Skip to main content

Physiology of Crop Production

  • Chapter

Abstract

Currently some 14 million km2 of the earth’s surface (approximately 10%) is used for agriculture. This proportion can no longer be substantially increased without taking massive ecological risks and without enormous investment of capital, technical innovation and energy. The gigantic areas taken up by tundras, deserts, savannas, bushlands and tropical rainforests are hardly suitable for productive agriculture. Furthermore, everywhere in the world considerable areas of potential agriculture are sacrificed for human settlements and to develop infrastructure (roads and tracks for railways). Even larger areas are irreversibly lost for agriculture and forestry because of incorrect treatment, such as deforestation, overgrazing, salinisation, contamination or erosion. As the human population is still increasing exponentially (1830: 1 · 109; 1930: 2 · 109; 1960: 3 · 109; 1990: 5.4 ·109; 2000: 6.5 · 109), the agriculturally usable area per capita is continuously reduced (1980: 0.30 ha · head−1; 2000: 0.22 ha · head−1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Dennis ES, Llewellyn DJ (1991) (eds) Molecular approaches to crop improvement. Springer, Vienna New York

    Google Scholar 

  • Djordjevic MA, Weinman JJ (1991) Factors determining host recognition in the clover-Rhizobium symbiosis. Aust J Plant Physiol 18:543–557

    Article  CAS  Google Scholar 

  • Dodge AD (ed) (1989) Herbicides and plant metabolism. SEB Seminar Series, vol. 38. Cambridge Univ Press, Cambridge New York

    Google Scholar 

  • Evans LT (ed) (1975) Crop physiology. Some case histories. Cambridge Univ Press, London

    Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Grierson D (1991) Plant genetic engineering. Blackie, London

    Google Scholar 

  • Großmann R (1992) Plant growth retardants: their mode of action and benefit for physiological research. In: Karssen CM, Van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer Academic, Dordrecht Boston London, pp 788–797

    Chapter  Google Scholar 

  • Hiatt A (1990) Antibodies produced in plants. Nature 344:469–470

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A (ed) (1993) Transgenie plants. Fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  • Hock B, Elstner EF (eds) (1988) Schadwirkungen auf Pflanzen. Lehrbuch der Pflanzentoxikologie, 2. Aufl. BI-Wiss-Verlag, Mannheim Wien Zürich

    Google Scholar 

  • Hohn T, Schell J (eds) (1987) Plant DNA infectious agents. Plant Gene Research Series. Springer, Wien New York

    Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15–38

    Article  PubMed  CAS  Google Scholar 

  • Klee H, Horsch R, Rogers S (1987) Agrobacerium-mediated plant transformation and its further applications to plant biology. Annu Rev Plant Physiol 38:467–486

    Article  CAS  Google Scholar 

  • Kuckuck H, Kobabe G, Wenze G (1991) Fundamentals of plant breeding. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lamb CJ, Beachy RN (eds) (1990) Plant gene transfer. Wiley-Liss, New York

    Google Scholar 

  • Lambers H, Cambridge ML, Konings H, Pons TL (eds) (1990) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, Londoin Orlando San Diego

    Google Scholar 

  • Milthorpe FL, Moorby J (1974) An introduction to crop physiology. Cambridge Univ Press, London

    Google Scholar 

  • Nap J-P, Bisseling T (1990) Development biology of a plantprokaryote symbiosis: the legume root nodule. Science 250:948–954

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Stevenson FJ (ed) (1982) Nitrogen in agricultural soils. Agronomy Series, vol 22. Am. Soc. Agric, Crop Sci Soc Am, Soil Sci Soc Am, Publishers, Madison

    Google Scholar 

  • Werner D (1992) Symbiosis of plants and microbes. Chapman & Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohr, H., Schopfer, P. (1995). Physiology of Crop Production. In: Plant Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97570-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97570-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08196-5

  • Online ISBN: 978-3-642-97570-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics