

  134. Selected papers on EXOS-D (Akebono) Observations in Geophysical Research Letters, Volume 18, No. 2, Feb. 1991, pp. 293–352

    Google Scholar 

  135. Information provided by J. T. Skladany of Final Analysis Inc., Greenbelt, MD

    Google Scholar 

  136. D. Baker, G. Chin, R. Pfaff, “NASA’s Small Explorer Program,” Physics Today, Dec. 1991, pp. 44–51

    Google Scholar 

  137. C. W. Carlson, “The Fast Auroral Snapshot Explorer,” EOS, Vol. 73, No. 23, 1992, pp. 249, 253, 254

    Google Scholar 

  138. Information provided by C. Cattell of UCB

    Google Scholar 

  139. Q. B. Zheng, X. R. Xue, “Optical Design of the Remote Sensing Instrument for FY-1 Meteorological Satellite,” Chinese Journal of Infrared & Millimeter Waves, Volume 9, Number 2, 1989

    Google Scholar 

  140. ‘The Data Format and the calibration Parameters of FY-1 Meteorological Satellite,’ Satellite Meteorology Center, SMA

    Google Scholar 

  141. Information provided by Wang Xinmin of the Shanghai Institute of Technical Physics, Shanghai

    Google Scholar 

  142. ‘China Launches first Fengyun II,’ Flight International, 11–17 Dec. 1991, p. 20

    Google Scholar 

  143. Paper provided by LANL (D. C. Cobb)

    Google Scholar 

  144. M. André (editor) and the Freja Science Team, “The Freja Scientific Payload,” Swedish Institute of Space Physics, Kiruna, May 1991

    Google Scholar 

  145. “The Freja Scientific Satellite,” brochure of Swedish Space Corporation

    Google Scholar 

  146. “Systeme und Sensoren,” p. 45, Taschenbuch zur Fernerkundung, Wichmann, 1990

    Google Scholar 

  147. S.K. Tatevian, “The Space Geodetic Complex GEO-IK,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 9–11

    Google Scholar 

  148. JANE’s Spaceflight Directory, 1988–89, pp. 332–333

    Google Scholar 

  149. GEOS — Projects under Development, ESA Report to COSPAR, Jan. 1977, pp. 112–123

    Google Scholar 

  150. “GEOS,” Interavia Space Directory 1992–93, pp. 155–156

    Google Scholar 

  151. H.R. Stanley, “The GEOS 3 Project,” Journal of Geophysical Research, July 30, 1979, pp. 3779–3783

    Google Scholar 

  152. “The Navy GEOSAT Mission: An Overview,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987

    Google Scholar 

  153. “The Navy GEOSAT Mission Radar Altimeter Satellite Program,” in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985 AIAA, pp. 440–463

    Google Scholar 

  154. D. R. Mantripp, J. K. Ridley, C. G. Rapley, “Antarctic map from the Geosat Radar Altimeter Geodetic Mission,” ESA Earth Observation Quarterly, No. 37–38, May-June 1992, pp. 6–10

    Google Scholar 

  155. Information provided by B. Barry of Ball Aerospace, Boulder, CO, and by Ch. Kilgus of JHU/APL

    Google Scholar 

  156. “The GEOTAIL Mission,” in NASAFacts, GSFC, June, 1992

    Google Scholar 

  157. “Delta Launches GEOTAIL,” Space News, July 27-Aug. 9, 1992, p. 12

    Google Scholar 

  158. “GEOTAIL Instruments and Initial Results,” Foreword by A. Nishida, Journal of Geomagnetism and Geoelectricity, ISSN 0022–1392, Vol. 46, 1994,

    Google Scholar 

  159. Information provided by Ch. Reigber and R. König of GFZ Potsdam

    Google Scholar 

  160. “Understanding Signals from GLONASS Navigation Satellites,” International Journal of Satellite Communications’, Vol. 7, 11–12, 1989, pp. 11–22

    Google Scholar 

  161. “Russians Launch Trio of GLONASS Satellites,” GPS World, January 1995, p. 15

    Google Scholar 

  162. N. L. Johnson, “GLONASS Spacecraft,” GPS World, Nov. 1994, pp. 51–58

    Google Scholar 

  163. URL address: http://mx.iki.rssi.ru/SFCSIC/glonass.htm

    Google Scholar 

  164. Y. Gouzhva, I. Koudryavtsev, V. Korniyenko, I. Pushkina, “GLONASS Receivers: An Outline,” GPS World, January 1994, pp. 30–36

    Google Scholar 

  165. Courtesy of A. Selivanov, ISDE and B. Zhukov, IKI, Moscow

    Google Scholar 

  166. P. N. Misra, E. T. Bayliss, R. R. LaFrey, M. M. Pratt, R. A. Hogaboom, R. Muchnik, “GLONASS Performance in 1992: A Review,” GPS World, May 1993, pp. 28–38

    Google Scholar 

  167. “The NAVSTAR GPS System,” AGARD Lecture Series No. 161, ISBN 92–835–04771, Sept. 1988

    Google Scholar 

  168. “Understanding Signals from GLONASS Navigation Satellites,” International Journal of Satellite Communications, Vol. 7 11–12, 1989, pp.11–22

    Google Scholar 

  169. “Navstar,” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 404–405

    Google Scholar 

  170. “GPS — the Next Generation,” GPS World, Nov. Dec. 1991, pp. 12–16

    Google Scholar 

  171. H. Montgomery, “Organizing the Technology,” GPS World, April 1992, pp. 18–20

    Google Scholar 

  172. “GPS — the Next Generation,” GPS World, Nov./Dec. 1991, p. 12

    Google Scholar 

  173. Glen Gibbons, “What in the World!?!” GPS WORLD, April 1991, p. 21–24

    Google Scholar 

  174. B. Tryggö, R. Bäckström, “Threading the Needle: Differential GPS on the Baltic Sea,” in GPS World Sept. 1991, pp. 22–26

    Google Scholar 

  175. “GPS is Newest Aid in Earthquake Forecasting,” Space News, March 18–24 1991, pp. 22

    Google Scholar 

  176. “Smart Policy: Make Best GPS Data Available to All,” Space News, April 1–7 1991, pp. 15

    Google Scholar 

  177. N.E. Ivanow, V. Salistchew, “GLONASS and GPS: Prospects for a Partnership,” GPS WORLD, April 1991, p. 36–40

    Google Scholar 

  178. W. Johnson, “Attitude Adjustment, GPS Innovation keeps Satellites Oriented,” Satellite Communications, June 1995, pp. 19–21

    Google Scholar 

  179. “International GPS Services for Geodynamics,” 1994 Annual Report, September 1, 1995, IGS Central Bureau, edited by J. F. Zumberge, R. Liu, and R. E. Neilan

    Google Scholar 

  180. G. Beutler, E. Brockmann, “Proceedings of the International GPS Service for Geodynamics (IGS) Workshop,” March 25–26, 1993, Astronomical Institute, University of Bern

    Google Scholar 

  181. CIGNET Report, CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 235–256

    Google Scholar 

  182. P.K. Enge, R.M. Kalafus, M.F. Ruane, “Differential Operation of the Global Positioning System,” IEEE Communications Magazine, July 1988, Vol. 26, No.7, pp. 48–59

    Google Scholar 

  183. B. McGarigle, “’Top 40 Hydrography: Surveying with FM-based DGPS,” GPS World April 1993 pp. 37–40

    Google Scholar 

  184. “California-Based Firms Offer Highly Accurate GPS Services,” Space News, Nov. 29-December 5, 1993, p. 7

    Google Scholar 

  185. GPSWORLD, Dec. 1993, p. 39

    Google Scholar 

  186. S/C drawing courtesy of J. Keating, Lockheed Martin Astro Space, Valley Forge, PA

    Google Scholar 

  187. M. Homma, M. Minowa, M. Kobayashi, M. Harada, “Geostationary Meteorological Satellite System in Japan” in ‘Monitoring Earth’s Ocean, Land, and Atmosphere from Space,’ Volume 97 AIAA, 1985, pp. 570–583

    Google Scholar 

  188. Information provided by T. Hiraki of JMA, Tokyo

    Google Scholar 

  189. “Space System with Geostationary Meteorological Satellite (GOMS),” Paper of Planeta, Moscow, Nov. 1990

    Google Scholar 

  190. S. A. Stoma, Yu. V. Trifonov, “Geostationary Space System ‘ELECTRO’ (GOMS): Preconditions for Creation and Structure,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 2–6

    Google Scholar 

  191. O. M. Miroshnik, et. al., “A Drama in Orbit with a Happy Ending,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 7–10

    Google Scholar 

  192. Yu. V. Trifonov, “S/C ELECTRO On-board Control Complex,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 11–14

    Google Scholar 

  193. Yu. V Trifonov, A. V. Gorbunov, “Prospects for the ELECTRO Space System Development,” Space Bulletin, Vol. 2, No. 3, 1995, pp. 14–15

    Google Scholar 

  194. “Testing Einstein with Orbiting Gyroscopes, Gravity Probe B,” Stanford University brochure

    Google Scholar 

  195. Information provided by C. W. F. Everitt of Stanford University, Stanford, CA

    Google Scholar 

  196. J. A. Lipa, D. H. Gwo, R. K. Kirschman, “Status of the cryogenic inertial reference system for the Gravity Probe B mission,” SPIE, Vol. 1765 Cryogenic Optical Systems and Instruments V, 23–24 July 1992, San Diego, pp. 85–93

    Google Scholar 

  197. C. W. F. Everitt, D. Bardas, Y. M. Xiao, et al., “Three Papers on Gravity Probe B,” presented at The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991

    Google Scholar 

  198. M. Tapley, et al., “Gradiometry Coexperiments to the Gravity Probe B and Step Missions,” Advanced Space Research, Vol. 11, No. 6, 1991, pp. 179–182

    Google Scholar 

  199. R. F. C. Vessot, M. W. Levine, “A Test of the Equivalence Principle Using a Space-Borne Clock,” General Relativity and Gravitation, Vol. 10, No. 3, 1979, pp. 181–204

    Google Scholar 

  200. When a superconductor like niobium spins, it generates a magnetic field effect known as the ‘London moment,’ after physicist Fritz London (1900–1954).

    Google Scholar 

  201. Note: PODS = Passive Orbital Disconnect Struts

    Google Scholar 

  202. P. Slater, ‘Remote Sensing’ Optics and Optical Systems, Addison-Wesley, 1980, pp. 462–465

    Google Scholar 

  203. HCMM System in ‘Manual of Remote Sensing,’ Second Edition, American Society of Photogrammetry, 1983, pp. 663–670

    Google Scholar 

  204. J. H. King, “Availability of IMP-7 and IMP-8 Data for the IMS Period,” The IMS Source Book, GSFC, pp. 10–20,

    Google Scholar 

  205. ‘Space Applications,’ DOS Annual Report 1990–91. pp. 13–23

    Google Scholar 

  206. “Arianespace Receives Contract for Indian Launches,” Space News, March 14–20, 1994, p. 3

    Google Scholar 

  207. “INTERBALL — Study of Magnetospheric Plasma and Solar-Terrestrial Relations,” Academy of Sciences of the USSR Space Research Institute, 1987

    Google Scholar 

  208. J. Büchner, L. M. Seljenyi, “Interbol erforscht die Magnetosphäre,” Astronomie und Raumfahrt, GDR, 25. Jahrgang, 1987, Heft 3, pp. 77–80

    Google Scholar 

  209. “Interball Project — Magnetospheric System of 4 Spacecraft,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 61–73

    Google Scholar 

  210. “Indian Remote Sensing Satellite and Associated Data Products,” A.K.S. Gopalan, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, p. 71, ERIM, Ann Arbor, MI, 1990

    Google Scholar 

  211. IRS Newsletter, ISRO, Vol. 2 No. 1, March 1991

    Google Scholar 

  212. “India Expands Access to Imagery,” Space News Aug. 26 — Sept. 8, 1991, p. 22

    Google Scholar 

  213. “India Calls IRS-1B Launch a Success,” Space News, September 9–15, 1991, p. 12 Transmission data rate: 125 Mbit/s (X-Band), TT&C in S-Band (Mission control center at Bangalore). Eosat of Lanham, MD (the Landsat data distributor) bought the worldwide

    Google Scholar 

  214. IRS-1C Executive Summary, IRS-1C/1D Project, May 1990, ISRO

    Google Scholar 

  215. “India’s IRS-1C Satellite to offer sharper Images,” Space News, May 25–31, 1992 p. 11

    Google Scholar 

  216. “India Readies Sharper IRS-1C for Molniya Launch,” Space News, January 9–15, 1995, p. 3

    Google Scholar 

  217. IRS-IE MEOSS Utilization Plan, ISRO, July 1991

    Google Scholar 

  218. Document on Configuration of IRS-P2 and MOS and their Interfaces, ISAC, Bangalore, Nov. 1992

    Google Scholar 

  219. Special issue on ‘Instrumentation for the International Sun-Earth Explorer Spacecraft’ in IEEE Transactions on Geoscience Electronics, Volume 16, No.3, July 1978

    Google Scholar 

  220. K. P. Wenzel, “Earth’s Distant Geomagnetic Tail Explored by ISEE-3 Spacecraft,” ESA Bulletin 37, 1984 pp. 46–50

    Google Scholar 

  221. A. Balogh, R. J. Hynds, J. J. van Rooijen, G. A. Stevens, T. R. Sanderson, K. P. Wenzel, “Energetic Particles in the Hehosphere — Results from the ISEE-3 Spacecraft,” ESA Bulletin 27, 1981, pp. 4–12

    Google Scholar 

  222. “Japanese Elated as JERS-1 Rescue Works,” Space News, April 13–19, 1992, p. 1 and p. 20

    Google Scholar 

  223. K. Maeda, M. Nakai, O. Ryuguji, “JERS-l/ERS-1 Verification Program and Future Verification Program,” Advanced Space Research, Vol. 12, No. 7, pp. 327–331, 1992

    Google Scholar 

  224. Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 83–84

    Google Scholar 

  225. R. Kolenkiewicz, S. Zerbini, “LAGEOS-II: A collaborative NASA-ASI Mission,” CSTG Bulletin No.ll, Title: New Satellite Missions for Solid Earth Studies,, June 1989, pp. 13–18

    Google Scholar 

  226. “Columbia Successfully Lofts Italian Lageos Satellite,” Space News, Oct. 26-Nov. 1, 1992, p. 13

    Google Scholar 

  227. NASA/ASI Lageos II brochure

    Google Scholar 

  228. E. J. Sheffner, “The Landsat Program: Recent History and Prospects,” PE&RS, Vol. 60„ 1994, pp. 735–744

    Google Scholar 

  229. “Fernerkundung, Daten und Anwendungen,” W. Markwitz/R. Winter, Wichmann Verlag, 1989, S. 32–36

    Google Scholar 

  230. “Taschenbuch zur Fernerkundung,” F. Strathmann, Wichmann Verlag, 1990

    Google Scholar 

  231. Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, Chapter 3

    Google Scholar 

  232. “Satellite Loss Raises Questions for Eosat’s Future,” Space News, October 11–17, 1993, p. 3

    Google Scholar 

  233. EOSAT Landsat Technical Notes, September 1992

    Google Scholar 

  234. M. D. King ‘The Editor’s Corner,’ The Earth Observer, Vol. 6, No. 1, January/February 1994

    Google Scholar 

  235. B. L. Markham, et al., “Radiometric Calibration of the Landsat-7 Enhanced Thematic Mapper Plus,” Proceedings of IGARSS’94, Volume IV, pp. 2004–2006

    Google Scholar 

  236. J. R. Irons, D. L. Williams, B. L. Markham, “Landsat-7 ETM+ On-Orbit Calibration and Data Quality Assessment,” Proceedings IGARSS’95, Vol. II, pp. 1573–1575

    Google Scholar 

  237. D. L. Williams, J. R. Irons, et al., “Landsat Advanced Technology Instrument (LATI) Concepts,” Landsat Satellite Information in the Next Decade, ASPRS Conference Proceedings, Sept. 25–28, 1995, Vienna, VA

    Google Scholar 

  238. A. S. Levine (editor), “LDEF — 69 Months in Space, First Post-Retrieval Symposium,” NASA Conference Publication 3134 (Part 1 and Part 2), Proceedings of a symposium sponsored by NASA at Kissimmee, Florida, June 2–8, 1991

    Google Scholar 

  239. W. Flury, “Europe’s Contribution to the Long Duration Exposure Facility (LDEF) Meteoroid and Debris Impact Analysis,” ESA Bulletin, Number 76, November 1993, pp. 112–118

    Google Scholar 

  240. B.B. Schardt, B.H. Mollberg, “The Orbiter Camera Payload System’s Large-Format Camera and Attitude Reference System,” in Monitoring the Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, AIAA, 1985, pp. 684–709

    Google Scholar 

  241. The satellite missions are named in honor of Meriwether Lewis (1774–1809) and William Clark (1770–1838), who headed the first overland expedition of about 40 persons (1804–06) to the Pacific coast and back, starting in St. Louis, Missouri. The expedition was initiated by President Thomas Jefferson, who wanted a first survey (information in the form of maps and diaries) of the territory west of the Mississippi acquired by the Louisiana Purchase in 1803 from France.

    Google Scholar 

  242. Information provided by J. S. Pearlman and S. K. Manlief of TRW, Redondo Beach, CA

    Google Scholar 

  243. Note: The NICMOS3 array is being developed for the next-generation IR instruments for the Hubble Space Telescope.

    Google Scholar 

  244. Information provided by J. Jacobi of CTA, McLean, VA and by R. J. Hayduk of NASA/HQ, Washington, DC

    Google Scholar 

  245. “Lidar In-Space Technology Experiment (LITE): NASA’s first In-Space Lidar System for Atmospheric Research,” Optical Engineering, Jan. 1991, Vol. 30 No. 1 pp. 88–95

    Google Scholar 

  246. F. F. Mobley, L. D. Eckard, G. H. Fountain, G. W. Ousley, “Magsat — A New Satellite to Survey the Earth’s Magnetic Field,” IEEE Transactions on Magnetics, Vol. Mag. 16, No. 5, September 1980, pp. 758–760

    Google Scholar 

  247. R. Langel, G. Ousley, J. Berbert, “The MAGSAT Mission,” Geophysical Research Letters, Vol. 9, No. 4, April 1982, pp. 243–245

    Google Scholar 

  248. R. Langel, “The Magnetic Earth as Seen from Magsat, Initial Results,” Geophysical Research Letters, Vol. 9, No.4, April 1982, pp. 239–242

    Google Scholar 

  249. Information provided by V. Connors and D. O. Neil of NASA/LaRC

    Google Scholar 

  250. “The Cambridge Encyclopedia of Space,” Cambridge University Press 1990, p. 235

    Google Scholar 

  251. The original text was reviewed by Y. V. Trifonow of VNIIEM, Moscow

    Google Scholar 

  252. COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hy-drometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”

    Google Scholar 

  253. Y. V. Trifonov, “Meteor-3 space system for hydrometeorological observation,” VNIIEM, Moscow, 1991

    Google Scholar 

  254. ‘Soviets to Launch U.S. Ozone Mapper,’ Space News Aug. 5–18, 1991, p. 14

    Google Scholar 

  255. ‘TOMS Arrives Successfully in Space,’ Space News Aug. 19–25, 1991, p. 2

    Google Scholar 

  256. “TOMS Mission Declared Over by NASA Officials,” Space News, February 20–26, 1995, p. 11

    Google Scholar 

  257. Courtesy of B. S. Zhukov (IKI RAN), Y. V Trifonov and Y. V. Dubrovinsky (VNIIEM), Moscow

    Google Scholar 

  258. Meteor 2–22 was launched in honor of A. G. Iosiphyan, the founder and first director of VNIIEM and the designer of the Meteor-1, Meteor-2, and Meteor-Priroda satellite series

    Google Scholar 

  259. Information provided by H. D. Dicken of the University of Bremen

    Google Scholar 

  260. ESA Information Note to the Press No. 4, Feb. 11, 1991, “MOP-2 Ready for Launch”

    Google Scholar 

  261. “Current and Planned European Operational Meteorological Satellite Systems,” John Morgan, Proceedings of the Twenty-Third International Symposium on Remote Sensing of The Environment, Bangkok, Thailand, April 18–25, 1990, ERIM, Ann Arbor, MI, Vol. I, pp. 107–116.

    Google Scholar 

  262. ‘The Meteosat Operational Programme — From Experiments to Exploitation,’ Earth Observation Quarterly, No. 25, March 1989

    Google Scholar 

  263. Introduction to the METEOSAT Operational System, ESA BR-32 ISSN 250–1589, Sept. 1987

    Google Scholar 

  264. ‘EUMETSAT Directory of Meteorological Satellite Application,’ ISBN 92 91110 006 4, 1991, EUMETSAT

    Google Scholar 

  265. “Meteosat Data Collection System,” March 1990, ESOC

    Google Scholar 

  266. “Meteosat DCP Satellite Retransmission System,” January 1990, ESOC

    Google Scholar 

  267. “Meteosat WEFAX Transmissions,” ESOC paper, March 1990

    Google Scholar 

  268. “Meteosat High Resolution Image Dissemination,” ESOC paper, Oct. 1989

    Google Scholar 

  269. “MOSAIC Meteorological Data Distribution,” EUMETSAT, EUM UG 01

    Google Scholar 

  270. “Meteosat Second Generation Programme Proposal,” ESA/PB-EO, Nov. 1992

    Google Scholar 

  271. Information provided by G. Moody and D. Finn of OSC, and by W. J. Koshak of NASA/MSFC

    Google Scholar 

  272. “Soviets to Set Record Pace for MIR Repairs,” Space News June 10–16, 1991, p. 12

    Google Scholar 

  273. “Earth Imagery from MIR offered to Commercial Buyers,” Space News, April 25-May3, 1992, p. 27

    Google Scholar 

  274. Overview paper provided by G. Zimmermann of DLR (IKF) Berlin, Aug. 1991

    Google Scholar 

  275. Note: The sensors of existing modules are operational (Priroda and Spektr modules are planned)

    Google Scholar 

  276. MIR Earth Images are sold by ‘Energiya Deutschland GmbH’, a joint venture of NPO Energiya, Moscow and Kayser-Threde of Munich, Germany — see Space News, Aug. 17–23, 1992, p. 13

    Google Scholar 

  277. F. Ackermann, J. Bodechtel, F. Lanzl, D. Meissner, P. Seige, H. Winkenbach;”MOMS-02 — Ein multispektrales Stereo-Bildaufnahmesystem für die zweite deutsche Spacelab-Mission D2,” Geo-Informations-Systeme, Zeitschrift für interdisziplinären Austausch innerhalb der Geowissenschaften, Wichmann Verlag, Jahrgang 2, Heft 3/1989, S. 5–11

    Google Scholar 

  278. J. Bodechtel, D. Meißner, P. Seige, H. Winkenbach, J. Zilger, “The MOMS Experiment on STS-7 and STS-11 -First Results and Further Development of the Modular Optoelectronic Multispectral Scanner,” Proceedings of the Eighteenth International Symposium on Remote Sensing of the Environment, Volume 1, 1984, pp. 77–85

    Google Scholar 

  279. “MOMS-01: First Results of STS-7 Mission,” IGARSS’83

    Google Scholar 

  280. J. Bodechtel, S. Lutz, “Neue Wege der Erderkundung,” aus Einsichten, Forschung an der LMU, pp. 38–43, 1992

    Google Scholar 

  281. Courtesy of P. Seige, DLR

    Google Scholar 

  282. John D. Mill, et al., “Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives,” Journal of Spacecraft and Rockets, Vol. 31, No. 5, September-October 1994, pp. 900–907

    Google Scholar 

  283. J. F. Carbary, E. H. Darlington, K. Heffernan, T. J. Harris, C. I. Meng, M. J. Mayr, P. J. McEvaddy, K. Peacock, “Aerial Surveillance Sensing Including Obscured and Underground Object Detection,” Proceedings of SPIE, April 4–6, 1994, Orlando Florida, Volume 2217

    Google Scholar 

  284. Note: The spatial resolution of the SPIMs is driven by the point-spread function in one direction (along the slit) and by the point-spread function and the mirror step size in the other direction. For the 0.05° mirror steps one can assume that it is driven by the point-spread function in both directions, and is about 0.85 mrad. The spatial resolution is diminished by using the 0.1° steps or by reducing the number of bins in the readout, by co-adding 2, 4, or 8 adjacent pixels. This is to reduce the bandwidth requirement by trading spatial resolution, spectral resolution and frame rate. The nadir resolution is 0.85 mrad × 900 km ≃ 770 m. Nadir FOV is 17 mrad (1o) × 900 km ≃ 15 km × 15 km.

    Google Scholar 

  285. Note: The bins are formed in the SPIM electronics by co-adding 1, 2, or 4 adjacent pixels; this is done to reduce the data bandwidth requirement in cases where UVISI is not the principal instrument, or higher frame rates are needed which can be traded off against resolution. For the case of 136 and 272 bins, the bins overlap; for the case of 68 bins, the bins are noncontiguous.

    Google Scholar 

  286. “The NIMBUS-7 User’s Guide,” NASA/GSFC, Prepared by The Landsat/Nimbus Project, Aug. 1978

    Google Scholar 

  287. “NIMBUS-7, Observing the Atmosphere and Oceans,” NASA pamphlet Dec. 1983

    Google Scholar 

  288. W. P. Menzel, J. F. W. Purdom, “Introducing GOES-I: The first of a Generation of new Geostationary Operational Environmental Satellites,” Bulletin of the American Meteorological Society, Vol. 75 No. 5, May 1994, pp. 757–781

    Google Scholar 

  289. Note: For a number of years the designation GOES Next (N) was used to identify the first of the satellites that would follow the GOES I-M series. It was also thought this GOES N would be the start of a totally new generation satellite series. However, during the time frame of about 1992–95, NOAA has come to realize that a new satellite series would take at least a decade to develop, manufacture, and launch. This new situation made NOAA realize it would need a few more clones of the current GOES I-M series to maintain continuity of GOES service prior to the GOES Next being available. What has evolved is a program that will likely buy 3–4 additional GOES I-M satellites beyond the GOES I-M series. These would then be labeled GOES N through Q. GOES R would be the first of a new generation of three-axis stabilized satellites. (Information: R. Heymann of NOAA).

    Google Scholar 

  290. E. P. Mercanti, “Need for Expanded Environmental Measurement Capabilities in Geosynchronous Earth Orbit,” Proceedings of the Twenty-Fourth International Symposium on Remote Sensing of the Environment,’ ERIM, Volume I, pp. 45–55

    Google Scholar 

  291. R. Koffler, L. Spayd, “30 Years of Operational Environmental Satellites: A Retrospective and Future View of the United States Program,” presented at the Twenty-Third International Symposium on Remote Sensing of the Environment, Bangkok, Thailand, April 18–25, 1990, pp. 95–97

    Google Scholar 

  292. J.R. Greaves, W.E. Schenk, ‘The Development of the Geosynchronous Weather Satellite System,’ in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985, pp. 150–181

    Google Scholar 

  293. Space Sensors, brochure of Hughes Santa Barbara Research Center (SBRC), January 1994

    Google Scholar 

  294. “The Geostationary Operational Satellite Data Collection System,” NOAA Technical Memorandum NESDIS 2, June 1983

    Google Scholar 

  295. “Users Guide for Random Reporting — An Introduction to GOES Random Reporting Services,” NOAA, April

    Google Scholar 

  296. User Interface Manual, Version 1.1, for the ‘Data Collection System Automatic Processing System (DAPS),’ Integral Systems Inc., Sept. 1990

    Google Scholar 

  297. Information provided by M. J. Nestlebush of NOAA/NESDIS

    Google Scholar 

  298. J. Savides, “Geostationary Operational Environmental Satellite GOES I-M,” System Description, Space Systems/Loral, Palo Alto, CA, Dec. 1992

    Google Scholar 

  299. “The GOES I-M Series Satellites — A brief description and Status Report,” NOAA draft paper, March 1993

    Google Scholar 

  300. “GOES I-M Data Book” by Space Systems/Loral

    Google Scholar 

  301. M. J. Nestlebush, “The Geostationary Operational Environmental Satellite Data Collection System,” NOAA Technical Memorandum NESDIS 40, June 1994

    Google Scholar 

  302. A. F. Durham, “Future Polar Satellite Program Plan for Global Environmental Observations,” IAF 92–0083, 43rd Congress of the International Astronautical Federation, Aug. 28-Sept. 5, 1992 Washington, D. C.

    Google Scholar 

  303. Bruce H. Needham, “Instrumentation and Services for the NOAA Polar-Orbiting Operational Environmental Satellites (POES) in the 21st Century,” NOAA/NESDIS, Office of System Development, Washington D.C.,’90

    Google Scholar 

  304. “Pre-Phase-A Study of NOAA O, P, Q Spacecraft and Ground Segment LRPT and HRPT Data Handling and Transmission Subsystems” Draft Final Report, Oct. 16, 1990, Atlantic Research Corp. prepared for NASA/GSFC

    Google Scholar 

  305. Note: Although the original acronym for ‘Search and Rescue’ is ‘SAR’ in the context of NOAA missions, it was changed in this book consistently to ‘S&R’ in order to distinguish it from the other widely-used meaning of SAR, namely ‘Synthetic Aperture Radar,’ a sensor type. A consequence is the use of ‘S&RSAT’ (instead of SARSAT)

    Google Scholar 

  306. CEOS Summary Report, WGD-10 Meeting, Annapolis MD, April 16–18, 1991

    Google Scholar 

  307. CEOS Summary Report, WGD-10 Meeting, Annapolis MD., April 16–18, 1991

    Google Scholar 

  308. Note: In order to conform with the S&R designation the original acronym for SARSAT was changed to S&RSAT in this book (see footnote 306).

    Google Scholar 

  309. Advanced TIROS-N (ATN) NOAA-I, NASA /NOAA Bulletin 1991

    Google Scholar 

  310. “Proceedings of the Twenty-Third International Symposium of Remote Sensing Environment,” Vol. I, Bangkok, Thailand, April 18–25, 1990,, Erim, P.O. 8618 Ann Arbor Mich. p. 94

    Google Scholar 

  311. Y. G. Zurabov, “The COSPAS-S&RSAT System: Results and Prospects,” Space Bulletin, Vol. 1, No. 1 1993, pp.

    Google Scholar 

  312. Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment, Vol. I, Bangkok, Thailand, April 18–25, 1990, p. 89, Erim, Ann Arbor, MI

    Google Scholar 

  313. F. v. Scheele, “Star Formation and Ozone Depletion: The Swedish ODIN Satellite to Eye Heaven and Earth,” Nordic Space Activities, No. 5, 1994, pp. 44–46

    Google Scholar 

  314. “ODIN — A Small Satellite for Astronomy and Atmospheric Research,” SSC/SNSB brochure

    Google Scholar 

  315. Verbal information provided by B. Kutuza of IRE (Russian Academy of Sciences), Moscow

    Google Scholar 

  316. Information provided by M. Deckett of Orbcomm, Dulles, VA

    Google Scholar 

  317. Information provided by F. Primdahl of TUD, Lyngby, Denmark

    Google Scholar 

  318. P. Donaldson, “Mapping Magnetism,” Space, April 1993

    Google Scholar 

  319. “The ESA Earth Observation Programme and its Role in Global Remote Sensing,” P. Goldsmith, Proceedings of the Twenty-Third International Symposium of Remote Sensing of the Environment,” Vol. I, ERIM, Ann Arbor, MI, pp. 125–137.

    Google Scholar 

  320. Programme Proposal for the first Polar Orbit Earth-Observation Mission using the Polar Platform, Part 1, ESA paper, 31–08–89

    Google Scholar 

  321. Objectives and Strategy for the Earth-Observation Programme of the European Space Agency, ESA, Oct. 88

    Google Scholar 

  322. Polar Platform Concept Evaluation, ESA paper, Sept. 25, 1989

    Google Scholar 

  323. Programme Proposal for the first ESA Polar Platform, ESA/PB-EO (89) 32, Sept. 1, 1989

    Google Scholar 

  324. Programme Proposal for the Development and Exploitation of the First Polar Orbit Earth-Observation Mission (POEM-1) using the Polar Platform, ESA/POEM 1, Issue 1, Oct. 28, 1991, Part 1, Issue 1, Oct. 30, 1991, Part 2

    Google Scholar 

  325. “MERIS Medium Resolution Imaging Spectrometer,” ESA brochure

    Google Scholar 

  326. M. Morel, J. L. Bézy, F. Montagner, A. Morel, J. Fischer, “Envisat’s Medium-Resolution Imaging Spectrometer,” ESA Bulletin, No. 76, November 1993, pp. 40–46

    Google Scholar 

  327. M. Endermann, H. Fischer, “Envisat’s High-Resolution Limb Sounder: MIPAS,” ESA Bulletin 76, November 1993, pp. 47–52

    Google Scholar 

  328. W. Posselt, “Michelson Interferometer for Passive Atmospheric Sounding,” Proceedings of the Twenty-fourth International Symposium on Remote Sensing of the Environment, May 27–31, 1991, Rio de Janeiro, Volume II, pp. 737–748, ERIM, Ann Arbor MI.

    Google Scholar 

  329. “ASAR Advanced Synthetic Aperture Radar,” ESA brochure

    Google Scholar 

  330. S. Karnevi, E. Dean, D. J. Q. Carter, S. S. Hartley, “Envisat’s Advanced Synthetic Aperture Radar: ASAR,” ESA Bulletin, No. 76, November 1993, pp. 30–35

    Google Scholar 

  331. A. Resti, “Envisaťs Radar Altimeter: RA-2,” ESA Bulletin, No. 76, November 1993, pp. 58–60

    Google Scholar 

  332. A. Popescu, P. Ingmann, “Envisaťs Global Ozone Monitoring by Occultations of Stars Instrument: GOMOS,” ESA Bulletin, No. 76, November 1993, pp. 36–39

    Google Scholar 

  333. GOMOS handout from Atmospheres Panel Meeting’ in Washington DC, Feb. 26–27, 1991

    Google Scholar 

  334. “GOMOS — Global Ozone Monitoring by Occultation of Stars,” ESA brochure

    Google Scholar 

  335. Robert Kandel, “Radiation and the Energy Balance,” Paper presented at the ESA ‘Earth Observation User Consultation Meeting,’ ESTEC, May 1991, The Consultative Document Collection of Preprints for the Meeting.

    Google Scholar 

  336. “MIMR Multifrequency Imaging Microwave Radiometer on POEM,” ESA brochure F-31

    Google Scholar 

  337. “ASCAT Advanced Scatterometer,” ESA brochure

    Google Scholar 

  338. H. Ebner, H. R. Schulte, H. Hölzl, D. Miller, P. Hans, “ASCAT — Advanced Wind Scatterometer,” IGARSS’92 Volume I, pp. 435–439

    Google Scholar 

  339. “Improved Atmospheric Sounding Infrared,” ASI/CNES brochure, April 1991

    Google Scholar 

  340. “The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 11–15

    Google Scholar 

  341. “ISTP Global GEOSPACE Science — Energy Transport in Geospace,” ESA/NASA/ISAS brochure, 1992 of GSFC

    Google Scholar 

  342. “The Precise Range and Range Rate Equipment PRARE: Status Report on System Development, Preparations for ERS-1 and Future Plans,” Submitted by F. Flechtner, K. Kaniuth, Ch. Reigber, H. Wilmes of DGFI, Second International Symposium on Precise Positioning with the Global Positioning System (GPS’90), Sept.’90, Ottawa

    Google Scholar 

  343. P. Hartl, C. Reigber “Das PRARE-System der ERS-1 Mission,” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 156–162.

    Google Scholar 

  344. “PRIRODA,” Ein Forschungsmodul der sowjetischen Orbitalstation MIR zur Fernerkundung der Erde, Wissenschaftliche Nutzlast Technische Beschreibung, Institut für Kosmosforschung (IKF), Berlin, 1990

    Google Scholar 

  345. “PRIRODA-Experimente,” Programm zur Beschaffung, Verarbeitung, Bewertung und Anwendung von Daten des Multisensorsystems PRIRODA der sowjetischen Orbitalstation MIR, 1992–94, DARA, Berlin, Mai 1991

    Google Scholar 

  346. “Complex for Remote Sensing of the Earth,” Science Program, DLR paper 1991

    Google Scholar 

  347. Orbital Station MIR, Complex of Remote Sensing of the Earth “PRIRODA,” Scientific Program, IRE brochure, Moscow, 1991

    Google Scholar 

  348. G. Zimmermann, “Mission PRIRODA,” German Proposals to Scientific Program, DARA Bulletin, Dec. 1991

    Google Scholar 

  349. M. L. Chanin, M. Desbois, A. Hauchecorne, “ALISSA a French Russian cooperation in the PRIRODA mission.” Paper of CNRS — Service d’Aeronomie

    Google Scholar 

  350. R. Furrer, H. Rubin, M. Schaale, A. V. Poberovsky, A. V. Mironenkov, Y. M. Timofeyev, “MIRIAM — A Space-borne Sun Occultation Experiment for Atmospheric Trace Gas Spectroscopy,” Geo Journal 32.1, Januar 1994, pp.

    Google Scholar 

  351. “MIRIAM 1995–1998 MIR-Infrared Atmospheric Measurements — Untersuchung der Atmosphäre aus der Raumstation MIR,” Institut für Weltraumwissenschaften an der Freien Universität Berlin, 1994

    Google Scholar 

  352. German User Requirements to PRIRODA Mission, Annex 1 of Protocol to MOMS-2 for the PRIRODA Mission, DLR paper of PRIRODA Workshop, May 1991

    Google Scholar 

  353. Protocol of the Meeting of Specialists of USSR and Germany on MOMS-2 for the PRIRODA Mission. DLR paper, May 1991

    Google Scholar 

  354. S. Föckersperger, et al., “MOMSNAV: Location of the Russian Space Station MIR with Differential GPS,” Proceedings of the 2nd ESA International Conference on GNC, ESTEC, 12–15 April 1994, pp. 159–165

    Google Scholar 

  355. * IKAR-D, -P and MSU-SK with forward look angle (in flight direction) of 40° against nadir

    Google Scholar 

  356. R. K. Raney, A.P. Luscombe, E.J. Langham, S. Ahmed “Radarsat,” reprint from Proceedings of the IEEE, Vol. 79, No. 6, June 1991

    Google Scholar 

  357. * Nominal: range dependent and processor dependent; ** Nominal: ground range resolution varies with range

    Google Scholar 

  358. ‘Sowjetisches kosmisches System zum Studium der Naturschätze der Erde und zur Umweltkontrolle — der heutige Stand und die Perspektiven für den Zeitraum 1991–1995,’ the paper is a translation of a presentation given by L. Dessinow of the USSR Academy of Sciences in 1989.

    Google Scholar 

  359. Interavia Space Directory 1990–91, p. 436

    Google Scholar 

  360. E. L. Lukashevich, “The Space System Resurs-F for the Photographic Survey of the Earth,” Space Bulletin, Vol. 1, No. 4, 1994, pp. 2–4

    Google Scholar 

  361. Information provided by the State Center “PRIRODA,” Moscow

    Google Scholar 

  362. Courtesy of E. L. Lukashevich of State Center Priroda, Moscow

    Google Scholar 

  363. Note: For S/C No. 37 and (39), the orbit was changed from an altitude of 275 km (275 km) to an altitude of 355 km (180 km), respectively

    Google Scholar 

  364. T.M. Wasjuchina, A.M. Wolkow, “Zustand und Perspektiven der Entwicklung Kosmischer Systeme zur Erforschung natürlicher Ressourcen der Erde und der Hydrometeorologie,” Moscow 1988, translated into German by R. Müller, 1989 (IKF)

    Google Scholar 

  365. COSPAR-90-Paper by A. Karpov, USSR State Committee for Hydrometeorology, Moscow. Title of paper: “Hydrometeorological, Oceanographic and Earth-Resources Satellite Systems operated by the USSR.”

    Google Scholar 

  366. Information provided by D. Gilman and J. L. LaBrecque of NASA/HQ

    Google Scholar 

  367. Information provided by R. Ibba of ASI, Rome, Italy

    Google Scholar 

  368. Brochures and documentation provided by OHB-System

    Google Scholar 

  369. Interavia Space Directory 1990–91 (previously Jane’s Space Flight Directory), pp. 122–124

    Google Scholar 

  370. D. N. Baker, G. M. Mason, O. Figueroa, G. Colon, J. G. Watzin, R. M. Aleman, “The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) Mission,” Preprint 93–128, U. of Maryland — see also (by the same authors): IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 3, May 1993, pp. 531–541

    Google Scholar 

  371. Payload Definition Document for SAN MARCO D/L Satellite, CRA, Oct. 1987

    Google Scholar 

  372. G. Schmidtke, H. Doll, C. Wita, and S. Chakrabarti, “Solar EUV/UV and equatorial airglow measurements from San Marco-5,” Journal of Atmospheric and Terrestrial Physics, Vol. 53, No. 8, pp. 781–785, 1991

    Google Scholar 

  373. Jane’s Spaceflight Directory 1988–89, pp. 35–36

    Google Scholar 

  374. INPE brochure ‘SCD1 Data Collection Satellite,’ and fax information from Prof. P. M. Fagundes, Rio de Janeiro

    Google Scholar 

  375. “SCD1 Satellite Description,” and “The Brazilian Data Collecting System,” papers provided by C. E. Santana of INPE, May/June 1992

    Google Scholar 

  376. Information provided by C. E. Santana of INPE

    Google Scholar 

  377. “The first Brazilian Earth Observation Satellite (SRR),” paper by C. E. Santana and J. Kono of INPE

    Google Scholar 

  378. “Satellite Launch to Advance Brazilian Space Program,” Space News Aug. 31-Sept. 6, 1992, p. 43

    Google Scholar 

  379. “Orbital Sciences Captures $120 Million in Business, Pegasus Launches Ocean Satellite Ordered,” Space News, March 11–17, 1991, p. 7

    Google Scholar 

  380. “OSC Reviews Seastar Design,” Space News, Oct. 28 — Nov. 3, 1991, p. 22

    Google Scholar 

  381. “System Concept for Wide-Field-Of View Observations of Ocean Phenomena from Space,” NASA-NOAA-Eosat publication, 1987

    Google Scholar 

  382. H. v.d. Piepen, V. Amman, R. Doerffer, “Remote Sensing of Substances in Water,” GeoJournal 24.1, pp. 24–27, 1991 (May) by Kluwer Academic Publishers

    Google Scholar 

  383. “Roles and Responsibilities of HRPT Stations for SeaWiFS,” SeaWiFS Project Office, GSFC, Dec. 19, 1991

    Google Scholar 

  384. S. D. Holland, “The NASA Electronic Still Camera System,” IEEE IGARSS’92 Volume I, pp. 149–151

    Google Scholar 

  385. D. L. Amsbury, J. M. Bremer, “Recent Developments in Space Shuttle Remote Sensing, using hand-held Film Cameras,” IGARSS’92, Volume I, pp. 152–154

    Google Scholar 

  386. S. G. Ackleson, D. E. Pitts, “Global Distribution of hand-held Photographs of Ocean and Coastal Regions Taken during Space Shuttle Missions, 1981–1991,” IEEE IGARSS’92 Volume II, pp. 1550–1552

    Google Scholar 

  387. R. M. Nelson, K. J. Willis, W. J. Daley, F. R. Brumbaugh, J. M. Bremer, “Cataloging and Indexing — The Development of the Space Shuttle Mission Data Base and Catalogs from Earth Observations hand-held Photography,” IEEE IGARSS’92 Volume I, pp. 155–157

    Google Scholar 

  388. Manual of Remote Sensing, Second Edition, American Society of Photogrammetry, 1983, pp. 1707–1710

    Google Scholar 

  389. H. v.d. Piepen, V. Amann, H. Helbig, HH. Kim, W. Hart, et al. “The Promise of Remote Sensing,” IEEE paper presented at IGARSS’82, June 1–4, Munich

    Google Scholar 

  390. “X-Band Synthetic Aperture Radar (X-SAR) and its Shuttle-Borne Application for Experiments,” paper by Herwig Öttl and Francesco Valdoni

    Google Scholar 

  391. R.L. Jordan, B. L. Huneycutt, M. Werner, “The SIR-C/X-SAR Synthetic Aperture Radar System,” Proceedings of the IEEE, Vol. 79, No. 6, June 1991, pp. 827–838

    Google Scholar 

  392. Special Issue on SIR-C/X-SAR, IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, July 1995

    Google Scholar 

  393. “Skylab,” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 117–122

    Google Scholar 

  394. P. Slater, “Remote Sensing,” Optics and Electronics Systems, Addison-Wesley Publishing Co., 1980, pp. 456–462

    Google Scholar 

  395. J. R. Cowley, G. M. Lawrence, “Earth Limb Altitude Determination for the Solar Mesosphere Explorer,” AIAA-83–0429

    Google Scholar 

  396. Ch. Barth, “Solar Mesosphere Explorer to Study Ozone,” Nature, Volume 293, Sept. 24, 1981

    Google Scholar 

  397. J. R. Stuart, K. A. Gause, “Solar Mesosphere Explorer Mission,” AIAA paper, 17th Aerospace Sciences Meeting, Jan. 15–17, 1979,

    Google Scholar 

  398. “Solar Mesosphere Explorer — Experiment Description,” LASP paper, University of Colorado at Boulder

    Google Scholar 

  399. “Solar Mesosphere Explorer — Scientific Data & Publications,” Final Report, LASP, December 1989

    Google Scholar 

  400. S. P. Maran, B. E. Woodgate, “A Second Chance for Solar Max,” Sky & Telescope, June 1984, pp. 498–500

    Google Scholar 

  401. A. Chaikin, “Solar Max: Back from the Edge,” Sky & Telescope, June 1984, pp. 494–497

    Google Scholar 

  402. “NASA’s Solar Maximum Mission: A Look at the New Sun,” June 1987, NASA brochure, edited by J. B. Gurman

    Google Scholar 

  403. “The Solar Maximum Mission Experiments,” Solar Physics, Volume 65, pp. 5–109

    Google Scholar 

  404. R. C. Willson, S. Gulkis, M. Janssen, S. H. Hudson, G. A. Chapman, “Observations of Solar Irradiance Variability,” Science, Volume 211, Feb. 1981, pp. 700–702

    Google Scholar 

  405. A. C. Aikin, W. Henze, D. J. Kendig, R. Nakatsuka, H. J. P. Smith, “Variations of Mesospheric Equatorial Ozone as observed by the Solar Maximum Mission,” Geophysical Research Letters, Vol. 17, No. 3, March 1990, pp. 299–300

    Google Scholar 

  406. P. Lo Galbo, M. Bouffard, “SOHO — A Cooperative Scientific Mission to the Sun,” ESA Bulletin, Aug. 1992, pp. 21–25

    Google Scholar 

  407. “The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science,” ESA SP-1107, November 1990, pp. 21–24

    Google Scholar 

  408. J. Credland, F. Felici, M. Grensemann, J. A. Steinz, “Three Missions, Three Launches, Six Spacecraft for Science in 1995,” ESA-Bulletin, No. 82, May 1995, pp. 36–47

    Google Scholar 

  409. The SOHO Mission — Scientific and Technical Aspects of the Instruments, ESA SP-1104, ISSN 0379–6566, Nov. 1988

    Google Scholar 

  410. F. Felici, F. C. Vandenbussche, C. Berner, R. Thomas, W. Worrall, et al., Special Section of the SOHO project, spacecraft, payload, and operations in ESA Bulletin No. 84, Nov. 1995, pp. 81–112

    Google Scholar 

  411. “The SOLAR-A Mission,” The Solar-Terrestrial Science Project of the Inter-Agency Consultative Group for Space Science, ESA SP-1107, November 1990, pp. 74–76

    Google Scholar 

  412. “Yohkoh’s Prodigious Output helps Scientists Study Sun,” Space News, June 7–13, 1993, p. 12

    Google Scholar 

  413. “Spacelab-1 Metric Camera, User Handbook and Data Catalogue,” compiled by M. Schroeder, E Suckfüll, G. Todd, and P. Lohmann of DLR, Oberpfaffenhofen, Dec. 1986

    Google Scholar 

  414. “Overview of ATMOS Results from Spacelab-3,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. 64–66

    Google Scholar 

  415. CNES viewgraphs of 1991

    Google Scholar 

  416. Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 22–23

    Google Scholar 

  417. Note: Spot-1 was retired from normal operations in Sept. 1990. Both of its recorders are defect. Spot Image wants to reactivated Spot-1 to meet increased demand for satellite imagery. See Space News Dec. 4, 1991, p. 4

    Google Scholar 

  418. R. M. Bevilacqua, et al., “Polar Stratospheric Studies with the Polar Ozone and Aerosol Measurement Experiment (POAM-II),” Proceedings of the American Meteorological Society, Eighth Conference on Atmospheric Radiation, January 23–28, 1994, Nashville, TN

    Google Scholar 

  419. F. Achard, J. P. Malingreau, T. Phulpin, G. Saint, B. Saugier, B. Segun, D. Vidal-Madjar, “The Vegetation Instrument on Board SPOT-4 — A Mission for Global Monitoring of the Continental Biosphere,” LERTS brochure, Toulouse, 1990

    Google Scholar 

  420. Information provided by T. Gentet of CNES, Toulouse

    Google Scholar 

  421. A. Ammar, A. Baudoin, D. Assemat, M. Arnaud, “The SPOT Programme, An Operational Earth Observation System,” Proceedings 45th Congress of the International Astronautical Federation, October 9–14, 1994, Israel

    Google Scholar 

  422. “Calibration of Long Term Satellite Ozone Data Sets Using the Space Shuttle,” E. Hilsenrath, in Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Vol. 4, pp. 409–412

    Google Scholar 

  423. Information provided by E. Hilsenrath of NASA/GSFC, Greenbelt, MD

    Google Scholar 

  424. M. Lefebvre, “Stella,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 25–32

    Google Scholar 

  425. Information provided by A. B. Renshaw of STARSYS

    Google Scholar 

  426. A. Kaveeshwar, “The STARSYS Data Messaging and Geopositioning System,” International Journal of Satellite Communications, Vol. 12, 1994, pp. 63–69

    Google Scholar 

  427. Information provided by S. C. Solomon, University of Colorado at Boulder

    Google Scholar 

  428. S. C. Solomon, et al., “The Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995

    Google Scholar 

  429. S. M. Bailey, et al., “Science Instrumentation for the Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995

    Google Scholar 

  430. Information provided by S. Chakrabarti of Boston University, Boston, MA

    Google Scholar 

  431. D. M. Cotton, et al., “A single-element imaging spectrograph,” Applied Optics, Vol. 33, 1994, p. 1958

    Google Scholar 

  432. J. S. Vickers, et al., “Gas ionization solar spectral monitor (GISSMO),” Optical Engineering, Vol. 32, 1993, p. 3126

    Google Scholar 

  433. Information provided by D. Forrest of the University of New Hampshire at Durham

    Google Scholar 

  434. “Telespazio Readies Temisat Satellite for Summer Launch,” Space News, April 19–25, p. 24

    Google Scholar 

  435. “Temisat,” Kayser Threde paper

    Google Scholar 

  436. “Blackbird: A Family of Microsatellites for Communications and Remote Sensing,” Kayser Threde brochure

    Google Scholar 

  437. Information provided by G. E. Cameron and by K. J. Heffernan of JHU/APL

    Google Scholar 

  438. Note: Codacon = Anode with position location coded to 2n (in the case of SEE, n=10)

    Google Scholar 

  439. “Predicted Topex Positioning Accuracy with Differential GPS Techniques,” presented at, and published in the ‘Proceedings of the first International Symposium on Precise Orbit Positioning with GPS’ April 15, 1985

    Google Scholar 

  440. Lee-Lueng Fu, M. Lefebvre, “TOPEX/Poseidon: Precise Measurement of Sea Level From Space,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Missions, June 1989, pp. 51–54

    Google Scholar 

  441. ‘Currents’ — the JPL Topex/Poseidon Newsletter, March 1990, Issue 1

    Google Scholar 

  442. Topex/Poseidon Science Investigation Plan, NASA (Document Resource Facility), Sept. 1, 1991

    Google Scholar 

  443. Ch. A. Yamarone, et al., “TOPEX/Poseidon Mission Global Measurements of Sea Level at Unprecedented Accuracy,” 45th Congress of the International Astronautical Federation, Oct. 9–14, 1994, Jerusalem

    Google Scholar 

  444. ‘Topex-Poseidon Partners Discuss Sequel’, Space News, Aug. 17–23, 1992, p. 3

    Google Scholar 

  445. TOPEX/Poseidon Internet homepage

    Google Scholar 

  446. “Other Satellite-Based Microwave Systems,” Lecture Notes in Earth Sciences — The Interdisciplinary Role of Space Geodesy, Springer Verlag I. Mueller, S. Zerbini, chap. 5, p. 161

    Google Scholar 

  447. DORIS — Precision Satellite-Based Orbit Determination, CNES brochure

    Google Scholar 

  448. A. Ratier, et al., “TOPEX/Poseidon Follow-On: A Small-Satellite Programme for the Monitoring of Wind, Sea State, Ocean Circulation and Mean Sea Level,” in Small Satellites for Remote Sensing, Space Congress, Bremen, Germany, May 24–25, 1995, European Space Report, Munich, Germany, pp. 21–32

    Google Scholar 

  449. T. D. Tarbell, M. Brimer, B. Jurcevich, J. Lernen, K. Strong, A. Title, J. Wolfson, L. Gloub, R. Fisher, “The Transition Region and Coronal Explorer,” Proc. of the Third SOHO Workshop, Estes Park, CO, September 26–29, 1994, pp. 375–384

    Google Scholar 

  450. TRACE www page of GSFC and of Lockheed

    Google Scholar 

  451. “The Early Observing System Reference Handbook, ESAD Missions 1990–1997,” NASA/GSFC, pp. 62–64

    Google Scholar 

  452. T. Keating,T. Ryan, “Tropical Rainfall Measuring Mission (TRMM): US/Japan Science Operations,” AIAA-92–0594

    Google Scholar 

  453. T. Kozu, M. Kojima, K. Oikawa, K. Okamoto, T. Ihara, T. Manabe, “Development Status of Rain Radar for Tropical Rainfall Measuring Mission,” IEEE IGARSS’92, Volume II, pp. 1722–1724

    Google Scholar 

  454. NASA paper provided by ESAD and OSSA.

    Google Scholar 

  455. T. Kozu, et al., “TRMM Precipitation Radar: Calibration and Data Collection Strategies,” Proceedings of IGARSS’94, Volume IV, pp. 2215–2217

    Google Scholar 

  456. EOS Reference Handbook, NASA/GSFC, 1993

    Google Scholar 

  457. Courtesy of K. Maeda, NASDA

    Google Scholar 

  458. Information provided by U. Renner of TUB

    Google Scholar 

  459. “UARS Seen as Earth Observing System’s Dress Rehearsal,” Space News September 9–15, 1991, p. 24

    Google Scholar 

  460. Portion of a UARS publication put out by NASA (provided by B. Needham of NOAA)

    Google Scholar 

  461. “Upper Atmosphere Research Satellite,’ Summaries of papers presented at the Optical Remote Sensing of the Atmosphere Topical Meeting, Feb. 12–15, 1990, Optical Society of America, Volume 4, pp. 1–22

    Google Scholar 

  462. “Wind Imaging Interferometer (WINDII) for the UARS Mission,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. PD3–1 to 4

    Google Scholar 

  463. “Windii To Read Upper Atmosphere In Depth,” Space News September 16–22, 1991, p. 8

    Google Scholar 

  464. ESA Bulletin No. 63, August 1990, Special Issue on Ulysses

    Google Scholar 

  465. N. Angold, et al., “Ulysses Operations at Jupiter — Planning the Unknown,” ESA Bulletin No. 72, November 1992, pp. 44–51

    Google Scholar 

  466. R. G. Marsden, K. P. Wenzel, “The Ulysses Jupiter Flyby — The Scientific Results,” ESA Bulletin No. 72, November 1992, pp. 52–59

    Google Scholar 

  467. R. G. Marsden, “Ulysses Explores the South Pole of the Sun,” ESA Bulletin No. 82, May 1995, pp. 48–55

    Google Scholar 

  468. K. P. Wenzel, et al., “The Ulysses Mission,” Astronomy and Astrophysics, Supplement Series, Vol. 92, January 1992, pp. 207–219

    Google Scholar 

  469. Information provided by E. Milton and M. Fouquet of SSTL

    Google Scholar 

  470. URL address — http://www.ee.surrey.ac.uk/CSER/UOSAT

    Google Scholar 

  471. J. W. Ward, “Microsatellites for global electronic mail networks,” Electronics and Communications Engineering Journal, December 1991, Vol. 3, No. 6, pp. 267–272

    Google Scholar 

  472. J. W. Ward, H. E. Price, “The UoSAT-2 Digital Communications Experiment,” Journal of the Institute of Electronic and Radio Engineers, 1986

    Google Scholar 

  473. UoSAT internet home page

    Google Scholar 

  474. UoSAT-1: Special issue of The IERE Journal, Vol. 52, No. 8/9, August 1982

    Google Scholar 

  475. J. M. Radbone, “The UoSAT-2 Spacecraft CCD Imaging and Digital Store/Read-out Experiments,” The IERE Journal, Vol. 57, No. 5, September 1987, ISSN 0267–1689

    Google Scholar 

  476. M. N. Sweeting, “UoSAT microsatellite missions,” Electronics & Communication Engineering Journal, IEE, June 1992

    Google Scholar 

  477. M. N. Allery, J. J. Sellers, M. N. Sweeting, “Results of University of Surrey on-orbit microsatellite experiments,” Proceedings of the International Symposium on Small Satellite Systems and Services, Biarritz, France, June 27–30, 1994

    Google Scholar 

  478. M. Fouquet, “The UoSAT-5 Earth Imaging System — in-orbit results,” 2nd Conference on Small Satellite Technologies and Applications, SPIE Symposium on Aerospace Sensing, Orlando, FL, April 20–22, 1992

    Google Scholar 

  479. Information provided by J. Radbone of SSTL, University of Surrey, UK

    Google Scholar 

  480. “First PoSAT images,” Space, Vol. 9, No. 9, December 1993, p. 6

    Google Scholar 

  481. M. Fouquet, A. Brewer, “The Role of Microsatellites for Earth Observation, Eight years of orbital experience at the University of Surrey,” in Small Satellites for Remote Sensing, Proceedings of Space Congress, Bremen, Germany, May 24–25, 1995, pp. 133–144

    Google Scholar 

  482. SK Yoo, et al., “The KITSAT-2 CCD Earth Imaging Experiment,” Proceedings of SPIE Conference on Small Satellite Technology and Applications IV, Vol. 2317, Rome, September 1994

    Google Scholar 

  483. B. Hultqvist, “The Swedish Satellite Project Viking,” Journal of Geophysical Research, Vol. 95, No. A5„ May 1, 1990, pp. 5749–5752

    Google Scholar 

  484. B. Hultqvist, “The Viking Project,” Geophysical Research Letters, Volume 14, No. 4, April 1987, pp. 379–382

    Google Scholar 

  485. “The Viking Program,” EOS Transactions, American Geophysical Union, Volume 67, No. 42, Oct. 21, 1986, pp. 793–795

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (1996). Survey of Spaceborne Missions and Sensors. In: Kramer, H.J. (eds) Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97678-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97678-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97680-3

  • Online ISBN: 978-3-642-97678-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics