Skip to main content

Mechanik des intakten Herzens

  • Chapter

Zusammenfassung

Um eine adäquate Blutversorgung der Organe — je nach ihrem Aktivitätsgrad — zu gewährleisten, müssen Herzleistung und periphere Kreislauffunktionen in optimaler Weise aufeinander abgestimmt sein. Pumpaktivität des Herzens, Füllungszustand des Gefäßsystems und Gefäßtonus bzw. Wandspannungen in den einzelnen Gefäßsegmenten müssen dauernd erfaßt und gegebenenfalls berichtigt werden. Dazu steht eine breite Palette nervös-humoraler Regulationsmechanismen zur Verfügung, die fortfaufend Informationen aus Presso- und Volumenrezeptoren beziehen (Übersicht bei Gauer 1972; Koepchen 1972).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abbott BC, Gordon DG (1975) A commentary on muscle mechanics. Circulat Res 360:1

    Google Scholar 

  • Abei RM, Reis RL (1970) Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Circulat Res 27:961

    Google Scholar 

  • Ahn J, Apstein CS, Hood WB (1977) Erectile properties of the left ventricle: Direct effect of coronary perfusion pressure on diastolic wall stiffness and thickness. Clin Res 25:201A

    Google Scholar 

  • Amende I, Coltart PJ, Kreayenbuehl HP, Rutishauser W (1975) Left ventricular contraction and relaxation in patients with coronary heart disease. Europ J Cardiol 3:37

    CAS  Google Scholar 

  • Anderson PAW, Manring AJ, Serwer GA, Benson DW et al (1979) The force-interval relationship of the left ventricle. Circulation 60:334

    PubMed  CAS  Google Scholar 

  • Anrep G von (1936) Studies in cardiovascular regulation. Lane medical lectures. Stanf Univ Pubi med Sci 3:205

    Google Scholar 

  • Anton H, Jacob R, Kaufmann R (1969) Mechanische Reaktionen des Frosch- und Säugetiermyocards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflügers Arch ges Physiol 306:33

    Google Scholar 

  • Arnold G, Kosche F, Miessner E, Neilzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch ges Physiol 299:339

    CAS  Google Scholar 

  • Bai XJ, Williams AGJ, Fan WL, Downey F (1994) Coronary pressure-flow autoregulation protects myocardium from Gregg’s phenomenon. Am J Physiol (in Vorbereitung)

    Google Scholar 

  • Bassenge E (1984) Physiologie der Koronardurchblutung. In: Roskamm H (Hrsg) Handbuch der inneren Medizin; Band IX/3; Koronarerkrankungen. Springer, Berlin Heidelberg New York Tokyo, S 1

    Google Scholar 

  • Bassenge E (1994) Coronary vasomotor responses: Role of endothelium and nitrovasodilators. Cardiovasc. Drugs and Therapie 8:601

    CAS  Google Scholar 

  • Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Prog Cardiovasc Dis 30:349

    PubMed  CAS  Google Scholar 

  • Basenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77

    Google Scholar 

  • Bauer RD, Busse R (1978) The arterial system. Dynamics, control theory and regulation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bauereisen E, Peiper U, Weigand KH (1960) Die diastolische Saugwirkung der Herzkammern. Z Kreisl-Forsch 49:195

    CAS  Google Scholar 

  • Bauererisen E, Hauck G, Jacob R, Peiper U (1964) Enddiastolische Druck-Volumen-Relationen und Arbeitsdiagramme des intakten Herzens im natürlichen Kreislauf. Pflügers Arch ges Physiol 281:216

    Google Scholar 

  • Bayliss WM (1902) On the local reactions of the arterial wall to changes in internal pressure. J Physiol (London) 28:220

    CAS  Google Scholar 

  • Bevegard BS, Sheperd JT (1967) Regulation of circulation during exercise. Physiol Rev 47:178

    PubMed  CAS  Google Scholar 

  • Bing RJ, Hammond M, Handelsmann JC, Powers SR, Spencer F, Eckenhoff JB, Goodale WT, Hafkenschiel JM, Kety SS (1949) The measurement of coronary blood flow, oxygen consumption and efficiency,of the left ventricle in man. Am Heart J 38:1

    PubMed  CAS  Google Scholar 

  • Bing OHL, Brooks WW, Messer JV (1973) Heart muscle viability following hypoxia: protective effect of acidosis. Science 1980:1297

    Google Scholar 

  • Blanchard EM, Solaro RJ (1984) Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circulat Res 55:382

    PubMed  CAS  Google Scholar 

  • Blix M (1892) Die Länge und Spannung des Muskels. Skand Arch Physiol 3:295

    Google Scholar 

  • Bloom WL, Ferris EB (1956) Negative ventricular diastolic pressure in beating heart studied in vitro and vivo. Proc Soc exp Biol Med 98:451

    Google Scholar 

  • Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251

    Google Scholar 

  • Bowditch HP (1871) Über die Eigentümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Ber sächs ges Akad Wiss 23:652

    Google Scholar 

  • Brecher GA (1956) Venous return. London: Grüne & Stratton

    Google Scholar 

  • Brecher GA (1958) Critical review of recent work on ventricular diastolic suction. Circulat Res 6:554

    PubMed  CAS  Google Scholar 

  • Brecher GA, Galletti PM (1963) Functional anatomy of cardiac pumping. In: Hamilton WF, Dow P (eds) Handbook of physiology, Circulation II. Washington, Am Physiol Soc

    Google Scholar 

  • Bretschneider H J, Hellige G (1976) Pathophysiologie der Ventrikelkontraktion — Kontraktilität, Inotrophie, Suffizienz-grad und Arbeitsökonomie des Herzens. Verh dtsch Ges Kreisl-Forsch 42:14

    CAS  Google Scholar 

  • Bretschneider HJ, Cott L, Hilgert G, Pobst R, Rau G (1966) Gaschromotagraphische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh dtsch Ges Kreisl-Forsch 32:267

    CAS  Google Scholar 

  • Brutsaert DS, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228

    PubMed  CAS  Google Scholar 

  • Chidsey CA, Kaiser GA, Sonnenblick EH, Spann JF (1964) Cardiac norepinephrine stores in experimental heart failure in the dog. J clin Invest 43:2386

    PubMed  CAS  Google Scholar 

  • Cohn PF, Liedtke AJ, Serur J, Sonnenblick EH, Urschel ChW (1972) Maximal rate of pressure fall (peak, negative dP/dt) during ventricular relaxation. Cardiovasc Res 6:263

    PubMed  CAS  Google Scholar 

  • Cranefield PF (1965) The present status of paired pulse stimulation and post-extrasystolic potentiation in the heart. Bull NY Acad Med 41:736

    CAS  Google Scholar 

  • Doll E, Keul J, Steim H, Maiwald Ch, Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens. II. Sauerstoff-und Kohlensäuredruck, pH, Standardbicarbonat und base excess im coronarvenösen Blut in Ruhe, während und nach körperlicher Arbeit. Pflügers Arch ges Physiol 282:28

    CAS  Google Scholar 

  • Eichhorn P, Grimm J, Koch R, Hess OM, Carroll J, Krayenbühl HP (1982) Left ventricular relaxation in patients with left ventricular hypertrophy secondary to aortic valve disease. Circulation 65:1395

    PubMed  CAS  Google Scholar 

  • Feigl EO (1967) Sympathetic control of coronary circulation. Circulat Res 20:262

    PubMed  CAS  Google Scholar 

  • Feigl EO (1975) Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circulat Res 37:88

    PubMed  CAS  Google Scholar 

  • Feldmann MD, Gwathmey JK, Philips P, Schoen F, Morgan JP (1988) Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure. J Appi Cardiol 3:273

    Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370

    Google Scholar 

  • Franklin DL, Schlegel W, Rushmer RF (1961) Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134:564

    PubMed  CAS  Google Scholar 

  • Frederiksen JW, Weiss HL, Weisfeldt ML (1978) Time constant of isovolumic pressure fall: determinants in the working left ventricle. Amer J Physiol 235:H701

    PubMed  CAS  Google Scholar 

  • Gaasch WH (1991) Congestive heart failure in patients with normal left ventricular systolic function: a manifestation of diastolic dysfunction. Herz 16:22

    PubMed  CAS  Google Scholar 

  • Gaasch WH, Bing OHL, Franklin A, Rhodes D, Bernard SA, Weintraub RM (1978) The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness. Europ J Cardiol 7, Suppl 147

    Google Scholar 

  • Gamble WJ, LaFarge CG, Fyler DC, Weisul J, Monro RG (1974) Regional coronary venous oxygen saturations and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart. Circulat Res 34:672

    PubMed  CAS  Google Scholar 

  • Gauer O (1972) Kreislauf des Blutes. In: Physiologie des Menschen (Gauer O, Kramer K, Jung R Hrsg) Bd 3. München-Berlin-Wien: Urban & Schwarzenberg

    Google Scholar 

  • Gibson DG, Greenbaum R, Marier DL, Brown DJ (1980) Clinical significance of early diastolic changes in left ventricular wall thickness. Europ Heart J 1 (Suppl A): 157

    Google Scholar 

  • Gollwitzer-Meier K, Kramer K, Krüger E (1936) Zur Verschiedenheit der Herzenergetik und Herzdynamik bei Druck- und Volumenleistung. Pflügers Arch ges Physiol 237:68

    CAS  Google Scholar 

  • Gregg DE (1961) The heart as a pump. In: Best CH, Taylor NB (eds) The physiological basis of medical practice. Williams & Wilkins, Baltimore

    Google Scholar 

  • Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circulat Res 13:497

    PubMed  CAS  Google Scholar 

  • Gregg DE, Khouri EM, Rayford ER (1965) Systemic and coronary energetics in the resting unanesthetized dog. Circulat Res 16:102

    PubMed  CAS  Google Scholar 

  • Gülch BW, Jacob R (1975) The effect of sudden stretches on length-tension and force velocity relation of mammalian cardiac muscle. Pflügers Arch ges Physiol 357:335

    Google Scholar 

  • Guyton AC, Cowley AW (1976) Cardiovascular Physiology II. In: International Review of Physiology. Baltimore: University Park Press 9

    Google Scholar 

  • Hamilton WF (1955) Role of the starling concept in regulation of the normal circulation. Physiol Rev 35:161

    PubMed  CAS  Google Scholar 

  • Hasselbach W, Makinose M (1963) Über den Mechanismus des Calciumtransportes durch die Membranen des sarcoplasma-tischen Reticulums. Biochem Z 339:94

    PubMed  CAS  Google Scholar 

  • Heiss HW, Barmeyer J, Wink K, Hell G, Cerny FJ, Keul J, Reindell H (1976) Studies on the regulation of myocardial blood flow in man. Basic Res Cardiol 71:658

    PubMed  CAS  Google Scholar 

  • Henke E (1872) zit bei: Physiologie des Menschen (Landois L Hrsg). Berlin-Wien: Urban & Schwarzenberg 1990, und bei: Böhme W (1936) Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn Physiol 38:251

    Google Scholar 

  • Herzig JW (1984) Contractile proteins: possible targets for drug action. Trends Pharmacol Sci 5:296

    CAS  Google Scholar 

  • Hess OM, Schneider J, Koch R, Bamert C, Grimm J, Krayenbühl HP (1981) Diastolic function and myocardial structure in patients with myocardial hypertrophy. Circulation 63:360

    PubMed  CAS  Google Scholar 

  • Higgins CB, Vatner SF, Braunwald E (1973) Parasympathetic control of the heart. Pharmacol Rev 25:119

    PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc roy Soc B 126:136

    Google Scholar 

  • Hirota Y (1980) A clinical study of left ventricular relaxation. Circulation 62:756

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Cranefield PF (1960) Electrophysiology of the heart, New York-Toronto-London: McGraw-Hill

    Google Scholar 

  • Holtz J, Bassenge E, von Restorff W, Mayer E (1976) Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic Res Cardiol 71:36

    PubMed  CAS  Google Scholar 

  • Holubarsch C (1992) Biochemische Veränderungen und Störungen der elektromechanischen Kopplung bei der chronischen Herzinsuffizienz. Z Kardiol 81:17

    PubMed  Google Scholar 

  • Holubarsch C, Jacob R (1980) Die „Compliance“des Herzens. Methodische Grundlagen und Grenzen für eine Bestimmung der Dehnbarkeit von Gesamtventrikel und Myokardgewebe. Med Welt 31:136

    PubMed  Google Scholar 

  • Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circulat Res 51:777

    PubMed  CAS  Google Scholar 

  • Holubarsch C, Hasenfuss G, Blanchard E, Alpert NR, Mulieri LA, Just H (1986) Myothermal economy of rat myocardium, chronic adaptation versus acute intropism. Basic Res Cardiol 81 (Suppl 1):95

    PubMed  Google Scholar 

  • Holubarsch C, Schmidt-Schweda S, Knorr A et al (1994a) Functional significance of angiotensin-receptors in human myocardium. Significant differences between atrial and neutri-cular moycardium. Eur Heart J 15 (Supp D):88

    PubMed  CAS  Google Scholar 

  • Holubarsch C, Hasenfuss G, Just H, Alpert NR (1994b) Positive inotropism and myocardial energetics. Influence of beta receptor-agonistic stimulation, phosphodiesterase inhibition and ouabain. Cardiovasc Res 28:994

    PubMed  CAS  Google Scholar 

  • Holubarsch C, Hasenfuss G, Schmidt-Schweda S et al (1993) Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 88:1228

    PubMed  CAS  Google Scholar 

  • Honig CR, Bourdeau-Martini J (1973) Role of O2 in control of the coronary capillary reserve. Ad vane exp Med Biol 39:55

    CAS  Google Scholar 

  • Horwitz LD, Bishop VS (1972) Left ventricular pressure-dimension relationships in the conscious dog. Cardiovasc Res 6:163

    PubMed  CAS  Google Scholar 

  • Horwitz LD, Atkins JM, Leshin SJ (1972) Role of the Frank-Starling mechanism in exercise. Circulat Res 31:868

    PubMed  CAS  Google Scholar 

  • Iizuka M, Takabatake Y, Serizawa T, Nurao S (1980) Distribution of regional wall contraction-relaxation process as the determinant of the left ventricular pressure fall curve. Europ Heart J 1 (Suppl A):173

    Google Scholar 

  • Jacob R, Gülch R, Kissling G, Raff U (1973) Muskelphysiologische Grundlagen für die Beurteilung der Leistungsfähigkeit des Herzens. Z Ges inn Med 28:1

    PubMed  CAS  Google Scholar 

  • Johnson V, Katz LN (1937) Tone in the mammalian ventricle. Amer J Physiol 118:26

    Google Scholar 

  • Katz AM (1977) Excitation-contraction coupling. In: Physiology of the heart (Katz AM ed) p 173. New York: Raven

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J clin Invest 27:476

    Google Scholar 

  • Keulisch JC, Palmer S (1993) The influence of pH, phosphate, and ionic strength on contraction in skinned cardiac muscle. Oxford Medical Publications, S 67

    Google Scholar 

  • Kissling G, Reuter K, Sieber G, Nguyen-Duong H, Jacob R (1972) Negative Inotropic von endogenem Acetylcholin beim Katzen- und Hühnerventrikelmyokard. Pflügers Arch ges Physiol 333:35

    CAS  Google Scholar 

  • Kjellberg SR, Lönroth H, Ruhde U, Sjöstrand T (1951) The relationship between the heart volume and the blood volume and its physiological and pathological variability. Acta med scand 140:446

    PubMed  CAS  Google Scholar 

  • Klensch H, Eger W (1956) Ein neues Verfahren der physikalischen Schlagvolumenbestimmung (Qualitative Ballistographie). Pflügers Arch ges Physiol 263:459

    Google Scholar 

  • Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rev 15:601

    PubMed  CAS  Google Scholar 

  • Koepchen HP (1972) Kreislaufregulation. In: Physiologie des Menschen (Gauer O, Kramer K, Jung R, Hrsg), Bd 3. München-Berlin-Wien: Urban & Schwarzenberg

    Google Scholar 

  • Kolin A (1936) An electromagnetic flowmeter: Principles of the method and its application to blood flow measurements. Proc Soc exp Biol Med 35:53

    Google Scholar 

  • Kramer K, Luft UC (1951) Mobilization of red cells and oxygen from the spleen in severe hypoxia. Amer J Physiol 165:215

    PubMed  CAS  Google Scholar 

  • Krasny R, Kammermeier H, Köhler J (1991) Biomechanics of valvular plane displacement of the heart. Basic Res Cardiol 86:572

    PubMed  CAS  Google Scholar 

  • Krayenbühl HP (1969) Dynamik und Kontraktilität des linken Ventrikels. Bibl cardiol (Basel) 23:1

    Google Scholar 

  • Kubier W, Katz AM (1977) Mechanism of early „pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Amer J Cardiol 40:467

    Google Scholar 

  • Lee JA, Allen DG (1993) Altering the strength of the heart: Basic mechanisms. Oxford Medical Publications, S 1

    Google Scholar 

  • LeCarpentier YC, Chuck LHS, Housmans PR, DeClerck NM, Brutsaert DL (1979) Nature of load-dependence of relaxation in cardiac muscle. Amer J Physiol 237:H455

    PubMed  CAS  Google Scholar 

  • Leijendekker WJ, Herzig JW (1992) Reduction of myocardial cross-bridge turnover rate in presence of EMD 53998, a novel Ca2+sensitizing agent. Pflügers Arch 421:388

    PubMed  Google Scholar 

  • Levy MN (1979) The cardiac and vascular factors that determine systemic blood flow. Circulat Res 44:739

    PubMed  CAS  Google Scholar 

  • Lorell BH, Paulus WJ, Grossman W, Wynne J, Cohn PF (1982) Modification of abnormal left ventricular diastolic properties by nifedipine in patients with hypertrophic cardiomyopathy. Circulation 65:499

    PubMed  CAS  Google Scholar 

  • Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbühl HP, Boesinger P (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919

    PubMed  CAS  Google Scholar 

  • Mann T, Goldberg S, Mudge GH jr, Grossman W (1979) Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59:14

    PubMed  CAS  Google Scholar 

  • Martin G, Gimeno JV, Ramirez A, Cosin J (1980) A digitizated analysis of isovolumic pressure fall. Europ Heart J 1 (Suppl A):181

    Google Scholar 

  • Mason DT (1978) Vasodilator and inotropic therapy of heart failure. Symposium perspective. Amer J Med 65:101

    PubMed  CAS  Google Scholar 

  • McLaurin LP, Rolett EL, Grossman W (1973) Impaired left ventricular relaxation during pacing-induced ischemia. Amer J Cardiol 32:751

    PubMed  CAS  Google Scholar 

  • Millard RW, Higgins CB, Franklin D, Vatner SF (1972) Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circulat Res 31:881

    PubMed  CAS  Google Scholar 

  • Milnor WR (1975) Arterial impedance as ventricular afterload. Circulat Res 36:565

    PubMed  CAS  Google Scholar 

  • Modersohn D, Walde T, Bruch L (1993) Diastolic heart function — pathophysiology, characterization, and therapeutic approaches. Clin Cardiol 16:850

    PubMed  CAS  Google Scholar 

  • Monroe RG, Gamble WJ, LaFarge CG, Kumar AE, Stark J, Sanders GL, Phornphutkul C, Davis M (1972) The Anrep effect reconsidered. J clin Invest 51:2573

    PubMed  CAS  Google Scholar 

  • Morad M, Goldman Y (1973) Excitation-contraction coupling in heart muscle: membrane control of development of tension. Progr Biophys mol Biol 27:257

    Google Scholar 

  • Morad M, Rolett E (1972) Relaxing effect of catecholamines on mammalian heart. J Physiol (Lond) 244:537

    Google Scholar 

  • Mulieri LA, Hasenfuss G, Zeavitt B, Allen PD, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743

    PubMed  CAS  Google Scholar 

  • Nayler WG, Berry D (1975) Effect of drugs on the cyclic adenosine 3’5’monophosphate dependent protein kinase-induced stimulation of calcium uptake by cardiac microsomal fractions. J mol cell Cardiol 7:387

    PubMed  CAS  Google Scholar 

  • Nayler WG, Williams A (1978) Relaxation in heart muscle: some morphological and biochemical considerations. Europ J Cardiol 7 Suppl 35

    Google Scholar 

  • Nonogi H, Hess OM, Ritter M, Krayenbühl HP (1988) Diastolic properties of the normal left ventricle during supine exercise. Brit Heart J 60:30

    PubMed  CAS  Google Scholar 

  • O’Rourke MF (1967) Steady and pulsatile energy losses in the systemic circulation under normal conditions and in simulated arterial disease. Cardiovasc Res 1:312

    Google Scholar 

  • Papapietro SE, Coghlan HC, Zissermann D, Russell RO, Rackley CE, Rogers WJ (1979) Impaired maximal rate of left ventricular relaxation in patients with coronary artery disease and left ventricular dysfunction. Circulation 59:984

    PubMed  CAS  Google Scholar 

  • Parsons C, Porter KR (1966) Muscle relaxation: evidence for an intrafibrillar restoring force in vertebrate striated msucle. Science 153:426

    PubMed  CAS  Google Scholar 

  • Patterson SW, Piper H, Starling FH (1914) Regulation of the heart beart. J Physiol (Lond) 48:465

    CAS  Google Scholar 

  • Peterson KL, Skloven D, Ludbrook Ph, Uther JB, Ross J jr (1974) Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circulation 49:1088

    PubMed  CAS  Google Scholar 

  • Pieske B, Hasenfuss G, Holubarsch C, Schwinger R, Böhm M, Just H (1992) Alterations of the force-frequency relationship in the failing human heart depend on the underlying cardiac disease. Basic Res Cardiol 87 (Suppl I):213

    PubMed  Google Scholar 

  • Pieske B, Schmidt-Schweda S, Kretschmann B et al (1993 a) Influence of angiotensin II on force of contraction and intracellular Ca2+-transients in human atrial myocardium. J Mol Cell Cardiol 25 (Suppl I/II):15

    Google Scholar 

  • Pieske B, Holubarsch C, Schlottauer K, Burmeister C, Meyer M, Hasenfuss G (1993 b) Endothelin on contractivity and intracellular Ca2+-transients in isolated human myocardium. Circulation 88:1503

    Google Scholar 

  • Porter WT (1894) On the results of ligation of the coronary arteries. J Physiol (Lond) 15:121

    Google Scholar 

  • Pouleur H, Covell JW, Ross J jr (1979) Effects of alterations in aortic input impedance on the force-velocity-length relationships in the intact canine heart. Circulat Res 45:126

    PubMed  CAS  Google Scholar 

  • Rademarkers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling. Attenuation by catecholamines. Circulation 85:1572

    Google Scholar 

  • Raff GL, Glanz SA (1981) Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circulat Res 48:813

    PubMed  CAS  Google Scholar 

  • Reichel H (1965) Die Herzdynamik. Verh dtsch Ges Kreisl-Forsch 22:3

    Google Scholar 

  • Reindell H (1964) Beitrag der Klinik zur Dynamik des Herzens. Verh dtsch Gs inn Med 70:100

    CAS  Google Scholar 

  • Reiter M (1962) Die Entstehung von „Nachkontraktionen” im Herzmuskel unter Einwirkung von Calcium und von Digita-lisglykosiden in Abhängigkeit von der Reizfrequenz. Nau-nyn-Schmiedeberg’s Arch exp Path Pharmak 242:497

    CAS  Google Scholar 

  • Restorff W von, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflügers Arch ges Physiol 372:181

    Google Scholar 

  • Richards DW (1955) Discussion of Starling’s law of the heart. Physiol Rev 35:156

    PubMed  CAS  Google Scholar 

  • Robinon GA, Butcher WR, Ooye I, Morgan HE, Sutherland EW (1965) The effect of epinephrine on adenosine 3’: 5’phosphate levels in the isolated perfused rat heart. Mol Pharmacol 1:168

    Google Scholar 

  • Ross J jr (1976) Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 18:255

    PubMed  Google Scholar 

  • Ross J (1979) Acute displacement of the diastolic pressure-volume curve of the left ventricle: Role of the pericardium and the right ventricle. Circulation 59:32

    PubMed  Google Scholar 

  • Rushmer RF (1955) Applicability of Starling’s law of the hert to intact unanesthetised animals. Physiol Rev 35:138

    PubMed  CAS  Google Scholar 

  • Rushmer RF (1970) Functional anatomy of cardiac contraction. Cardiovascular dynamics, 3rd ed. Philadelphia-London: Saunders

    Google Scholar 

  • Rutishauser W, Wirz P, Gander M, Noseda G (1968) Vergleich der Herzdynamik bei Frequenzsteigerung unter Arbeitsbelastung und elektrischer Stimulation. In: Wollheim E, Schneider KW (Hrsg) Herzinsuffizienz. Thieme, Stuttgart, S 429

    Google Scholar 

  • Sabbah HN, Stein PD (1981) Negative diastolic pressure in the intact canine right ventricle. Evidence of diastolic suction. Circulat Res 49:108

    PubMed  CAS  Google Scholar 

  • Salisbury PF, Cross CE, Rieben PA (1962) Intramyocardial pressure and strength of left ventricular contraction. Circulat Res 10:608

    PubMed  CAS  Google Scholar 

  • Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circulat Res 8:1077

    PubMed  CAS  Google Scholar 

  • Schmid-Schönbein H (1977) Microrheology of erythrocytes and thrombocytes. In: Handbuch der allgemeinen Pathologie, Bd 7:111. Springer, Heidelberg Berlin New York

    Google Scholar 

  • Schultz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the auto-regulatory range in pigs: Evidence against the Gregg phenomenon. Circulation 83:1390

    Google Scholar 

  • Schwegler M, Reutter K, Sieber G, Jacob R (1976) Noncompetitive catecholamine-antagonism of acetylcholine on the sym-pathetectomized mammalian ventricular myocardium. Basic Res Cardiol 71:407

    PubMed  CAS  Google Scholar 

  • Serizawa T, Vogel WM, Apstein CS, Grossman W (1981) Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia: role of myocardial oxygen supply-demand imbalance. J clin Invest 68:91

    PubMed  CAS  Google Scholar 

  • Sonnenblick EH, Parmley WW, Urschel CW (1969) The contractile state of the heart as expressed by force-velocity relations. Amer J Cardiol 23:488

    PubMed  CAS  Google Scholar 

  • Starling EH (1918) The Linacre lecture on the law of the heart. Langmas, Green & Co, New York London

    Google Scholar 

  • Stauffer JC, Gaasch WH (1990) Recognition and treatment of left ventricular diastolic dysfunction. Progr Cardiovasc Dis 5:319

    Google Scholar 

  • Straub H (1914 a) Dynamik des Säugetierherzens. Dtsch Arch klinMed 115:531

    Google Scholar 

  • Straub H (1914 b) Dynamik des Säugetierherzens. Dtsch Arch klin Med 116:27

    Google Scholar 

  • Strauss JD, Rüegg JC, Lues J (1993) In search of calcium sensitizers compounds, from subcellular models of muscle to in vivo positive inotropic action. Oxford Medical Publications, S 37

    Google Scholar 

  • Streeter DD jr, Spotnitz HM, Patel DJ, Ross J jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circulat Res 24:339

    PubMed  Google Scholar 

  • Tada M, Kirchberger MA, Katz AM (1975) Phosphorylation of a 22000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3’: 5’-monophosphate-dependent protein kinase. J biol Chem 250:2640

    PubMed  CAS  Google Scholar 

  • Tillmanns H, Kubier W (1984) What happens in the microcirculation? In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. Raven Press, New York, S107

    Google Scholar 

  • Trautwein W (1972) Erregungsphysiologie des Herzens. In: Gauer O, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd 3. Urban & Schwarnzenberg, München Berlin Wien

    Google Scholar 

  • Tsien RW (1977) Cyclic AMP and contractile activity in the heart. Adv cyclic Nucl Res 8:363

    CAS  Google Scholar 

  • Tyberg JV, Misbach GA, Glantz SA, Moores WY, Parmley WW (1978) A mechanism for shifts in the diastolic, left ventricular, pressure-volume curve: The role of the pericardium. Europ J Cardiol 7 Suppl 163

    Google Scholar 

  • Vatner SF, McRitchie RJ (1975) Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circulat Res 37:664

    PubMed  CAS  Google Scholar 

  • Vatner SF, Monroe RG, McRitchie RJ (1974) Effects on anesthesia, tachycardia and autonomic blockade on the Anrep effect in intact dogs. Amer J Physiol 226:1450

    PubMed  CAS  Google Scholar 

  • Waters DD, Luz PD, Wyatt HL, Swan HJC, Forrester JS (1977) Early changes in regional and global left ventricular function induced by graded reduction in regional coronary perfusion. Amer J Cardiol 39:537

    PubMed  CAS  Google Scholar 

  • Weisfeldt ML, Armstrong P, Scully HE, Sanders CA, Daggett WM (1974 a) Incomplete relaxation between beats after myocardial hypoxia and ischemia. J clin Invest 53:1626

    PubMed  CAS  Google Scholar 

  • Weisfeldt ML, Scully HE, Frederiksen J, Rubenstein JJ, Pohosz GM, Beierholm E, Bello AG, Daggett WM (1974b) Hemodynamic determinants of maximum negative dp/dt and periods of diastole. Am Physiol 227:613

    CAS  Google Scholar 

  • Weiss JL, Frederiksen J, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751

    PubMed  CAS  Google Scholar 

  • Weiss JL, Weisfeldt ML, Mason SJ, Garrison JB, Livengood SV, Fortuin NJ (1979) Evidence of Frank-Starling effect in man during severe semisupine exercise. Circulation 59:655

    PubMed  CAS  Google Scholar 

  • Weissler AM (1977) Systolic-time intervals. New Engl J Med 296:321

    PubMed  CAS  Google Scholar 

  • Wetterer E (1963) Flowmeters: Their theory, construction and operation. In: Hamilton WF, Dow P (eds) Handbook of Physiology, Circulation. Washington, American Physiol Soc 2:1294

    Google Scholar 

  • Wetterer E, Kenner Th (1968) Grundlagen der Dynamik des Arterienpulses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wezler K (1962) Der diastolische Herztonus. L, IL, III. Teil. Z Kreisl-Forsch 51:651, 836, 907

    Google Scholar 

  • Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. I. The duration of the consecutive phases of the cardiac cycle and the criteria for their precise determination. Amer J Physiol 56:415

    Google Scholar 

  • Wiggers C J (1951) Determinants of cardiac performance. Circulation 4:485

    PubMed  CAS  Google Scholar 

  • Witzleb E (1968) Venentonusrekationen in kapazitiven Hautgefäßen bei Orthostase. Pflügers Arch ges Physiol 302:315

    Google Scholar 

  • Zelis R (1975) The peripheral circulations. New York-London: Grüne & Stratton

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bassenge, E. (1996). Mechanik des intakten Herzens. In: Herzkrankheiten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97605-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97605-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97606-3

  • Online ISBN: 978-3-642-97605-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics