Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 110))

  • 186 Accesses

Abstract

In quantum-mechanical terms, the cyclotron and electron-spin resonances originate from optical transitions of carriers between the Landau levels and magneticfield-splitted spin sublevels. Measurement of the dependence of the cyclotronresonance frequency on the magnitude and direction of magnetic field provides a direct and reliable way for determining the electron (or hole) effective mass, as well as for studying the nonparabolicity and nonsphericity of an electronic band in a semiconductor. In connection with this, we derive in Sec. 7.1 expressions for the longitudinal and transverse electron mass in a superlattice at the miniband bottom, analyze how the choice of the boundary conditions for the envelopes at the interfaces affects these masses, and discuss the nonparabolicity of the miniband spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Gashimzade, E.L. Ivchenko: Fiz. Tekh. Poluprovodn. 25, 323 (1991) [Sov. Phys. - Semicond. 25, 195 (1991)]

    CAS  Google Scholar 

  2. T. Duffield, B. Bhat, M. Koza, F. de Rosa, D.M. Hwang, P. Grable, S.J. Allen, Jr.: Phys. Rev. Lett. 56, 2724 (1986)

    Article  CAS  Google Scholar 

  3. B.F. Levine, R.J. Malik, J. Walker, K.K. Choi, C.G. Bethea, D.A. Kleinman, J.M. Vandenberg: Appl. Phys. Lett. 50, 273 (1987)

    Article  CAS  Google Scholar 

  4. C. Hermann, C. Weisbuch: In Optical Orientation ed. by F. Meier, B.P. Zakharchenya (North-Holand, Amsterdam 1984) p.463

    Google Scholar 

  5. M. Dobers, K. v. Klitzing, G. Weimann: Solid State Commun. 70, 41 (1989)

    Article  CAS  Google Scholar 

  6. E.L. Ivchenko, A.A. Kiselev: Fiz. Tekh. Poluprovodn. 26, 1471 (1992) [Sov. Phys. - Semicond. 26, 827 (1992)]

    Google Scholar 

  7. B. Lou, S. Sudharsanan, S. Perkowitz: Phys. Rev. B 38, 2212 (1988)

    Article  CAS  Google Scholar 

  8. O.K. Kim, W.G. Spitzer: J. Appl. Phys. 50, 4362 (1979)

    Article  CAS  Google Scholar 

Additional Reading: Cyclotron Resonance

  • Bass F., V.A. Lykakh, A.P. Tetervov: Cyclotron resonance in a semiconductor with superlattice. Fiz. Tekhn. Poluprovodn. 14, 2314 (1980) [Sov. Phys. - Semicond. 14, 1372(1980)]

    Google Scholar 

  • Bluyssen H., J.C. Maan, P. Wyder, L.L. Chang, L. Esaki: Cyclotron resonance in an InAs-GaSb superlattice. Solid State Commun. 31, 35 (1979)

    Article  CAS  Google Scholar 

  • Schlesinger Z., S.J. Allen, J.C.M. Hwang, P.M. Platzman, N. Tzoar: Cyclotron resonance in two dimensions. Phys. Rev. B 30, 435 (1984)

    CAS  Google Scholar 

  • Yuh P., K.L. Wang: Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38, 8377 (1988)

    Article  Google Scholar 

  • Wixforth A., M. Kaloudis, C. Rocke, K. Enslin, M. Sundaram, J.H. English, A.C. Gossard: Dynamic response of parabolically confined electron systems. Semicond. Sei. Technol. 9, 215 (1994)

    Article  CAS  Google Scholar 

Electron Spin Resonance, g-Factor

  • Chen Y.-F., M. Dobrowolska, J.K. Furdyna: g-factor anisotropy of conduction electrons in InSb. Phys. Rev. B 31, 7989 (1985)

    Article  CAS  Google Scholar 

  • Dobers M., K. von Klitzing, G. Weimann: Electron-spin resonance in the two-dimensional electron gas of GaAs- Alx Ga1-x As heterostructures. Phys. Rev. B 38, 5453 (1988)

    Article  CAS  Google Scholar 

  • Heberle A.P., W.W. Rühle, K. Ploog: Quantum beats of electron Larmor precession in GaAs wells. Phys. Rev. Lett. 72, 3887 (1994)

    Article  CAS  Google Scholar 

  • Hermann C., C. Weisbuch: Optical detection of conduction electron spin resonance in semiconductors and its application to kp perturbation theory. In: Optical Orientation, ed. by Meier, F., Zakharchenya, B.P. (North-Holland, Amsterdam 1984) p.463

    Google Scholar 

  • Lommer F., F. Malcher, U. Rössler: Reduced g-factor of subband Landau levels in AlGaAs/GaAs heterostructures. Phys. Rev. B 32, 6965 (1985)

    Article  CAS  Google Scholar 

  • Ogg N.R.: Conduction-band g factor anisotropy in indium antimonide. Proc. Phys. Soc. 89,431 (1966)

    Article  CAS  Google Scholar 

  • Smith T.P.III, F.F. Fang: g-Factor of electrons in an InAs quantum well. Phys. Rev. B 35, 7729 (1987)

    Article  CAS  Google Scholar 

  • Snelling M.J., E. Blackwood, C.J. McDonagh, R.T. Harley: Exciton, heavy-hole and electron g factors in type-I GaAs/AlxGa1-x As quantum wells. Phys. Rev. B 45, 3922 (1992)

    Article  CAS  Google Scholar 

  • Snelling M.J., G.P. Flinn, A.S. Plaut, R.T. Harley, A.C. Tropper, R. Eccleston, C.C. Phillips: Magnetic g factor of electrons in GaAs/AlxGaj xAs quantum wells. Phys. Rev. B 44, 11345 (1991)

    Article  CAS  Google Scholar 

Intersubband Transitions and IR Spectroscopy

  • Ahn D., S.L. Chuang: Intersubband optical absorption in a quantum well with an applied electric field. Phys. Rev. B 38, 4149 (1987)

    Google Scholar 

  • Berezhkovskii A.M., R.A. Suris: Absorption of electromagnetic radiation by carriers in semiconductors with a superlattice in the transverse magnetic field. Fiz. Tekhn. Poluprovodn. 18, 1224 (1984) [Sov. Phys. - Semicond. 18, 764 (1984)]

    CAS  Google Scholar 

  • Brown L.D.L., M. Jaroc, D.C. Herbert: Large intersubband infrared transitions in GaAs-Ga1-x Alx As superlattices. Phys. Rev. B 40, 1616 (1989)

    Article  CAS  Google Scholar 

  • Ikonic Z., V. Milanovic, D. Tjapkin: On the linewidths of intersubband transitions in GaAs- Alx Ga1-x As quantum wells in electric field. Solid State Commun. 72, 835 (1989)

    Article  CAS  Google Scholar 

  • Levine B.F., K.K. Choi, C.G. Bethea, J. Walker, R.J. Malik: New 10 µm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys. Lett. 50, 1092 (1987)

    CAS  Google Scholar 

  • Miyatake T., S. Horihata, T. Ezaki, H. Kubo, N. Mori, K. Taniguichi, C. Hamaguchi: GaAs/AlGaAs quantum well infrared photodetectors. Solid-State Electron. 37, 1187 (1994)

    Article  CAS  Google Scholar 

  • Piro O.E.: Anisotropy and infrared response of the GaAs-AlAs superlattice. Phys. Rev. B 36, 3427 (1987)

    Google Scholar 

  • Sengers A.J., L. Tsang, K.J. Kuhn: Optical properties due to intersubband transitions in n-type quantum wells including the effects of the exchange interaction. Phys. Rev. B 48, 15116 (1993)

    Article  CAS  Google Scholar 

  • West L.E., S.J. Eglash: First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156 (1985)

    Article  CAS  Google Scholar 

  • Xu W., Y. Fu, M. Willander, S.C. Shen: Theory of normal-incidence absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Phys. Rev. B 49, 13760 (1994)

    Article  CAS  Google Scholar 

  • Yuh P., K.L. Wang: Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38, 8377 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivchenko, E.L., Pikus, G. (1995). Intraband Transitions. In: Superlattices and Other Heterostructures. Springer Series in Solid-State Sciences, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97589-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97589-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97591-2

  • Online ISBN: 978-3-642-97589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics