Advertisement

Herzkrankheiten pp 1365-1383 | Cite as

ACE-Hemmer

  • J. Allgeier
  • G. F. Hauf

Zusammenfassung

Die Entwicklung von Hemmstoffen des Angiotensin-I-Konversionsenzyms (ACE/Kininase II) und ihre Einführung in Klinik und Praxis stellen einen Meilenstein in der Ermittlung neuer therapeutischer Wirkprinzipien während der letzten Jahre medizinischer Forschung dar. Dabei ist die Entdeckung dieser Substanzklasse untrennbar verknüpft mit der Erforschung des Renin-Angiotensin-Aldosteron-Systems (RAAS). Tabelle 54.1 zeigt hierzu die wichtigsten historischen Eckdaten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Admiraal PJ, Derkx FHM, Danser AHJ et al (1990) Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15:44PubMedGoogle Scholar
  2. Allgeier J, Goetz R, Busath R et al (1991) Chronische druckpassive Dehnung erhöht die vaskuläre ACE-Aktivität bei renaler Hypertonie in Ratten. Z Kardiol 80 (Suppl):67Google Scholar
  3. Amman FW, Buhler FR, Conen D et al (1980) Captopril-associated agranulocytosis. Lancet I:150Google Scholar
  4. Antanaccio MJ, Wright JJ (1990) Reninangiotensin-system, Converting enzyme and renin inhibitors. In: Antanaccio MJ (eds) Cardiovascular pharmacology. Raven Press, New York, p 201 ffGoogle Scholar
  5. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:610Google Scholar
  6. Baker KM, Chemin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin-system involvement in pressure overload cardiac hypertrophy in rats. Am J Physiol 259:H324PubMedGoogle Scholar
  7. Berk BC, Vekshtein V, Gordon HM et al (1989) Angiotensin-II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13:305PubMedGoogle Scholar
  8. Bhoola KD, Figuera CD, Worthy K (1992) Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacological Reviews 44/1:1PubMedGoogle Scholar
  9. Bönner G, Schölkens BA, Scicli AG (1991) In: Bönner G, Schölkens BA (eds) The role of bradykinin in the cardiovascular action of the converting enzyme inhibitor ramipril. Scicli AG, Media MedicaGoogle Scholar
  10. Boutroy MJ, Vert P, Hurault de Ligny B, Milton A (1984) Captopril administration in pregnancy impaired fetal angiotensin converting enzyme activity and neonatal adaptation. Lancet II.935CrossRefGoogle Scholar
  11. Bumpus FM, Catt KJ, Chiu AT et al (1991) Nomenclature for angiotensin receptors: A report of the nomenclature committee of the Council of High Blood Pressure Research. Hypertension 17:720PubMedGoogle Scholar
  12. Campbell DJ (1985) Circulating and tissue angiotensin systems. J Clin Invest 79:1CrossRefGoogle Scholar
  13. Campbell DL (1987) The site of angiotensin production. J Hy-pertens 3:199Google Scholar
  14. Carini DJ, Duncia JV (1988) Angiotensin II blocking imidazoles. European patent application 0253310Google Scholar
  15. Coulter DM, Edwards IR (1987) Cough associated with Captopril and enalapril. Br Med J 294:1521CrossRefGoogle Scholar
  16. Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Design of competitive inhibitors of angiotensin-converting enzyme. Carboxyalkyl and mercaptoalkanoyl amino acids. Biochemistry 16:5484PubMedCrossRefGoogle Scholar
  17. Dahlöf B, Pennert K, Hanson L (1992) Reversal of left ventricular hypertrophy in hypertensive patients. Am Metaanalysis of 109 treatment studies. Am J Hypertension 9:95Google Scholar
  18. De Jong PE, De Zeeuw D (1991) Renale Wirkungen der Konversionsenzymhemmer. Dtsch med Wschr 116:743PubMedCrossRefGoogle Scholar
  19. Dickstein K, Chang P, Willenheimer R et al (1995) Comparison of the effects of losartan in patients with moderate or severe chronic heart failure. J Am Coll Cardiol 26:438PubMedCrossRefGoogle Scholar
  20. Drexler H, Hayez D, Münzel T et al (1991) Endothelial function in chronic heart failure. Am J Cardiol 69:1596CrossRefGoogle Scholar
  21. Drexler H, Lindpaintner K, Lu W et al (1989) Transient increase in the expression of cardiac angiotensinogen in a rat model of myocardial infarction and failure. Circulation 80 (Suppl 2):459Google Scholar
  22. Dubey RK, Ray A, Overbeck HW (1992) Culture of renal arteriolar smooth muscle cells: Mitogenic responses to angiotensin II. Circ Res 71:1143PubMedGoogle Scholar
  23. Duncia JV, Carini DJ, Chiu, AT et al (1992) The discovery of DUP 753, a potent, orally active non-peptide angiotensin II receptor antagonist. Med Res Rev 12:149PubMedCrossRefGoogle Scholar
  24. Dzau VJ (1984) Vascular renin-angiotensin: a possible autocrin or paracrine system in control of vascular function. J Car-diovasc Pharmacol 6:2377Google Scholar
  25. Dzau VJ (1986) Significance of the vascular renin angiotensin pathway. Hypertension 8:553PubMedGoogle Scholar
  26. Dzau VJ (1987) Vascular angiotensin pathways: a new therapeutic target. J Cardiovasc Pharmacol 10 (Suppl 7):9CrossRefGoogle Scholar
  27. Dzau VJ (1988a) Tissue renin-angiotensin systems: physiologic and pharmacologic implications. Circulation 77 (Suppl 1):1CrossRefGoogle Scholar
  28. Dzau VJ (1988b) Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77 (Suppl 1):4Google Scholar
  29. Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertension 7:933CrossRefGoogle Scholar
  30. Dzau VJ (1993) Local expression and pathophysiological role of renin-angiotensin in the blood vessels and heart. Bas Res Cardiol 88 (Suppl 1):1Google Scholar
  31. Dzau VJ, Hermann HC (1982) Hormonal control of angiotensinogen production. Life Sciences 30:577PubMedCrossRefGoogle Scholar
  32. Dzau VJ, Pratt RE (1992) Renin angiotensin system. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven Press, New York, p 1817Google Scholar
  33. Edwards CRW, Padfield PL (1985) Angiotensin-converting enzyme inhibitors: Past, present, and bright future. Lancet I:30CrossRefGoogle Scholar
  34. Erdös EG (1975) Angiotensin I converting enzyme. Circ Res 36:247PubMedGoogle Scholar
  35. Erdös EG (1990) Angiotensin I converting enzyme and the changes in our concepts through the years. Hypertension 16:363PubMedGoogle Scholar
  36. Ferreira SH (1985) History of the development of inhibitors of angiotensin I conversion. Drugs 30 (Suppl 7):1PubMedCrossRefGoogle Scholar
  37. Ferreira SH, Bartelt DC, Greene JL (1970) Isolation of bradyki-nin-potentiating peptides from bothrops jararaca venom. Biochemistry 9:2583PubMedCrossRefGoogle Scholar
  38. Finckh M, Hellmann W, Ganten D et al (1991) Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Bas Res Cardiol 86:303CrossRefGoogle Scholar
  39. Foult JM, Tavdaro O, Antony I et al (1988) Direct myocardial and coronary effects of enalaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Circulation 77:337PubMedCrossRefGoogle Scholar
  40. Gavras H, Brunner HR, Laragh JH et al (1974) An Angiotensin converting enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. New Engl J Med 291:817PubMedCrossRefGoogle Scholar
  41. Geisterfer AAT, Peach MJ, Owens GK (1988) Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749PubMedGoogle Scholar
  42. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension I: The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347PubMedCrossRefGoogle Scholar
  43. Gomez HJ, Cirillo VJ, Irvin JD (1985) Enalapril: a review of human pharmacology. Drugs 30 (Suppl 1):13PubMedCrossRefGoogle Scholar
  44. Granger JP, Hall JE (1985) Acute and chronic actions of bradykinin on renal function and arterial pressure. Am J Physiol 248:F87PubMedGoogle Scholar
  45. Gross F (1958) Renin and Hypertensin, physiologische und pat-hophysiologische Wirkstoffe. Klin Wochenschr 36:693PubMedCrossRefGoogle Scholar
  46. Hackenthal E, Aktories K, Jakobs KH (1985) Mode of inhibition of renin release by angiotensin II. J Hypertension (Suppl 3):263Google Scholar
  47. Hall JE, Brands MW (1992) The renin-angiotensin-aldosteron systems: renal mechanisms and circulatory homeostasis. In: Sedin DW, Giebisch G (eds) The kidney: Physiology and Pathophysiology. Raven Press, New YorkGoogle Scholar
  48. Hodsman GP, Isles CG, Muray GD et al (1983) Factors related to first dose hypotensive effect of Captopril: prediction and treatment. Br Med J 286:832CrossRefGoogle Scholar
  49. Hood S, Nicholls MG, Gilchrist NL (1987) Cough with angiotensin converting enzyme inhibitors. N Z Med J 100:6PubMedGoogle Scholar
  50. Hsuek WA, Baxter JD (1991) Human Prorenin. Hypertension 17:469Google Scholar
  51. Huih K, Duchin KL, Kripalani KJ et al (1991) Pharmacokinetics of fosinopril in patients with various degrees of renal function. Clin Pharmacol Therap 49:457CrossRefGoogle Scholar
  52. Iwai N, Inagama T (1992) Identification of two subtypes in the rat type-1 angiotensin II receptor. FEBS Lett 298:257PubMedCrossRefGoogle Scholar
  53. Jauch KW, Hartl W, Georgieff M et al (1988) Low-dose bradykinin infusion reduces endogenous glucose-production in surgical patients. Metabolism 37:185PubMedCrossRefGoogle Scholar
  54. Jenne DE, Tschopp J (1991) Angiotensin-II-forming heart chy-mase in a mast-cell specific enzyme. Biochem J 276: 567PubMedGoogle Scholar
  55. Katoh Y, Komuro J, Shibasaki Y et al (1989) Angiotensin II induces hypertrophy and oncogene expression in cultured rat heart myocytes. Circulation 80 (Suppl 2):450Google Scholar
  56. Keane WF et al (1989) Angiotensin converting enzyme inhibitors and progressive renal insufficiency. Ann Intern Med 111:503PubMedGoogle Scholar
  57. Klett C, Hackenthal E (1987) Induction of angiotensinogen synthesis and secretion by angiotensin II. Clin Exp Hypert A9 12:2027CrossRefGoogle Scholar
  58. Kubo SH, Rector TS, Bank AJ et al (1991) Endothelium dependent vasodilation is attenuated in patients with heart failure. Circulation 84:1589PubMedGoogle Scholar
  59. Landau C, Jacobs AK, Haudenshild CC (1992) Left ventricular hypertrophy induced by angiotensin II is accompanied by a dose-dependent fibrotic response. Circulation 86:1Google Scholar
  60. Lewis EJ, Hunsicker LG, Brain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 329:1456PubMedCrossRefGoogle Scholar
  61. Lindpaintner K, Jin M, Wilhelm MJ et al (1988) Inracardiac generation of angiotensin and its physiologic role. Circulation 77 (Suppl 1):18Google Scholar
  62. Lindpaintner K, Wilhelm MJ, Jin M et al (1987) The tissue renin-angiotensin systems: focus on the heart. J Hypertens 5 (Suppl 2)5:33CrossRefGoogle Scholar
  63. Lüscher TF (1988) Endothelial vasoactive substances and cardiovascular desease. Karger, BaselGoogle Scholar
  64. Lynch KR, Peach MJ (1991) Molecular biology of angiotensino-gen. Hypertension 17:263PubMedGoogle Scholar
  65. Mann J (1993) Pharmakokinetic von Konversionsenzym-Hem-mern. In: Bönner G, Rahn KH (eds) ACE-Hemmer-Hand-buch. Schattauer, New York, S 177Google Scholar
  66. MERCATOR Study Group (1992) Does the new angiotensin converting enzyme inhibitor Cilazapril prevent restenosis after percutaneous transluminal angioplasty? Results of the MERCATOR study: A multicenter, randomized, double-blind placebo-controlled trial. Circulation 86:100Google Scholar
  67. Murphy TJ, Alexander RW, Griendling KK et al (1991) Isolation of a cDNA encoding the vascular type-1-angiotensin II receptor. Nature 351:233PubMedCrossRefGoogle Scholar
  68. Nakaki T, Nakayama M, Kato R (1990) Inhibition by nitric oxide and nitric-oxide producing vasodilators of DNA-synthe-sis in vascular smooth muscle cells. Eur J Pharmacol 189: 347PubMedCrossRefGoogle Scholar
  69. Needlemann P, Key SL, Denny SE et al (1975) The mechanism and modification of bradykinin-induced coronary vasodilation. Proc Natl Acad USA 72:2060CrossRefGoogle Scholar
  70. Neyses et al (1989) Angiotensin II induces expression of the early growth response gene-1 in isolated adult cardiomyocytes. Circulation 80 (Suppl 2):450Google Scholar
  71. Okamura T, Miyazaki M, Inagami T et al (1986) Vascular renin-angiotensin system in two-kidney, one clip hypertensive rats. Hypertension 8:560PubMedGoogle Scholar
  72. Ondetti MA, Cushman DW (1984) Angiotensin-converting-enzyme inhibitors: biochemical properties and biological actions. Crit Rev Biochem 16:381CrossRefGoogle Scholar
  73. Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 196:441PubMedCrossRefGoogle Scholar
  74. Ondetti MA, Williams NJ, Salvo EF et al (1971) Angiotensin-converting-inhibitors from the venom of bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 10:4033PubMedCrossRefGoogle Scholar
  75. Ontkean M, Gay R, Greenberg B (1992) Effect of chronic Captopril therapy on endothelium-derived relaxing factor activity in heart afailure. J Am Coll Cardiol 19:207 AGoogle Scholar
  76. Packer M (1988) Interaction of prostaglandins and angtiotensin II in the modulation of renal function in congestive heart failure. Circulation 77 (Suppl I) 1Google Scholar
  77. Paquet JL, Baudouin-legros M, Brunelle G et al (1990) Angiotensin II induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 8:565PubMedCrossRefGoogle Scholar
  78. Patchett AA, Harris E, Tristan EW et al (1980) A new class of angiotensin-converting enzyme inhibitors. Nature 288: 280PubMedCrossRefGoogle Scholar
  79. Pfeffer JM, Pfeffer MA, Fletcher PJ et al (1991) Progressive ventricular remodelling in the rat with myocardial infarction. Am J Physiol 260:H1406PubMedGoogle Scholar
  80. Plouin PF, Tchobroutsky C (1985) Inhibition of angiotensin converting enzyme in human pregnancy. Presse Med 14:2175PubMedGoogle Scholar
  81. Powell JS, Clozel JP, Muller RKM et al (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186PubMedCrossRefGoogle Scholar
  82. Santos RAS, Brosnihan KB, Jacobsen DW et al (1992) Production of angiotensin-(1,7) by human vascular endothelium. Hypertension 19 (Suppl II):56Google Scholar
  83. Sasaki K, Yamano Y, Bardhan S et al (1991) Cloning and expression of complementary DNA encoding a bovine adrenal angiotensin II type-1-receptor. Nature 351:230PubMedCrossRefGoogle Scholar
  84. Sasamura H, Hain L, Krieger JE et al (1992) Molecular evidence for two angiotensin (AT-l)-receptor isoforms: tissue distribution and functional implications. Hypertension 20:416Google Scholar
  85. Schnerman J, Briggs JP (1992) Function of the juxtaglomerular apparatus: control of glomerular hemodynamic and renin secretion. In: Sedin DW, Giebisch G (eds) The kidney: Physiology and Pathophysiology. Raven Press, New York, S 1249Google Scholar
  86. Schölkens BA, Linz W, König W (1988) Effects of the angiotensin converting enzyme inhibitor, ramipril, in isolated ischemic rat heart are abolished by an bradykinin inhibitor. J Hypertens 6:525CrossRefGoogle Scholar
  87. Schölkens BA, Linz W, Lindpaintner K (1987) Angiotensin deteriorates but bradykinin improves cardiac function following ischemia in isolated rat hearts. J Hypertens 5 (Suppl 5):7Google Scholar
  88. Schunkert H, Dzau VJ, Tang SS et al (1991) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. J Clin Invest 86:1913CrossRefGoogle Scholar
  89. Schwartz SM, Heimark RL, Majewsky MW (1990) Developmental mechanisms underlying pathology or arteries. Physiol Rev 70:1177PubMedGoogle Scholar
  90. Sernia C, Clements JA, Funder JW (1989) Regulation of liver angiotensinogen mRNA by glucocorticoids and thyroxin. Mol Cell Endocrin 61:147CrossRefGoogle Scholar
  91. Skeggs LT, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensin converting enzyme. J Exp Med 103:295PubMedCrossRefGoogle Scholar
  92. Skeggs LT, Lenz KE, Hochstrasser H et al (1963) The purification and partial characterization of several forms of dog renin substrate. J Exp Med 118:73PubMedCrossRefGoogle Scholar
  93. Slater EE, Merill DD, Guess HA et al (1988) Clinical profile of angiooedema associated with angiotensin converting enzyme inhibition. J Am Med Ass 260:967CrossRefGoogle Scholar
  94. Stewart JM, Vavrek RJ (1986) Bradykinin competitive antagonists for classical kinin-systems. In: Greenbaum LM, Mar-golius JS (eds) Kinins IV. Plenum Press, New York, S 537Google Scholar
  95. Studer A, Vetter W (1982) Reversible leukopenia associated with angiotensin converting enzyme inhibitor M 421. Lancet I:458CrossRefGoogle Scholar
  96. Taugner R, Hackenthal E (1988) The juxtaglomerular apparatus. Springer, Berlin Heidelberg New YorkGoogle Scholar
  97. Thurau K, Schnerman J, Nagel W et al (1967) Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apperatus. Circ Res 20/21 (Suppl 2):79Google Scholar
  98. Tigerstedt R, Bergman PG (1898) Niere und Kreislauf. Skand Arch Physiol 8:223Google Scholar
  99. Timmermanns PB, Benfield P, Chiu AT et al (1992) Angiotensin II receptors and functional correlates. Am J Hypertens 5:2215Google Scholar
  100. Timmermanns PB, Wong PC, Chiu AT et al (1993) Angiotensin II receptors and angiotensin II receptor-antagonists. Pharmacol Rev 45:205Google Scholar
  101. Uhl D (1990) Mortalität bei Herzinsuffizienz. Studien zur Reduktion der Mortalität bei Herzinsuffizienz. Arzneimitteltherapie 8:174Google Scholar
  102. Unger T (1993) In: Bönner G, Rahn KH (Hrsg) ACE-Hem-mer-Handbuch. Schattauer, New York, S 75–76Google Scholar
  103. Unger TH, Schüll B, Rascher W et al (1982) Selective activation of the converting enzyme inhibitor MK-421 and comparison of its active diacid form with Captopril in different tissues of the rat. Biochem Pharmacol 19:3063CrossRefGoogle Scholar
  104. Urata H, Healy B, Stewart RW et al (1990) Angiotensin II forming pathways in normal and failing human hearts. Circ Res 66:883PubMedGoogle Scholar
  105. Wang PH, Do YS, Macoulay L et al (1991) Identification of renal cathepsin B as human prorenin processing enzyme. J Biol Chem 266:12633PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. Allgeier
  • G. F. Hauf

There are no affiliations available

Personalised recommendations