Advertisement

Mechanik des intakten Herzens

  • E. Bassenge

Zusammenfassung

Um eine adäquate Blutversorgung der Organe — je nach ihrem Aktivitätsgrad — zu gewährleisten, müssen Herzleistung und periphere Kreislauffunktionen in optimaler Weise aufeinander abgestimmt sein. Pumpaktivität des Herzens, Füllungszustand des Gefäßsystems und Gefäßtonus bzw. Wandspannungen in den einzelnen Gefäßsegmenten müssen dauernd erfaßt und gegebenenfalls berichtigt werden. Dazu steht eine breite Palette nervös-humoraler Regulationsmechanismen zur Verfügung, die fortfaufend Informationen aus Presso- und Volumenrezeptoren beziehen (Übersicht bei Gauer 1972; Koepchen 1972).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbott BC, Gordon DG (1975) A commentary on muscle mechanics. Circulat Res 360:1Google Scholar
  2. Abei RM, Reis RL (1970) Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Circulat Res 27:961Google Scholar
  3. Ahn J, Apstein CS, Hood WB (1977) Erectile properties of the left ventricle: Direct effect of coronary perfusion pressure on diastolic wall stiffness and thickness. Clin Res 25:201AGoogle Scholar
  4. Amende I, Coltart PJ, Kreayenbuehl HP, Rutishauser W (1975) Left ventricular contraction and relaxation in patients with coronary heart disease. Europ J Cardiol 3:37Google Scholar
  5. Anderson PAW, Manring AJ, Serwer GA, Benson DW et al (1979) The force-interval relationship of the left ventricle. Circulation 60:334PubMedGoogle Scholar
  6. Anrep G von (1936) Studies in cardiovascular regulation. Lane medical lectures. Stanf Univ Pubi med Sci 3:205Google Scholar
  7. Anton H, Jacob R, Kaufmann R (1969) Mechanische Reaktionen des Frosch- und Säugetiermyocards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch ges Physiol 306:33Google Scholar
  8. Arnold G, Kosche F, Miessner E, Neilzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch ges Physiol 299:339Google Scholar
  9. Bai XJ, Williams AGJ, Fan WL, Downey F (1994) Coronary pressure-flow autoregulation protects myocardium from Gregg’s phenomenon. Am J Physiol (in Vorbereitung)Google Scholar
  10. Bassenge E (1984) Physiologie der Koronardurchblutung. In: Roskamm H (Hrsg) Handbuch der inneren Medizin; Band IX/3; Koronarerkrankungen. Springer, Berlin Heidelberg New York Tokyo, S 1Google Scholar
  11. Bassenge E (1994) Coronary vasomotor responses: Role of endothelium and nitrovasodilators. Cardiovasc. Drugs and Therapie 8:601Google Scholar
  12. Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349PubMedGoogle Scholar
  13. Basenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77Google Scholar
  14. Bauer RD, Busse R (1978) The arterial system. Dynamics, control theory and regulation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Bauereisen E, Peiper U, Weigand KH (1960) Die diastolische Saugwirkung der Herzkammern. Z Kreisl-Forsch 49:195Google Scholar
  16. Bauererisen E, Hauck G, Jacob R, Peiper U (1964) Enddiastolische Druck-Volumen-Relationen und Arbeitsdiagramme des intakten Herzens im natürlichen Kreislauf. Pflügers Arch ges Physiol 281:216Google Scholar
  17. Bayliss WM (1902) On the local reactions of the arterial wall to changes in internal pressure. J Physiol (London) 28:220Google Scholar
  18. Bevegard BS, Sheperd JT (1967) Regulation of circulation during exercise. Physiol Rev 47:178PubMedGoogle Scholar
  19. Bing RJ, Hammond M, Handelsmann JC, Powers SR, Spencer F, Eckenhoff JB, Goodale WT, Hafkenschiel JM, Kety SS (1949) The measurement of coronary blood flow, oxygen consumption and efficiency,of the left ventricle in man. Am Heart J 38:1PubMedGoogle Scholar
  20. Bing OHL, Brooks WW, Messer JV (1973) Heart muscle viability following hypoxia: protective effect of acidosis. Science 1980:1297Google Scholar
  21. Blanchard EM, Solaro RJ (1984) Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circulat Res 55:382PubMedGoogle Scholar
  22. Blix M (1892) Die Länge und Spannung des Muskels. Skand Arch Physiol 3:295Google Scholar
  23. Bloom WL, Ferris EB (1956) Negative ventricular diastolic pressure in beating heart studied in vitro and vivo. Proc Soc exp Biol Med 98:451Google Scholar
  24. Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251Google Scholar
  25. Bowditch HP (1871) Über die Eigentümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber sächs ges Akad Wiss 23:652Google Scholar
  26. Brecher GA (1956) Venous return. London: Grüne & StrattonGoogle Scholar
  27. Brecher GA (1958) Critical review of recent work on ventricular diastolic suction. Circulat Res 6:554PubMedGoogle Scholar
  28. Brecher GA, Galletti PM (1963) Functional anatomy of cardiac pumping. In: Hamilton WF, Dow P (eds) Handbook of physiology, Circulation II. Washington, Am Physiol SocGoogle Scholar
  29. Bretschneider H J, Hellige G (1976) Pathophysiologie der Ventrikelkontraktion — Kontraktilität, Inotrophie, Suffizienz-grad und Arbeitsökonomie des Herzens. Verh dtsch Ges Kreisl-Forsch 42:14Google Scholar
  30. Bretschneider HJ, Cott L, Hilgert G, Pobst R, Rau G (1966) Gaschromotagraphische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh dtsch Ges Kreisl-Forsch 32:267Google Scholar
  31. Brutsaert DS, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228PubMedGoogle Scholar
  32. Chidsey CA, Kaiser GA, Sonnenblick EH, Spann JF (1964) Cardiac norepinephrine stores in experimental heart failure in the dog. J clin Invest 43:2386PubMedGoogle Scholar
  33. Cohn PF, Liedtke AJ, Serur J, Sonnenblick EH, Urschel ChW (1972) Maximal rate of pressure fall (peak, negative dP/dt) during ventricular relaxation. Cardiovasc Res 6:263PubMedGoogle Scholar
  34. Cranefield PF (1965) The present status of paired pulse stimulation and post-extrasystolic potentiation in the heart. Bull NY Acad Med 41:736Google Scholar
  35. Doll E, Keul J, Steim H, Maiwald Ch, Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens. II. Sauerstoff-und Kohlensäuredruck, pH, Standardbicarbonat und base excess im coronarvenösen Blut in Ruhe, während und nach körperlicher Arbeit. Pflügers Arch ges Physiol 282:28Google Scholar
  36. Eichhorn P, Grimm J, Koch R, Hess OM, Carroll J, Krayenbühl HP (1982) Left ventricular relaxation in patients with left ventricular hypertrophy secondary to aortic valve disease. Circulation 65:1395PubMedGoogle Scholar
  37. Feigl EO (1967) Sympathetic control of coronary circulation. Circulat Res 20:262PubMedGoogle Scholar
  38. Feigl EO (1975) Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circulat Res 37:88PubMedGoogle Scholar
  39. Feldmann MD, Gwathmey JK, Philips P, Schoen F, Morgan JP (1988) Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure. J Appi Cardiol 3:273Google Scholar
  40. Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370Google Scholar
  41. Franklin DL, Schlegel W, Rushmer RF (1961) Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134:564PubMedGoogle Scholar
  42. Frederiksen JW, Weiss HL, Weisfeldt ML (1978) Time constant of isovolumic pressure fall: determinants in the working left ventricle. Amer J Physiol 235:H701PubMedGoogle Scholar
  43. Gaasch WH (1991) Congestive heart failure in patients with normal left ventricular systolic function: a manifestation of diastolic dysfunction. Herz 16:22PubMedGoogle Scholar
  44. Gaasch WH, Bing OHL, Franklin A, Rhodes D, Bernard SA, Weintraub RM (1978) The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness. Europ J Cardiol 7, Suppl 147Google Scholar
  45. Gamble WJ, LaFarge CG, Fyler DC, Weisul J, Monro RG (1974) Regional coronary venous oxygen saturations and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart. Circulat Res 34:672PubMedGoogle Scholar
  46. Gauer O (1972) Kreislauf des Blutes. In: Physiologie des Menschen (Gauer O, Kramer K, Jung R Hrsg) Bd 3. München-Berlin-Wien: Urban & SchwarzenbergGoogle Scholar
  47. Gibson DG, Greenbaum R, Marier DL, Brown DJ (1980) Clinical significance of early diastolic changes in left ventricular wall thickness. Europ Heart J 1 (Suppl A): 157Google Scholar
  48. Gollwitzer-Meier K, Kramer K, Krüger E (1936) Zur Verschiedenheit der Herzenergetik und Herzdynamik bei Druck- und Volumenleistung. Pflügers Arch ges Physiol 237:68Google Scholar
  49. Gregg DE (1961) The heart as a pump. In: Best CH, Taylor NB (eds) The physiological basis of medical practice. Williams & Wilkins, BaltimoreGoogle Scholar
  50. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circulat Res 13:497PubMedGoogle Scholar
  51. Gregg DE, Khouri EM, Rayford ER (1965) Systemic and coronary energetics in the resting unanesthetized dog. Circulat Res 16:102PubMedGoogle Scholar
  52. Gülch BW, Jacob R (1975) The effect of sudden stretches on length-tension and force velocity relation of mammalian cardiac muscle. Pflügers Arch ges Physiol 357:335Google Scholar
  53. Guyton AC, Cowley AW (1976) Cardiovascular Physiology II. In: International Review of Physiology. Baltimore: University Park Press 9Google Scholar
  54. Hamilton WF (1955) Role of the starling concept in regulation of the normal circulation. Physiol Rev 35:161PubMedGoogle Scholar
  55. Hasselbach W, Makinose M (1963) Über den Mechanismus des Calciumtransportes durch die Membranen des sarcoplasma-tischen Reticulums. Biochem Z 339:94PubMedGoogle Scholar
  56. Heiss HW, Barmeyer J, Wink K, Hell G, Cerny FJ, Keul J, Reindell H (1976) Studies on the regulation of myocardial blood flow in man. Basic Res Cardiol 71:658PubMedGoogle Scholar
  57. Henke E (1872) zit bei: Physiologie des Menschen (Landois L Hrsg). Berlin-Wien: Urban & Schwarzenberg 1990, und bei: Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251Google Scholar
  58. Herzig JW (1984) Contractile proteins: possible targets for drug action. Trends Pharmacol Sci 5:296Google Scholar
  59. Hess OM, Schneider J, Koch R, Bamert C, Grimm J, Krayenbühl HP (1981) Diastolic function and myocardial structure in patients with myocardial hypertrophy. Circulation 63:360PubMedGoogle Scholar
  60. Higgins CB, Vatner SF, Braunwald E (1973) Parasympathetic control of the heart. Pharmacol Rev 25:119PubMedGoogle Scholar
  61. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc roy Soc B 126:136Google Scholar
  62. Hirota Y (1980) A clinical study of left ventricular relaxation. Circulation 62:756PubMedGoogle Scholar
  63. Hoffman BF, Cranefield PF (1960) Electrophysiology of the heart, New York-Toronto-London: McGraw-HillGoogle Scholar
  64. Holtz J, Bassenge E, von Restorff W, Mayer E (1976) Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic Res Cardiol 71:36PubMedGoogle Scholar
  65. Holubarsch C (1992) Biochemische Veränderungen und Störungen der elektromechanischen Kopplung bei der chronischen Herzinsuffizienz. Z Kardiol 81:17PubMedGoogle Scholar
  66. Holubarsch C, Jacob R (1980) Die „Compliance“des Herzens. Methodische Grundlagen und Grenzen für eine Bestimmung der Dehnbarkeit von Gesamtventrikel und Myokardgewebe. Med Welt 31:136PubMedGoogle Scholar
  67. Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circulat Res 51:777PubMedGoogle Scholar
  68. Holubarsch C, Hasenfuss G, Blanchard E, Alpert NR, Mulieri LA, Just H (1986) Myothermal economy of rat myocardium, chronic adaptation versus acute intropism. Basic Res Cardiol 81 (Suppl 1):95PubMedGoogle Scholar
  69. Holubarsch C, Schmidt-Schweda S, Knorr A et al (1994a) Functional significance of angiotensin-receptors in human myocardium. Significant differences between atrial and neutri-cular moycardium. Eur Heart J 15 (Supp D):88PubMedGoogle Scholar
  70. Holubarsch C, Hasenfuss G, Just H, Alpert NR (1994b) Positive inotropism and myocardial energetics. Influence of beta receptor-agonistic stimulation, phosphodiesterase inhibition and ouabain. Cardiovasc Res 28:994PubMedGoogle Scholar
  71. Holubarsch C, Hasenfuss G, Schmidt-Schweda S et al (1993) Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 88:1228PubMedGoogle Scholar
  72. Honig CR, Bourdeau-Martini J (1973) Role of O2 in control of the coronary capillary reserve. Ad vane exp Med Biol 39:55Google Scholar
  73. Horwitz LD, Bishop VS (1972) Left ventricular pressure-dimension relationships in the conscious dog. Cardiovasc Res 6:163PubMedGoogle Scholar
  74. Horwitz LD, Atkins JM, Leshin SJ (1972) Role of the Frank-Starling mechanism in exercise. Circulat Res 31:868PubMedGoogle Scholar
  75. Iizuka M, Takabatake Y, Serizawa T, Nurao S (1980) Distribution of regional wall contraction-relaxation process as the determinant of the left ventricular pressure fall curve. Europ Heart J 1 (Suppl A):173Google Scholar
  76. Jacob R, Gülch R, Kissling G, Raff U (1973) Muskelphysiologische Grundlagen für die Beurteilung der Leistungsfähigkeit des Herzens. Z Ges inn Med 28:1PubMedGoogle Scholar
  77. Johnson V, Katz LN (1937) Tone in the mammalian ventricle. Amer J Physiol 118:26Google Scholar
  78. Katz AM (1977) Excitation-contraction coupling. In: Physiology of the heart (Katz AM ed) p 173. New York: RavenGoogle Scholar
  79. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J clin Invest 27:476Google Scholar
  80. Keulisch JC, Palmer S (1993) The influence of pH, phosphate, and ionic strength on contraction in skinned cardiac muscle. Oxford Medical Publications, S 67Google Scholar
  81. Kissling G, Reuter K, Sieber G, Nguyen-Duong H, Jacob R (1972) Negative Inotropic von endogenem Acetylcholin beim Katzen- und Hühnerventrikelmyokard. Pflügers Arch ges Physiol 333:35Google Scholar
  82. Kjellberg SR, Lönroth H, Ruhde U, Sjöstrand T (1951) The relationship between the heart volume and the blood volume and its physiological and pathological variability. Acta med scand 140:446PubMedGoogle Scholar
  83. Klensch H, Eger W (1956) Ein neues Verfahren der physikalischen Schlagvolumenbestimmung (Qualitative Ballistographie). Pflügers Arch ges Physiol 263:459Google Scholar
  84. Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rev 15:601PubMedGoogle Scholar
  85. Koepchen HP (1972) Kreislaufregulation. In: Physiologie des Menschen (Gauer O, Kramer K, Jung R, Hrsg), Bd 3. München-Berlin-Wien: Urban & SchwarzenbergGoogle Scholar
  86. Kolin A (1936) An electromagnetic flowmeter: Principles of the method and its application to blood flow measurements. Proc Soc exp Biol Med 35:53Google Scholar
  87. Kramer K, Luft UC (1951) Mobilization of red cells and oxygen from the spleen in severe hypoxia. Amer J Physiol 165:215PubMedGoogle Scholar
  88. Krasny R, Kammermeier H, Köhler J (1991) Biomechanics of valvular plane displacement of the heart. Basic Res Cardiol 86:572PubMedGoogle Scholar
  89. Krayenbühl HP (1969) Dynamik und Kontraktilität des linken Ventrikels. Bibl cardiol (Basel) 23:1Google Scholar
  90. Kubier W, Katz AM (1977) Mechanism of early „pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Amer J Cardiol 40:467Google Scholar
  91. Lee JA, Allen DG (1993) Altering the strength of the heart: Basic mechanisms. Oxford Medical Publications, S 1Google Scholar
  92. LeCarpentier YC, Chuck LHS, Housmans PR, DeClerck NM, Brutsaert DL (1979) Nature of load-dependence of relaxation in cardiac muscle. Amer J Physiol 237:H455PubMedGoogle Scholar
  93. Leijendekker WJ, Herzig JW (1992) Reduction of myocardial cross-bridge turnover rate in presence of EMD 53998, a novel Ca2+sensitizing agent. Pflügers Arch 421:388PubMedGoogle Scholar
  94. Levy MN (1979) The cardiac and vascular factors that determine systemic blood flow. Circulat Res 44:739PubMedGoogle Scholar
  95. Lorell BH, Paulus WJ, Grossman W, Wynne J, Cohn PF (1982) Modification of abnormal left ventricular diastolic properties by nifedipine in patients with hypertrophic cardiomyopathy. Circulation 65:499PubMedGoogle Scholar
  96. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbühl HP, Boesinger P (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919PubMedGoogle Scholar
  97. Mann T, Goldberg S, Mudge GH jr, Grossman W (1979) Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59:14PubMedGoogle Scholar
  98. Martin G, Gimeno JV, Ramirez A, Cosin J (1980) A digitizated analysis of isovolumic pressure fall. Europ Heart J 1 (Suppl A):181Google Scholar
  99. Mason DT (1978) Vasodilator and inotropic therapy of heart failure. Symposium perspective. Amer J Med 65:101PubMedGoogle Scholar
  100. McLaurin LP, Rolett EL, Grossman W (1973) Impaired left ventricular relaxation during pacing-induced ischemia. Amer J Cardiol 32:751PubMedGoogle Scholar
  101. Millard RW, Higgins CB, Franklin D, Vatner SF (1972) Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circulat Res 31:881PubMedGoogle Scholar
  102. Milnor WR (1975) Arterial impedance as ventricular afterload. Circulat Res 36:565PubMedGoogle Scholar
  103. Modersohn D, Walde T, Bruch L (1993) Diastolic heart function — pathophysiology, characterization, and therapeutic approaches. Clin Cardiol 16:850PubMedGoogle Scholar
  104. Monroe RG, Gamble WJ, LaFarge CG, Kumar AE, Stark J, Sanders GL, Phornphutkul C, Davis M (1972) The Anrep effect reconsidered. J clin Invest 51:2573PubMedGoogle Scholar
  105. Morad M, Goldman Y (1973) Excitation-contraction coupling in heart muscle: membrane control of development of tension. Progr Biophys mol Biol 27:257Google Scholar
  106. Morad M, Rolett E (1972) Relaxing effect of catecholamines on mammalian heart. J Physiol (Lond) 244:537Google Scholar
  107. Mulieri LA, Hasenfuss G, Zeavitt B, Allen PD, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743PubMedGoogle Scholar
  108. Nayler WG, Berry D (1975) Effect of drugs on the cyclic adenosine 3’5’monophosphate dependent protein kinase-induced stimulation of calcium uptake by cardiac microsomal fractions. J mol cell Cardiol 7:387PubMedGoogle Scholar
  109. Nayler WG, Williams A (1978) Relaxation in heart muscle: some morphological and biochemical considerations. Europ J Cardiol 7 Suppl 35Google Scholar
  110. Nonogi H, Hess OM, Ritter M, Krayenbühl HP (1988) Diastolic properties of the normal left ventricle during supine exercise. Brit Heart J 60:30PubMedGoogle Scholar
  111. O’Rourke MF (1967) Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease. Cardiovasc Res 1:312Google Scholar
  112. Papapietro SE, Coghlan HC, Zissermann D, Russell RO, Rackley CE, Rogers WJ (1979) Impaired maximal rate of left ventricular relaxation in patients with coronary artery disease and left ventricular dysfunction. Circulation 59:984PubMedGoogle Scholar
  113. Parsons C, Porter KR (1966) Muscle relaxation: evidence for an intrafibrillar restoring force in vertebrate striated msucle. Science 153:426PubMedGoogle Scholar
  114. Patterson SW, Piper H, Starling FH (1914) Regulation of the heart beart. J Physiol (Lond) 48:465Google Scholar
  115. Peterson KL, Skloven D, Ludbrook Ph, Uther JB, Ross J jr (1974) Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circulation 49:1088PubMedGoogle Scholar
  116. Pieske B, Hasenfuss G, Holubarsch C, Schwinger R, Böhm M, Just H (1992) Alterations of the force-frequency relationship in the failing human heart depend on the underlying cardiac disease. Basic Res Cardiol 87 (Suppl I):213PubMedGoogle Scholar
  117. Pieske B, Schmidt-Schweda S, Kretschmann B et al (1993 a) Influence of angiotensin II on force of contraction and intracellular Ca2+-transients in human atrial myocardium. J Mol Cell Cardiol 25 (Suppl I/II):15Google Scholar
  118. Pieske B, Holubarsch C, Schlottauer K, Burmeister C, Meyer M, Hasenfuss G (1993 b) Endothelin on contractivity and intracellular Ca2+-transients in isolated human myocardium. Circulation 88:1503Google Scholar
  119. Porter WT (1894) On the results of ligation of the coronary arteries. J Physiol (Lond) 15:121Google Scholar
  120. Pouleur H, Covell JW, Ross J jr (1979) Effects of alterations in aortic input impedance on the force-velocity-length relationships in the intact canine heart. Circulat Res 45:126PubMedGoogle Scholar
  121. Rademarkers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling. Attenuation by catecholamines. Circulation 85:1572Google Scholar
  122. Raff GL, Glanz SA (1981) Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circulat Res 48:813PubMedGoogle Scholar
  123. Reichel H (1965) Die Herzdynamik. Verh dtsch Ges Kreisl-Forsch 22:3Google Scholar
  124. Reindell H (1964) Beitrag der Klinik zur Dynamik des Herzens. Verh dtsch Gs inn Med 70:100Google Scholar
  125. Reiter M (1962) Die Entstehung von „Nachkontraktionen” im Herzmuskel unter Einwirkung von Calcium und von Digita-lisglykosiden in Abhängigkeit von der Reizfrequenz. Nau-nyn-Schmiedeberg’s Arch exp Path Pharmak 242:497Google Scholar
  126. Restorff W von, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflügers Arch ges Physiol 372:181Google Scholar
  127. Richards DW (1955) Discussion of Starling’s law of the heart. Physiol Rev 35:156PubMedGoogle Scholar
  128. Robinon GA, Butcher WR, Ooye I, Morgan HE, Sutherland EW (1965) The effect of epinephrine on adenosine 3’: 5’phosphate levels in the isolated perfused rat heart. Mol Pharmacol 1:168Google Scholar
  129. Ross J jr (1976) Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 18:255PubMedGoogle Scholar
  130. Ross J (1979) Acute displacement of the diastolic pressure-volume curve of the left ventricle: Role of the pericardium and the right ventricle. Circulation 59:32PubMedGoogle Scholar
  131. Rushmer RF (1955) Applicability of Starling’s law of the hert to intact unanesthetised animals. Physiol Rev 35:138PubMedGoogle Scholar
  132. Rushmer RF (1970) Functional anatomy of cardiac contraction. Cardiovascular dynamics, 3rd ed. Philadelphia-London: SaundersGoogle Scholar
  133. Rutishauser W, Wirz P, Gander M, Noseda G (1968) Vergleich der Herzdynamik bei Frequenzsteigerung unter Arbeitsbelastung und elektrischer Stimulation. In: Wollheim E, Schneider KW (Hrsg) Herzinsuffizienz. Thieme, Stuttgart, S 429Google Scholar
  134. Sabbah HN, Stein PD (1981) Negative diastolic pressure in the intact canine right ventricle. Evidence of diastolic suction. Circulat Res 49:108PubMedGoogle Scholar
  135. Salisbury PF, Cross CE, Rieben PA (1962) Intramyocardial pressure and strength of left ventricular contraction. Circulat Res 10:608PubMedGoogle Scholar
  136. Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circulat Res 8:1077PubMedGoogle Scholar
  137. Schmid-Schönbein H (1977) Microrheology of erythrocytes and thrombocytes. In: Handbuch der allgemeinen Pathologie, Bd 7:111. Springer, Heidelberg Berlin New YorkGoogle Scholar
  138. Schultz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the auto-regulatory range in pigs: Evidence against the Gregg phenomenon. Circulation 83:1390Google Scholar
  139. Schwegler M, Reutter K, Sieber G, Jacob R (1976) Noncompetitive catecholamine-antagonism of acetylcholine on the sym-pathetectomized mammalian ventricular myocardium. Basic Res Cardiol 71:407PubMedGoogle Scholar
  140. Serizawa T, Vogel WM, Apstein CS, Grossman W (1981) Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia: role of myocardial oxygen supply-demand imbalance. J clin Invest 68:91PubMedGoogle Scholar
  141. Sonnenblick EH, Parmley WW, Urschel CW (1969) The contractile state of the heart as expressed by force-velocity relations. Amer J Cardiol 23:488PubMedGoogle Scholar
  142. Starling EH (1918) The Linacre lecture on the law of the heart. Langmas, Green & Co, New York LondonGoogle Scholar
  143. Stauffer JC, Gaasch WH (1990) Recognition and treatment of left ventricular diastolic dysfunction. Progr Cardiovasc Dis 5:319Google Scholar
  144. Straub H (1914 a) Dynamik des Säugetierherzens. Dtsch Arch klinMed 115:531Google Scholar
  145. Straub H (1914 b) Dynamik des Säugetierherzens. Dtsch Arch klin Med 116:27Google Scholar
  146. Strauss JD, Rüegg JC, Lues J (1993) In search of calcium sensitizers compounds, from subcellular models of muscle to in vivo positive inotropic action. Oxford Medical Publications, S 37Google Scholar
  147. Streeter DD jr, Spotnitz HM, Patel DJ, Ross J jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circulat Res 24:339PubMedGoogle Scholar
  148. Tada M, Kirchberger MA, Katz AM (1975) Phosphorylation of a 22000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3’: 5’-monophosphate-dependent protein kinase. J biol Chem 250:2640PubMedGoogle Scholar
  149. Tillmanns H, Kubier W (1984) What happens in the microcirculation? In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. Raven Press, New York, S107Google Scholar
  150. Trautwein W (1972) Erregungsphysiologie des Herzens. In: Gauer O, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd 3. Urban & Schwarnzenberg, München Berlin WienGoogle Scholar
  151. Tsien RW (1977) Cyclic AMP and contractile activity in the heart. Adv cyclic Nucl Res 8:363Google Scholar
  152. Tyberg JV, Misbach GA, Glantz SA, Moores WY, Parmley WW (1978) A mechanism for shifts in the diastolic, left ventricular, pressure-volume curve: The role of the pericardium. Europ J Cardiol 7 Suppl 163Google Scholar
  153. Vatner SF, McRitchie RJ (1975) Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circulat Res 37:664PubMedGoogle Scholar
  154. Vatner SF, Monroe RG, McRitchie RJ (1974) Effects on anesthesia, tachycardia and autonomic blockade on the Anrep effect in intact dogs. Amer J Physiol 226:1450PubMedGoogle Scholar
  155. Waters DD, Luz PD, Wyatt HL, Swan HJC, Forrester JS (1977) Early changes in regional and global left ventricular function induced by graded reduction in regional coronary perfusion. Amer J Cardiol 39:537PubMedGoogle Scholar
  156. Weisfeldt ML, Armstrong P, Scully HE, Sanders CA, Daggett WM (1974 a) Incomplete relaxation between beats after myocardial hypoxia and ischemia. J clin Invest 53:1626PubMedGoogle Scholar
  157. Weisfeldt ML, Scully HE, Frederiksen J, Rubenstein JJ, Pohosz GM, Beierholm E, Bello AG, Daggett WM (1974b) Hemodynamic determinants of maximum negative dp/dt and periods of diastole. Am Physiol 227:613Google Scholar
  158. Weiss JL, Frederiksen J, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751PubMedGoogle Scholar
  159. Weiss JL, Weisfeldt ML, Mason SJ, Garrison JB, Livengood SV, Fortuin NJ (1979) Evidence of Frank-Starling effect in man during severe semisupine exercise. Circulation 59:655PubMedGoogle Scholar
  160. Weissler AM (1977) Systolic-time intervals. New Engl J Med 296:321PubMedGoogle Scholar
  161. Wetterer E (1963) Flowmeters: Their theory, construction and operation. In: Hamilton WF, Dow P (eds) Handbook of Physiology, Circulation. Washington, American Physiol Soc 2:1294Google Scholar
  162. Wetterer E, Kenner Th (1968) Grundlagen der Dynamik des Arterienpulses. Springer, Berlin Heidelberg New YorkGoogle Scholar
  163. Wezler K (1962) Der diastolische Herztonus. L, IL, III. Teil. Z Kreisl-Forsch 51:651, 836, 907Google Scholar
  164. Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Amer J Physiol 56:415Google Scholar
  165. Wiggers C J (1951) Determinants of cardiac performance. Circulation 4:485PubMedGoogle Scholar
  166. Witzleb E (1968) Venentonusrekationen in kapazitiven Hautgefäßen bei Orthostase. Pflügers Arch ges Physiol 302:315Google Scholar
  167. Zelis R (1975) The peripheral circulations. New York-London: Grüne & StrattonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. Bassenge

There are no affiliations available

Personalised recommendations