Skip to main content

Rheological Materials

  • Chapter
  • 305 Accesses

Abstract

In ordinary incompressible fluids the flow and transport phenomena are fairly well described by Newton’s linear constitutive equation

$$P=pU+{{p}^{\nu }}$$

with

$${{p}^{\nu }}=-2\eta V$$
(7.1)

η is the viscosity, which may depend on the temperature and the pressure, but not on the velocity gradient. However, it has been observed that there exists a wide class of materials, such as polymers, soap solutions, some honeys, asphalts, and physiological fluids, that fail to obey the linear Newton law (7.1): these materials are generally referred to as viscoelastic materials. They behave as fluids with a behaviour reminiscent of solids by exhibiting elastic effects. In ordinary fluids, the relaxation of the pressure tensor is very short, in elastic bodies it is infinite so that no relaxation is observed: viscoelastic materials are characterized by relaxation times between these two limits. Materials with the above property are also called non-Newtonian in the technical literature. The terms “viscoelastic” and “non-Newtonian” are used rather loosely; here we shall reserve the term “non-Newtonian” for any material described by a non-linear constitutive relation between the pressure tensor and the velocity gradient tensor, and the term “linear viscoelastic” will be used for systems exhibiting both viscous and elastic effects in the linear regime and described by material coefficients which are independent of the velocity gradient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Meixner, Z. Naturforsch. 4a (1943) 594;

    Google Scholar 

  2. J. Meixner, Z. Naturforsch. 9a (1954) 654.

    Google Scholar 

  3. G. Kluitenberg, Plasticity and Non-equilibrium Thermodynamics (CISM Course 281 ), Springer, Wien, 1984;

    Google Scholar 

  4. G. Kluitenberg in Non-equilibrium Thermodynamics, Variational Techniques and Stability (R. Donnelly, R. Hermann, and I. Prigogine, eds.), University of Chicago Press, Chicago, 1966.

    Google Scholar 

  5. J. Bataille and J. Kestin, J. Mécanique, 14 (1975) 365.

    Google Scholar 

  6. R. S. Rivlin and J. L. Ericksen, J. Rat. Mech. Anal. 4 (1955) 323.

    MathSciNet  MATH  Google Scholar 

  7. W. Noll, J. Rat. Mech. Anal. 4 (1955) 3.

    MATH  Google Scholar 

  8. S. Koh and C. Eringen, Int. J. Engn. Sci. 1 (1963) 199.

    Article  MathSciNet  Google Scholar 

  9. B. D. Coleman, H. Markowitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids, Springer, New York, 1966.

    Google Scholar 

  10. R. R. Huilgol and N. Phan-Thien, Int. J. Engn. Sci. 24 (1986) 161.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Palumbo and G. Valenti, J. Non-Equilib. Thennodyn. 10 (1985) 209;

    Article  ADS  MATH  Google Scholar 

  12. G. Valenti, Physica A 144 (1987) 211.

    Google Scholar 

  13. M. López de Haro, L. Castillo, and R. Rodriguez, Rheol. Acta 25 (1986) 207. 7. 11.

    Google Scholar 

  14. B. C. Eu, J. Chem. Phys. 82 (1985) 4683.

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Lebon, C. Pérez-Garcia, and J. Casas-Vazquez, Physica 137 A (1986) 531.

    Google Scholar 

  16. G. Lebon, C. Pérez-Garcfa, and J. Casas-Vazquez, J. Chem. Phys. 88 (1988) 5068;

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Lebon and J. Casas-Vazquez, htt. J. Thermophys. 9 (1988) 1003.

    Article  ADS  Google Scholar 

  18. G. Lebon and A. Cloot, J. Non-Newtonian Fluid Mech. 28 (1988) 61.

    Article  MATH  Google Scholar 

  19. P. E. Rouse, J. Chem. Phys. 21 (1953) 1272;

    Google Scholar 

  20. B. H. Zimm, J. Chem. Phys. 24 (1956) 269.

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Giesekus, J. Non-Newtonian Fluid Mech. 11 (1982) 69.

    Article  MATH  Google Scholar 

  22. A. S. Lodge, Elastic Liquids, Academic Press, New York, 1964.

    Google Scholar 

  23. J. D. Ferry, Viscoelastic Properties of Polymers (3rd edn), Wiley, New York, 1980. 7. 19.

    Google Scholar 

  24. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.

    Google Scholar 

  25. P. J. Carreau, Trans. Soc. Rheol. 16 (1972) 99.

    Article  Google Scholar 

  26. J. E. Dunn and R. L. Fosdick, Arch. Rat. Mech. Anal. 56 (1974) 191.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. O. Criminale, J. L. Ericksen, and G. K. Filbey, Arch. Rat. Mech. Anal. 2 (1958) 410.

    MathSciNet  Google Scholar 

  28. A. E. Green and R. S. Rivlin, Arch. Rat. Mech. Anal. 1 (1957) 1.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. G. Oldroyd, Proc. Roy. Soc. London A 245 (1958) 278.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. M. J. Crochet, A. Davies, and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam, 1984.

    MATH  Google Scholar 

  31. J. C. Maxwell, Phil. Trans. Roy. Soc. London A 157 (1867) 49.

    Article  Google Scholar 

  32. J. Lambermont and G. Lebon, hit. J. Non-linear Mech. 9 (1974) 55.

    Article  MATH  Google Scholar 

  33. R. F. Rodriguez, M. López de Haro, and O. Manero, Rheol. Acta 27 (1988) 217.

    MATH  Google Scholar 

  34. G. Lebon in Extended Thermodynamic Systems (P. Salamon and S. Sieniutycz, eds.), Taylor and Francis, New York, 1990.

    Google Scholar 

  35. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd edn. Vol. 1: Fluid Mechanics; R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Vol. 2: Kinetic Theory, Wiley, New York, 1987.

    Google Scholar 

  36. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford, 1986.

    Google Scholar 

  37. C. Pérez-Garcia, J. Casas-Vazquez, and G. Lebon, J. Polym. Sci (B. Polym. Phys.) 27 (1989) 1807.

    Article  ADS  Google Scholar 

  38. H. Metiu and K. Freed, J. Chem. Phys. 67 (1977) 3303.

    Article  ADS  Google Scholar 

  39. J. Camacho and D. Jou, J. Chem. Phys. 92 (1990) 1339.

    Google Scholar 

  40. I. Müller and K. Wilmanski, Rheol. Acta 25 (1986) 335.

    Article  MATH  Google Scholar 

  41. I. S. Liu and I. Müller, Arch. Rat. Mech. Anal. 83 (1983) 285.

    Article  MATH  Google Scholar 

  42. H. Tanner, Engineering Rheology, Clarendon, Oxford, 1985.

    MATH  Google Scholar 

  43. R. F. Christiansen and W. R. Leppard, Trans. Soc. Rheol. 18 (1974) 65. 7. 39.

    Google Scholar 

  44. A. S. Lodge, J. Rheol. 33 (1989) 821.

    Article  ADS  Google Scholar 

  45. G. Lebon, P. Dauby, A. Palumbo, and G. Valenti, Rheol. Acta 29 (1990) 127. 7. 41.

    Google Scholar 

  46. P. C. Dauby and G. Lebon, Appl. Math. Lett. 33 (1990) 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Lebon, G. (1996). Rheological Materials. In: Extended Irreversible Thermodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97671-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97671-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60789-2

  • Online ISBN: 978-3-642-97671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics