Skip to main content

Methods for Unsteady Problems

  • Chapter

Abstract

In computing unsteady flows, we have a fourth coordinate direction to consider: time. Just as with the space coordinates, time must be discretized. We can consider the time “grid” in either the finite difference spirit, as discrete points in time, or in a finite volume view as “time volumes”. The major difference between the space and time coordinates lies in the direction of influence: whereas a force at any space location may (in elliptic problems) influence the flow anywhere else, forcing at a given instant will affect the flow only in the future — there is no backward influence. Unsteady flows are, therefore, parabolic-like in time. This means that no conditions can be imposed on the solution (except at the boundaries) at any time after the initiation of the calculation, which has a strong influence on the choice of solution strategy. To be faithful to the nature of time, essentially all solution methods advance in time in a step-by-step or “marching” manner. These methods are very similar to ones applied to initial value problems for ordinary differential equations (ODEs) so we shall give a brief review of such methods in the next section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferziger, J.H., Perić, M. (1996). Methods for Unsteady Problems. In: Computational Methods for Fluid Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97651-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97651-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59434-5

  • Online ISBN: 978-3-642-97651-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics