Quantum Wells and Superlattices

  • Eougenious L. Ivchenko
  • Grigory Pikus
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 110)


The Quantum Well (QW) is a system in which the electron motion is restricted in one direction thus producing quantum confinement; in other words, the spectrum in one of the quantum numbers changes from continuous to discrete. The quantum wells represent an example of systems with reduced dimensionality. Systems with electron motion restricted in two directions are called quantum wires, and those confined in all three directions were given the name of quantum dots. For quantum confinement to be observable, the size of a well must be less than the electron mean-free path. This requirement imposes constraints both on the geometric size of a well and on the quality of the sample and temperature determining the mean-free-path length.


Quantum Well Quantum Confinement GaAs Layer Multiple Quantum Well Barrier Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    L. Chang, K. Ploog (eds.): Molecular Beam Epitaxy and Heterostructures (Nij- hoff, Dorderecht 1985)Google Scholar
  2. 1.2
    H. Jones, C Zener: Proc. Roy. Soc. A 144, 101 (1934)CrossRefGoogle Scholar
  3. 1.3
    C. Zener: Proc. Roy. Soc. A 145, 521 (1934)Google Scholar
  4. 1.4
    L.V. Keldysh: Fiz. Tverd. Tela 4, 2265 (1962) [Sov. Phys. - Solid States 4, 1658 (1963)]Google Scholar
  5. 1.5
    L. Esaki, R. Tsu: IBM J. Res. Dev. 14, 61 (1970)CrossRefGoogle Scholar
  6. 1.6
    R.F. Kazarinov, R.A. Suris: Fiz. Tekh. Poluprovodn. 5, 797 (1971) [Sov. Phys. - Semicond. 5, 707 (1971)]Google Scholar
  7. 1.7
    R.H. Davis, H.H. Hosack: J. Appl. Phys. 34, 864 (1963)CrossRefGoogle Scholar
  8. 1.8
    L.V. Iogansen: Zh. Exper. Teor. Fiz. 45, 207 (1963) [Sov. Phys. - JETP 18, 146(1964)]Google Scholar
  9. 1.9
    L.V. Iogansen: Zh. Exper. Teor. Fiz. 47, 270 (1964) [Sov. Phys. - JETP 20, 180(1965)]Google Scholar
  10. 1.10
    L. Esaki, L.L. Chang: Phys. Rev. Lett. 33, 495 (1974)CrossRefGoogle Scholar
  11. 1.11
    L.L. Chang, L. Esaki, R. Tsu: Appl. Phys. Lett. 24, 593 (1974)CrossRefGoogle Scholar
  12. 1.12
    V.N. Lutskii, D.N. Korneev, M.I. Elinson: Zh. Exper. Teor. Fiz. Pis’ma 4, 267(1966) [JETP Lett. 4, 179 (1966)]Google Scholar
  13. 1.13
    R. Dingle, W. Wiegmann, C.H. Henry: Phys. Rev. Lett. 33, 827 (1974)CrossRefGoogle Scholar

Section Additional Readings Reviews

  1. Ando T., A.B. Fowler, F. Stern: Electronic properties of two-dimensional systems.Rev. Mod. Phys. 54, 437 (1982)CrossRefGoogle Scholar
  2. Esaki L.: The evolution of semiconductor superlattices and quantum wells. Intl J.Mod. Phys. B 3, 487 (1989)CrossRefGoogle Scholar
  3. Göbel E.O.: Fabrication and optical properties of semiconductor quantum wells and superlattices. Prog. Quant. Electron. 14, 4 (1991)Google Scholar
  4. Silin A.P.: Semiconductor superlattices. Usp. Fiz. Nauk, 147, 485 (1985) [Sov. Phys. - Usp. 28, 972 (1985)]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Eougenious L. Ivchenko
    • 1
  • Grigory Pikus
    • 1
  1. 1.A.F. Ioffe Physico- Technical InstituteSt. PetersburgRussia

Personalised recommendations