Skip to main content

Gauss Quadrature

  • Chapter
  • 593 Accesses

Abstract

In this chapter, we study how to compute Gauss quadrature rules with the help of MAPLE. We consider the integral

$$ \int\limits_a^b {f(x)\omega (x)dx,} $$
(18.1)

where w(x) denotes a nonnegative weight function. We assume that the integrals

$$ \int\limits_a^b {f|x{|^k}\omega (x)dx,} $$
(18.2)

exist for all k ≥ 0. Additionally, we assume that w(x) has only a finite number of zeroes in the interval [a, b] (cf. [20, p. 18].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer, The Classical Moment Problem, translated by N. Kemmer, Oliver & Boyd, Edinburgh and London, 1965.

    Google Scholar 

  2. J. Bouzitat, Sur l’intégration numérique approchée par la méthode de Gauss généralisée et sur une extension de cette méthode, C. R. Acad. Sei. Paris, 229 (1949), pp. 1201–1203.

    Google Scholar 

  3. E. B. Christoffel, Uber die Gaussische Quadratur und eine Verallgemeinerung derselben, J. Reine Angew. Math., 55 (1858), pp. 61–82.

    Article  MATH  Google Scholar 

  4. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  5. R. N. Desmarais, Programs for computing abscissas and weights for classical and nonclassical Gaussian quadrature formulas, NASA Report TN D-7924, NASA Langley Research Center, Hampton VA, 1975.

    Google Scholar 

  6. A. Erdélyi et al., Higher Transcendental Functions, Bateman Manuscript Project, McGraw-Hill, New York, 1953.

    Google Scholar 

  7. C. F. Gauss, Methodus Nova Integralium Valores per Approximationem Inve- niendi, Werke, Vol. 3, Göttingen, 1866, pp. 163–196.

    Google Scholar 

  8. W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Review, 9 (1967), pp. 24–82.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Gautschi, Construction of Gauss-Christoffel Quadrature Formulas, Math. Comp., 22 (1968), pp. 251–270.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Gautschi, On the Construction of Gaussian Quadrature Rules from Modified Moments, Math. Comp., 24 (1970), pp. 245–260.

    MathSciNet  MATH  Google Scholar 

  11. W. Gautschi, Minimal Solutions of Three-Term Recurrence Relations and Orthogonal Polynomials, Math. Comp., 36 (1981), pp. 547–554.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Gautschi, A Survey of Gauss-Christoffel Quadrature Formulae, in E. B. Christoffel, The Influence of His Work on Mathematics and the Physical Sciences, ed. P. L. Butzer and F. Fehér, Birkhäuser, Basel, 1981, pp. 72–147.

    Google Scholar 

  13. W. Gautschi, An algorithmic implementation of the generalized Christoffel theorem, in Numerical Integration, Internat. Ser. Numer. Math., ed. G. Hämmerlin, Birkhäuser, Basel, 57 (1982), pp. 89–106.

    Google Scholar 

  14. W. Gautschi, Questions of numerical condition related to polynomials, in Studies in Mathematics, Volume 24: Studies in Numerical Analysis, ed. G. H. Golub, Math. Assoc. Amer., Washington, 1984, pp. 140–177.

    Google Scholar 

  15. W. Gautschi, Orthogonal polynomials—constructive theory and applications, J. Comput. Appl. Math., 12&13 (1985), pp. 61–76.

    Article  MathSciNet  Google Scholar 

  16. ] G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review, 15 (1973), pp. 318–334.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. H. Golub and C. F. Van Loan, Matrix Computations, Second Edition, The Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  18. G. H. Golub and J. H. Welsch, Calculation of Gauss Quadrature Rules, Math. Comp., 23 (1969), pp. 221–230.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Heuser, Lehrbuch der Analysis, Teil 1, Teubner, Stuttgart, 1986.

    Google Scholar 

  20. V. I. Krylov, Approximate Calculation of Integrals,translated by A. H. Stroud, Macmillan, New York, 1962.

    MATH  Google Scholar 

  21. A. Markoff, Sur la méthode de Gauss pour le calcul approché des intégrales, Math. Ann., 25 (1885), pp. 427–432.

    Google Scholar 

  22. I. P. Mysovskih, On the Construction of Cubature Formulas with Fewest Nodes, Soviet Math. Dokl., 9 (1968), pp. 277–280.

    Google Scholar 

  23. B. N. Parlett, The Symmetrie Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, 1980.

    Google Scholar 

  24. W. H. Press and S. A. Teukolsky, Orthogonal Polynomials and Gaussian Quadrature with Nonclassical Weight Functions, Computers in Physics, 4 (1990), pp. 423–426.

    MATH  Google Scholar 

  25. P. Rabinowitz, Abscissas and Weights for Lobatto Quadrature of High Order, Math. Comp., 14 (1960), pp. 47–52.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Radau, Etude sur les formules d’approximation qui servent à calculer la valeur numérique d’une intégrale définie, J. Math. Pures Appl., Ser. 3, 6 (1880), pp. 283–336.

    Google Scholar 

  27. R. A. Sack and A. F. Donovan, An Algorithm for Gaussian Quadrature given Modified Moments, Numer. Math., 18 (1972), pp. 465–478.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Second Edition, American Mathematical Society, New York, 1950.

    MATH  Google Scholar 

  29. J. Stoer, Einführung in die Numerische Mathematik I, Springer-Verlag, 1983.

    MATH  Google Scholar 

  30. J. Stoer and R. Bulirsch,Einführung in die Numerische Mathematik II, Springer-Verlag, 1978.

    MATH  Google Scholar 

  31. A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

    Google Scholar 

  32. G. Szego, Orthogonal Polynomials, American Mathematical Society, New York, 1939.

    Google Scholar 

  33. H. S. Wall, Analytic Theory of Continued Fractions, van Nostrand, New York, 1948.

    Google Scholar 

  34. J. C. Wheeler, Modified moments and Gaussian quadratures, Rocky Mountain J. of Math., 4 (1974), pp. 287–296.

    Article  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Matt, U. (1993). Gauss Quadrature. In: Solving Problems in Scientific Computing Using Maple and Matlab ® . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97533-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97533-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57329-6

  • Online ISBN: 978-3-642-97533-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics