Advertisement

Antinozizeptiva

  • Herman Hans Waldvogel

Zusammenfassung

Die französische Physiologieschule (Jolyet, Cahours, → Bernard) untersuchte schon in der Mitte des 19. Jahrhunderts die „curarisierende“ Wirkung von Magnesiumsalzen. Intraspinales Magnesium wurde zur Therapie bei tetanusinduzierten Konvulsionen schon 1906 durch Blake u. Logan eingeführt. 1948 erschien das Buch „Magnesium Anesthesia“ von Lise Engbaek: eine kritische Auseinandersetzung, unter Einbeziehung von 192 wissenschaftlichen Arbeiten, mit dem Einsatz von Magnesiumsalzen. Magnesium wurde als der natürliche physiologische Ca++-Blocker beschrieben (Iseri u. French 1984). Die Gabe von Mg-Sulfat zum Antinozizeptionsschutz (Wirkmechanismus: u. a. Hemmung neuromuskuläre Endplatte, Vasodilatation etc.) ist in gewissen Ländern bei der Präeklampsie Routine. Heute wird der Einsatz von prä- und intraoperativem Mg-Sulfat als sog. Basisantinozizeptionsschutz diskutiert (s. Einführung; James et al. 1989; Davies u. Watkins 1977, Wilder-Smith et al. 1992). Die Gabe von 60 mg Mg-Sulfat/kg KG für Thiopentone-Succinylcholin-Induktion induzierte gegenüber der Kontrollgruppe einen signifikanten Anstieg der Herzfrequenz sowie eine signifikante Hemmung der durch den Intubationsvorgang induzierten Hyper-tensionsphase; die Serumkonzentration von Mg stieg nicht an; die relative Tachykardie interpretierten die Autoren als die durch Somjen u. Baskerville (1964) beschriebene Hemmung der Acetylcholinfreisetzung aus kardialen Vagusfasern (Jain et al. 1995)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Jayaran A, Singh P, Carp HM (1995) An enkephalinase inhibitor, SCH 32615, augments analgesia induced by surgery in mice. Anesthesiology 82: 1283–1287Google Scholar
  2. Parsons CG, Herz A (1990) Peripheral opioid receptors mediating antinociception in inflammation: evidence for activation by enkephalin-like opioid peptides after cold water swim stress. J Pharmacol Exp Ther 255: 795–802PubMedGoogle Scholar
  3. Petersen-Felix S, Zbinden AM, Fischer M et al. (1993) Isoflurane minimum alveolar concentration decreases during anesthesia and surgery. Anesthesiology 79: 959–965PubMedGoogle Scholar

Literatur

  1. Engbaek L (1948) Investigations on the course and localisation of magnesium anesthesia. A comparison with ether anesthesia. Nyt Nordisk Forlag, Arnold Busck, KopenhagenGoogle Scholar
  2. Iseri LT, French JH (1984) zit. in: Jain 1995: Nature’s physiologic calcium blocker. Am Heart J 1: 108–193Google Scholar
  3. Jain PN, Divatia JV, Manjure SS et al. (1995) Intravenous magnesium inhibits pressor response to nasotracheal intubation. J Anaesth Clin Pharmacol (New Delhi) 11: 59–62Google Scholar
  4. James MFM, Beer RE, Esser JD (1989) Intravenous magnesium sulphate inhibits catecholamine release associated with tracheal intubation. Anesth Analg 68: 771–776Google Scholar
  5. Somjen GG, Baskerville EN (1968) zit. in: Jain 1995: Effect of excess magnesium and vagal inhibition and acetylcholine sensitivity of the mammalian heart in situ and in vitro. Nature 679–680Google Scholar

Literatur

  1. Reichlin S (1983) Somatostatin. I. N Engl J Med 309: 1495–1501Google Scholar
  2. Reichlin S (1983). Somatostatin. II. N Engl J Med 309: 1556–1563Google Scholar
  3. Meynadier J, Chrubasik J, Dubar M et al. (1985) Intrathecal somatostatin in terminally ill patiens. A report of two cases. Pain 23: 9–12Google Scholar
  4. Taurà P, Planella V, Balust J et al. (1994) Epidural somatostatin as an analgesic in upper abdominal surgery: a double-blind study. Pain 59: 135–140PubMedGoogle Scholar
  5. Yaksh TL (1994) Spinal somatostatin for patients with cancer. Anesthesiology 81: 531–533PubMedGoogle Scholar

Literatur

  1. Moussaoui SM, Philippe L, LePrado N et al. (1993) Inhibition of neurogenic inflammation in the méninges by a non-peptide NK1 receptor antagonist, RP 67580. Eur J Pharmacacol 238: 421–424Google Scholar
  2. Yamamotot T, Yaksh TL (1992) Effects of intrathecal capsaicin and an NK-1 antagonist, CP, 96-345, on the thermal hyperalgesia observed following unilateral construction of the sciatic nerve in the rat. Pain 51: 329–334Google Scholar

Literatur

  1. Siehe Wirkstoffprofil im Buchteil G.Google Scholar

Literatur

  1. Bromm W, Meier W, Scharein E (1986) Imipramine reduces experimental pain. Pain 25: 245–257PubMedGoogle Scholar
  2. Devoize JL, Rigal F, Eschalier A et al.(1984) Aspects cliniques et pharmacologiques de l’effet antalgique des antidépresseurs tricycliques. Presse Méd 13: 2806–2809PubMedGoogle Scholar
  3. Liu SJ, Wang RIH (1975) Increased analgesia and alterations in distribution and metabolism of methadone by desipramine in the rat. J Pharmacol Exp Ther 195: 94PubMedGoogle Scholar
  4. Pöldinger W (1986) Zur Psychosomatik des Schmerzes. Swiss Med 8:19-20Google Scholar
  5. Ventafridda V, Ripamonti C, De Conno F et al.(1987) Antidepressants increase bioavailability of morphine in cancer patients. Lancet 1:1204Google Scholar
  6. Ventrafridda V, Bianchi M, Ripamonti C et al.(1990) Studies on the effects of antidepressant drugws on the antinociceptive action of morphine and on plasma morphine in rat and man. Pain 43:155Google Scholar
  7. Waldmeier PC (1987) Zur Pharmakologie der Antidepressiva beim chronischen Schmerz. In: Psychopharmaka bei chronischen Schmerzen, Workshop 1987; Ciba-Geigy, Geigy Pharma (Basel) Walsh TD (1983) Antidepressants in chronic pain. Clin Neuropharmacol 6/4: 271–295Google Scholar

Literatur

  1. Schmutz M (1987) Zur Pharmakologie von Antiepileptika bei chronischen Schmerzen. In: Psychopharmaka bei chronischen Schmerzen, Workshop 1987; Ciba-Geigy. Geigy Pharma, Basel Sweet WH (1986) Treatment of trigeminal neuralgia (tic douloureux). N Engl J Med 315:174Google Scholar

Literatur

  1. Dellemijn PLI, Fields HL (1994) Do benzodiazepines have a role in chronic pain management? Clinical Review. Pain 57: 137–152PubMedGoogle Scholar

Literatur

  1. Siehe Buchteil B. Kastrup J, Petersen P. Dejgaard A et al. (1987) Intravenous lidocaine infusion: a new treatment of chronic painful diabetic neuropathy? Pain 28: 69–75Google Scholar

Literatur

  1. Chabal C, Russell LC, Burchiel KJ (1989) The effect of intravenous lidocaine, tocainide, and mexiletine on spontaneously active fibers originating in rat sciat neuromas. Pain 238: 333–338Google Scholar
  2. Chabal C, Jacobson L, Mariano A et al. (1992) The use of oral mexiletine for the treatment of pain after peripheral nerve injury. Anesthesiology 76: 513–517PubMedGoogle Scholar
  3. Dejgaard A, Petersen P, Kastrup J (1988) Mexiletine for treatment of chronic painful diabetic neuropathy. Lancet 29: 9–11Google Scholar
  4. Tanelian DL, Brose WG (1991) Neuropathic pain can be relieved by drugs that are use-dependent sodium channel blockers: lidocaine, carbamazepine, and mexiletine. Anesthesiology 74: 949–951PubMedGoogle Scholar
  5. Tanelian DL, Cousins KJ (1989) Combined neurogenic and nociceptive pain in a patient with Pancoast tumor managed by epidural hydromorphone and oral carbamazepone. Pain 36: 85–88PubMedGoogle Scholar
  6. Tanelian DL, Maclver MB (1991) Analgesic concentrations of lidocaine supress tonic A-delta und C fiber discharges produced by acute injury. Anesthesiology 74: 934–936PubMedGoogle Scholar

Literatur

  1. Boersma FP, Meert TF, Ten Kate A et al. (1990) Cancer pain control by epidural sufentanil. Eur J Pain 11: 76–80Google Scholar
  2. Schaffstein W, Panijel M, Luettecke K (1990) Comparative safety and efficacy of trimebutine versus mebeverine in the treatment of irritable bowel syndrome. Curr Ther Res 47/1: 136–145Google Scholar

Literatur

  1. Adams DO, Hamilton TA (1988): Phagocytic cells: Cytotoxic activities of macrophages. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation—basic principles and clinical correlates, chap 25. Raven, New York, pp 471–491Google Scholar
  2. Barclay AN, Birkeland ML, Brown MH et al. (1993) The leucocyte antigen facts book. Academic Press, LondonGoogle Scholar
  3. Baumüller M (1994)Therapie der Distorsion des oberen Sprunggelenks mit hydrolytischen Enzymen. Praktische Sport-Traumatologie und Sportmedizin10/4: 171–178Google Scholar
  4. Callard R, Gearing A, eds. (1994) The cytokine facts book. Academic Press, San DiegoGoogle Scholar
  5. Desser L, Rehberger A, Kokron E et al. (1993) Cytokine synthesis in human peripheral blood mononuclear cells after oral administration of polyenzyme preparations. Oncology 50: 403–407PubMedGoogle Scholar
  6. Desser L, Kokron E, Rehberger A (1992) Tumor necrosis factor (TNF), Interleukin-1 (IL-1) and Interleukin-6 (IL6) synthesis in human peripheral blood mononuclear cells (PBMNC) induced by proteolytic enzymes and amylase in vitro an in vivo. J Cancer Res Clin Oncol 118Google Scholar
  7. Desser L, Rehberger A (1990) Induction of tumor necrosis factor in human peripheral-blood mononuclear cells by proteolytic enzymes. Oncology 47: 475–477PubMedGoogle Scholar
  8. Doenicke A, Hoernecke R (1993) Wirksame Behandlung von Traumen mit Schwellung und/oder Hämatom im Eishockeysport durch Enzymtherapie. Deutsche Zeitschrift Sportmedizin 5: 214–219Google Scholar
  9. Eimeren W van, Biehl G, Tuluweit K (1994) Therapie traumatisch verursachter Schwellungen. Thieme, StuttgartGoogle Scholar
  10. Emancipator SN, Gallo GR (1983) IgA-immune complex renal disease induced by mucosal immunization. Ann NY Acad Sci 409: 171–176PubMedGoogle Scholar
  11. Emancipator SN, Lamm ME (1989) Enzyme therapy of experimental glomerulonephritis. Curr Ther Nephrology 1: 11–16Google Scholar
  12. Emeis JJ, Brouwer A, Barelds J. et al. (1992) On the fibrinolytic system in aged rats, and its reactivity to endotoxin and cytokines. Thrombosis Haemostasis 67/6: 697–701Google Scholar
  13. Erdmann FC, Schulze S, Rimpler M (1994) Bedeutung der endogenen Lektine im Metastasierungsprozeß—ihre Beeinflußbarkeit durch proteolytische Enzyme. Erfahrungsheilkd 2: 58–62Google Scholar
  14. Ernst E (1986) Hämorheologie für den Praktiker. Zuckerschwerdt, MünchenGoogle Scholar
  15. Ernst E (1993) The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis 100: 1–12PubMedGoogle Scholar
  16. Ernst E (1994) Orale Therapie mit proteolytischen Enzymen: Effekte auf hämorheologische Parameter. Perfusion 7(12): 440–441Google Scholar
  17. Garbin F, Harrach T, Eckert K et al. (1994) Bromelain proteinase F9 augments human lymphocyte-mediated growth inhibition of various tumor cells in vitro. Int J Oncology 5: 197–203Google Scholar
  18. Gardner MLG, Steffens KJ, eds. (1995) Absorption of orally administered enzymes. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  19. Gräfenstein K (1994) Klinische Rheumatologie—Diagnostik, Klinik, Behandlung. Unter Mitarbeit von Altus RE, Geidel H, Nagel WD; 2. Aufl. Ecomed, Landsberg, München, ZürichGoogle Scholar
  20. Guggenbichler JP (1988) Einfluß hydrolytischer Enzyme auf die Thrombenbildung und Thrombolyse. Med. Welt 39: 277Google Scholar
  21. Hale L P, Haynes BF (1992) Bromelain treatment of human T-cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules and markedly enhances CD2-mediated T-cell activation. J Immunology 149(12): 3809–3816Google Scholar
  22. Harrach T, Gebauer F, Eckert K et al. (1994) Bromelain proteinases modulate the CD44 expression on human Molt 4/8 leukemia and SK-Mel 28 melanoma cells in vitro.Int J Oncology 5: 485–488Google Scholar
  23. Hellström I, Hellström KE (1970) Colony inhibition studies on blocking and non-blocking serum effects on cellular immunity to Moloney sarcomas. Int J Cancer 5:195Google Scholar
  24. James K (1980) Alpha2 macroglobulin and its possible importance in immune systems. TIBS 5: 43–47Google Scholar
  25. James K (1990) Interactions between cytokines and a2-macroglobulin. Immunology Today 11: 163–166PubMedGoogle Scholar
  26. Jutila MA, Kishimoto TK, Finken M. (1991) Low-dose chymotrypsin treatment inhibits neutrophil migration into sites of inflammation in vivo: effects on Mac-1 and MEL-14 adhesion protein expression and function. Cell Immunology 132: 201–214Google Scholar
  27. Kabacoff BL, Wohlman A, Umhey M et al. (1963) Absorption of chymotrypsin from the intestinal tract. Nature 199: 815PubMedGoogle Scholar
  28. Kleine MW, Kunze R (1993) Kinetic of proteolytic enzyme activity of serum in a controlled randomized double blind study. Abstr. 2nd International Congress on Biological Response Modifiers, San Diego/CAGoogle Scholar
  29. Kleine MW, Pabst H (1988) Die Wirkung einer oralen Enzymtherapie auf experimentell erzeugte Hämatome. Forum Prakt Allgemeinarzt 27: 42Google Scholar
  30. Kreis T, Vale R, eds.(1993) Guidebook to the Extracellular Matrix and Adhesion Proteins. Oxford Univ Press, New YorkGoogle Scholar
  31. LaMarre J, Wollenberg GK, Gonias SL et al. (1991) Cytokine binding and clearance properties of proteinase-activated a2-makroglobulin. Laboratory Investigation 65: 3–14PubMedGoogle Scholar
  32. Leskovar P, Zanon R, Nachbar F et al. (1993) Die negative Rolle von Immunkomplexen auf die Immunregulation. Rheuma 13Google Scholar
  33. Matthews DM (1977) Protein absorption—then and now. Gastroenterology 73: 1267–1279PubMedGoogle Scholar
  34. Matthews DM (1992) Protein Absorption. Wiley-Liss, New YorkGoogle Scholar
  35. Moriwaki C, Yamaguchi K, Kato T (1974) Studies on the passage of α-chymotrypsin across the intestine. III. Quantitation of a-chymotrypsin in the mesenteric perfusate by single radial immunodiffusion. Chem Pharm Bull 22(8): 1929–1932PubMedGoogle Scholar
  36. Moriwaki C, Yamaguchi K, Moriya H (1974) Studies on the passage of a-chymotrypsin across the intestine. II. Enzymic activity and radioactive macromolecule recovered in the mesenteric perfusate. Chem Pharm Bull (Tokyo) 22(5): 1029–1034Google Scholar
  37. Moriya H, Moriwaki C, Akimoto S et al. (1967) Studies on the passage of a-chymotrypsin across the intestine. Chem Pharm Bull (Tokyo) 15:1662Google Scholar
  38. Munzig E, Eckert K, Harrach T et al. (1994) Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells. FEBS Lett 351: 215–218PubMedGoogle Scholar
  39. Pigott R, Power C, eds.(1993) The Adhesion Molecules Facts Book. Academic Press, San DiegoGoogle Scholar
  40. Rahn HD (1994) Begleitende Therapie durch hydrolytische Enzyme bei arthroskopischer Meniskusresektion. Prakt Sport-Traumatol Sportmed 10(3): 123–127Google Scholar
  41. Rahn HD (1994) Meniskusoperation—Ermöglichen hydrolytische Enzyme eine frühere funktioneile Nachbehandlung? Prakt Sport-Traumatol Sportmed 10/1: 22–27Google Scholar
  42. Rimpler M (1990) Wirkung von Proteasen im Krebsgeschehen. Biol Med 4: 221–231Google Scholar
  43. Rokitansky O, Stauder G, Streichhan P (1993) Enzymtherapie als prä-und postoperatives Adjuvans bei der Brustkrebsbehandlung. Dtsch Zeitschr Onkol. 25: 130–136Google Scholar
  44. Steffen C, Smolen J, Miehlke K et al. (1985) Enzymtherapie im Vergleich mit Immunkomplexbestimmungen bei chronischer Polyarthritis. Zeitschr Rheumatol 44:51Google Scholar
  45. Steffen C, Menzel J (1983) Enzymabbau von Immunkomplexen. Zeitschr Rheumatol. 42: 249Google Scholar
  46. Steffen C, Menzel J (1985) Grundlagenuntersuchung zur Enzymtherapie bei Immunkomplexen. Wiener Klin Wochenschr 97:376Google Scholar
  47. Steffen C, Menzel J (1987) In-vivo-Abbau von Immunkomplexen in der Niere durch oral applizierte Enzyme. Wiener Klin Wochenschr 99:525Google Scholar
  48. Steffen C, Zeitlhofer J, Menzel J et al. (1979) Die antigen-induzierte experimentelle Arthritis als Prüfverfahren für Entzündungshemmung durch oral applizierte Substanzen. Zeitschr Rheumatol 38: 264Google Scholar
  49. Trevani AS, Andonegui GA, Isturiz A. et al. (1994) Effect of proteolytic enzymes on neutrophil FcgRII activity. Immunology 82: 632–637PubMedGoogle Scholar
  50. Uster S, Erdmann FC, Rimpler M (1994) Influence of protease treatment on the adhesiveness of tumor cells to extracellular matrix components. Forsch Komplementärmed 2: 24–30Google Scholar
  51. Waldvogel HH (1995) Antiemetische Therapie—Nausea und Emesis. Thieme (Stuttgart), S 113–114Google Scholar
  52. Wegner CD (1994) Adhesion Molecules. Academic Press, San DiegoGoogle Scholar
  53. Winkler FC, Rimpler M (1989) Einfluß von Proteasen auf Tumorzelloberflächen. In: Matrixforschung in der Präventivmedizin (Heine H, Hrsg.) G. Fischer, Stuttgart, S103–107Google Scholar
  54. Winkler FC, Schulze S, Rimpler M (1992) Einfluß proteolytischer Enzyme auf das Bindungsverhaltung von Tumorzellen gegenüber Lektinen. Med Organica 16: 68–73Google Scholar
  55. Ziegler R (1994) Enzymtherapie im Sport. Sport Med 6/6: 1–8Google Scholar

Literatur

  1. Bruera A, Roca E, Cedaro L et al. (1985) Action of oral methylprednisolone in terminal cancer patients: A prospective randomized double-blind study. Cancer Treat Rep 69:751Google Scholar
  2. Delia Cuna GR, Pelligrine A, Piazzi M (1989) Effect of methylprednisolone sodium succinate on quality of life in preterminal cancer patients: A placebo-controlled, multicenter study. Eur J Canc Clin Oncol 25:1817Google Scholar
  3. Edmeads J (1988) Emergency management of headache. Headache 28: 675–679PubMedGoogle Scholar
  4. Gallagher RM (1986) Emergency treatment of intractable migraine. Headache 26: 74–75PubMedGoogle Scholar
  5. Gilbert RW, Kim HJ, Posner JB (1978) Epidural spinal cord compression from metastatic tumor. Diagnosis and treatment. Ann Neurology 3:40Google Scholar
  6. Griffin TC, McIntire D, Buchanan GR (1994) High-dose intravenous methylprednisolone therapy for pain in children and adolescents with sickle cell disease. N Engl J Med 330: 733–737PubMedGoogle Scholar
  7. Moertel C, Shutte A, Reitemeir R et al. (1974) Corticosteroid therapy in pre-terminal gastro-intestinal cancer. Cancer 33:1607PubMedGoogle Scholar
  8. Popiela T, Lucchi R, Giongo F (1989) Methylprednisolone as palliative therapy for female terminal cancer patients. Eur J Canc Clin Oncol 25:1823Google Scholar
  9. Shell HW (1972) Adrenal corticosteroid therapy in far advanced cancer. Geriatrics 27:131Google Scholar
  10. Stiefel FC, Breitbart WS, Holland JC (1989) Corticosteroids in cancer: Neuropsychiatric complications. Cancer Invest 7: 479PubMedGoogle Scholar

Literatur

  1. Baum BJ, Bodmer L, Fox PC et al. (1985) Therapy-induced dysfunction of salivary glands: implications for oral health. Spec Care Dent 5: 274–277Google Scholar
  2. Dreizen S, Brown LR, Daly TE et al. (1977) Prevention of xerostomia-related dental caries in irradiated cancer patients. J Dent Res 56: 99–104PubMedGoogle Scholar
  3. Duxbury AJ, Thakker NS, Wastell DG (1989) A double-blind cross-over trial of a mucin-containing artificial saliva. Br Dent J 166: 115–120PubMedGoogle Scholar
  4. Fox PC, Atkinson JC, Macynski AA et al. (1991) Pilocarpine treatment of salivary gland hypofunction and dry mouth (xerostomia). Arch Intern Med 151: 1149–1152PubMedGoogle Scholar
  5. Frank RM, Herdly J, Philippe E (1965) Acquired dental defects and salivary gland lesions after irradiation for carcinoma. J Am Dent Ass 70: 868–883PubMedGoogle Scholar
  6. Greenspan D, Daniels TE (1987) Effectiveness of püocarpine in postradiation xerostomia. Cancer 59: 1123–1125PubMedGoogle Scholar
  7. Johnson JT, Ferretti GA, Nethery WJ et al. (1994) Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med 329: 390–395Google Scholar
  8. Tabak LA, Levine MJ, Mandel ID et al. (1982) Role of salivary mucins in the protection of the oral cavity. J Oral Pathol 11: 1–17PubMedGoogle Scholar
  9. Vissink A, Schaub RM, van Rijn LJ et al. (1987) The efficacy of mucin-containing artificial saliva in alleviating symptoms of xerostomia. Gerodontoloy 6: 95–101Google Scholar

Literatur

  1. Waldvogel HH (1995) Antiemetische Therapie. Nausea und Emesis. Thieme Stuttgart (Übersicht)Google Scholar

Literatur

  1. Pescatori M (1987) Effect of cisapride on clinical parameters of postoperative ileus. Progr Med 43: 105–110Google Scholar
  2. Rowbotham DJ (1989) Cisapride and anaesthesia. Br J Anaesth 62: 121–123PubMedGoogle Scholar
  3. Van Rooy F, Creve U, Verlinden M et al. (1988) Effect of cisapride on post-cholecystectomy upper gastrointestinal transit time. Int J Clin Pharmacol Ther Tox 26: 254–268Google Scholar

Literatur

  1. Richter D, Brackertz D (1989) Die Algodystrophie und ihre Therapie. Zeitschrift Rheumatologie 48(S1) 172–83Google Scholar

Literatur

  1. Forbes JA, Beaver WT, Jones KF et al. (1991) Effect of caffeine on ibuprofen analgesia in postoperative oral surgery pain. Clin Pharmacol Ther 49: 674–684PubMedGoogle Scholar
  2. Laska EM, Sunshine A, Zighelbom I et al. (1983) Effect of caffeine on acetaminophen analgesia. Clin Pharmacol Ther 33: 498–509PubMedGoogle Scholar
  3. Laska EM, Sunshine A, Mueller F et al. (1984) Caffeine as an analgesic adjuvant. JAMA 251: 1711–1718PubMedGoogle Scholar
  4. Sawynok J, Reid AR, Doak GJ (1995): Caffeine antinociception in the rat hot-plate and formalin tests and locomotor stimulation: involvement of noradrenergic mechanisms. Pain 61: 203–213PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Herman Hans Waldvogel
    • 1
  1. 1.La ForestièreSt. Paul en ChablaisFrankreich

Personalised recommendations